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a b s t r a c t 

Over the years, the acceptance of machine learning as a valuable tool in the real-world has caused much 

interest in the research community; this is particularly the case as the field of Big Data is coming into 

prominence. However, real-world data comes with a myriad of challenges, amongst the most prominent 

of which is the fact that it can exhibit a high level of imbalance. This can come in the form of both 

within- and between-class imbalance. While a significant amount of research has been devoted to the 

impact of within-class imbalance over binary classifiers, very little attention has been given to their im- 

pact on one-class classifiers, which are typically used in situations of extreme between-class imbalance. 

During our collaboration with Health Canada into the identification of anomalous gamma-ray spectra, the 

issue of within-class imbalance in a one-class classification setting was highly significant. In this setting, 

the imbalance comes from the fact that the background data that we wish to model is composed of two 

concepts (background no-rain and rain); the rain sub-concept is rare and corresponds to spectra affected 

by the presence of water in the environment. In this article, we present our work into developing sys- 

tems for detecting anomalous gamma-rays that are able to handle both the inherent between-class and 

within-class imbalance present in the domain. We test and validate our system over data provided to us 

by Health Canada from three sites across Canada. Our results indicated that oversampling the sub-concept 

improves the performance of the baseline classifiers and multiple classifier system when measured by the 

geometric mean of the per-class accuracy. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

This paper summarizes and advances our previous research into

he one-class classification of gamma-ray spectra. In particular, we

xplore the difficulties caused by the existence of potentially rare

egions in the target class; these regions are more formally known

s sub-concepts ( Weiss, 2003 ). They make learning a good model

ifficult because they may be sparse and separated by areas of

ow-density or the other class. We consider the benefits of both

ultiple classifier systems and preprocessoing the data to balance

he sub-concepts priors in order to mitigate the negative effects of

he less frequent sub-concepts. 
� This work was conducted in collaboration with the Radioactive Protection Bu- 

eau at Health Canada. 
∗ Corresponding author. 

E-mail addresses: cbelling@ualberta.ca (C. Bellinger), 

sharma@fluentsolutions.com (S. Sharma), japkowic@american.edu (N. Japkow- 

cz). 
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The application of this research involved a collaboration with

hysicists at the Radiation Protection Bureau of Health Canada. The

verarching objective is to aid government monitors in predicting

he occurrence of a pending radioactive event. Depending on the

etting, the specific event may involve a malfunction at a nuclear

acility or the nefarious use of nuclear material. Thus, the classifi-

ation objective is to design and develop a system capable of ac-

urately identifying rare spectra signifying potential dangers. 

Our initial attempts with standard one-class classification did

ot satisfy our objective of high accuracy on the target and outlier

lasses. By examining the misclassifications using principle compo-

ent analysis, we were able to identify that the errors were occur-

ing in a common area of the data space that forms a sub-concept

ssociated with heavy rainfall. 

To address these false positives, our previous work proposed a

ultiple classifier system-based approach with a cascade architec-

ure ( Sharma, Bellinger, Japkowicz, Berg, & Ungar, 2012 ). We re-

erred to this as a two-tiered system; the key objective was to sim-

lify the target distribution by separating it into its rain and no-

ain sub-concepts. We have subsequently been provided with new

https://doi.org/10.1016/j.eswa.2018.05.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2018.05.009&domain=pdf
mailto:cbelling@ualberta.ca
mailto:ssharma@fluentsolutions.com
mailto:japkowic@american.edu
https://doi.org/10.1016/j.eswa.2018.05.009
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gamma ray spectra datasets and have identified a limitation in the

multiple classifier system approach related to the degree of imbal-

ance in the rain sub-concept. This has inspired us to consider the

problem from the perspective of within-class imbalance ( Japkowicz

& Stephen, 2002 ), and enabled us to utilize the wealth of research

available in the binary class imbalance literature to shape our so-

lution. 

The main contributions of this work are to: 

• Summarize and extend our previous work on two new radia-

tion monitoring datasets that come from unique domains; 
• Explore the problem of gamma-ray spectral classification from

the perspective of within-class imbalance, and demonstrate

how it can impact the performance of one-class classifiers; 
• Propose a solutions to the within-class imbalance problem by

extending sampling methods from the binary classification lit-

erature to balance the sub-concepts; and 

• Show that synthetically oversampling the imbalanced subcon-

cept improves performance more than the multi-classifier ap-

proach previously proposed. 

2. Related work 

Class imbalance has been studied in both extreme cases and

moderate cases. The former refers to the situations where no,

or almost no, training instances from a concept of interest are

available. Alternatively, in the moderate cases, the relative train-

ing balance is skewed enough to negatively impact performance.

Nonetheless, binary methods with some pre-processing or weight-

ing may still be applied. Both of these veins of research have in-

fluenced our solution to the gamma-ray spectra classification prob-

lem. As such, we discuss the relevant work below. This commences

with the moderate case and proceeds to the extreme setting. 

2.1. Binary class imbalance 

Class imbalance appears in a wide variety of important and

challenging binary classification tasks. Some prominent exam-

ples of imbalanced classification problems are: oil spill classifica-

tion, gene function annotation, and medical and text classification

( Akbani, Kwek, & Japkowicz, 2004; Blondel, Seki, & Uehara, 2011;

Kubat, Holte, & Matwin, 1998; Nguwi & Cho, 2009 ). Applications

in such areas have demonstrated that it can pose a major challenge

for classification systems ( He & Garcia, 2009; Japkowicz & Stephen,

2002 ). In the literature, two forms of imbalance have been identi-

fied, namely between-class and within-class imbalance. It has been

found that, in many cases, data complexity, such as class overlap,

noise and sub-concepts, contribute much of the difficulty to imbal-

anced problems ( Batista, Prati, & Monard, 2004; Denil & Trappen-

berg, 2010; García, Sánchez, & Mollineda, 2007; Japkowicz, 2001;

Prati, Batista, & Monard, 2004 ). 

The issue of sub-concepts is highly relevant in this work.

As Stefanowski (2016) highlight, apart from imbalance, the per-

formance of classifiers can be impacted by the presence of

sub-concepts (i.e., small dusjuncts). Research in binary classifi-

cation has established that sub-concepts, particularly rare sub-

concepts, can lead to a degradation in classification performance

( Japkowicz, 2003 ). Our work here shows that this is also an is-

sue in one-class classification. For binary classification, Jo and Jap-

kowicz (2004) propose a method for dealing with both within and

between class imbalance by clustering and random oversampling.

Napierała, Stefanowski, and Wilk (2010) , examined further means

of managing the affect of noise, overlap and sub-concepts with

data cleaning and oversampling based on the local characteristics

of the data. They empower rare, but relevant, sub-concepts, whilst

removing noise and borderline instances. 
The Synthetic Minority Oversampling TEchniques (SMOTE) is

he standard method applied for synthetic oversampling in the lit-

rature ( Chawla, Lazarevic, Hall, & Bowyer, 2003 ). SMOTE gener-

tes new instances of the minority class by interpolating them

t random points on the edges connecting nearest neighbors in

he minority class. This results in samples created within the

onvex-hull formed by the minority class. The manifold-based

ynthetic oversampling sampling method was recently proposed

 Bellinger, Drummond, & Japkowicz, 2017 ); it’s approach of mod-

ling data as low-dimensional manifolds is particularly helpful on

parse, high-dimensional domains, as we have here. Samples are

enerated from the induced manifold, which leads to a better rep-

esentation of the probability density. 

.2. One class classification 

The goal in one-class classification is to induce a binary class

redictor, f : x → y , that learns a functional mapping from the fea-

ure vector x to the corresponding label y , where y ∈ {0, 1}. Learn-

ng takes place on a given set of training examples X sampled from

he target class y = 0 . This is a challenging learning problem be-

ause a classifier must be induced, and the model must be selected

ithout seeing examples of the other class y = 1 . 

One-class classifiers typically induce their decision bound-

ries using one of three modeling paradigms: density-based,

ecognition-based and boundary-based. Each of these paradigms

ave been widely applied. Density-based methods have been ap-

lied to one-class classification problems, such as diseases and in-

ection detection, and to monitor content ( Cohen, Sax, Geissbuhler

t al., 2008; Tarassenko, Hayton, Cerneaz, & Brady, 1995; Zuo, Wu,

u, & Xu, 2008 ). Reconstruction-base classifiers have been applied

o predict failures in helicopter gear boxes, classify documents and

o detect nuclear tests ( Japkowicz, 1999; Manevitz & Yousef, 2001 ).

ne-class support vector machines (SVM) and support vector data

escription are the standard boundary based methods for one-class

lassification. These have had a significant amount of success in

pplications of text, image retrieval and human health ( Chen, Zhou,

 Huang, 2001; Erfani, Rajasegarar, Karunasekera, & Leckie, 2016;

anevitz & Yousef, 2001; Zhang, Wang, Xu, & Liu, 2006 ). 

Whilst much research has been undertaken to understand the

ata properties that impact the performance of binary classifiers

nduced over imbalanced datasets, the relationship between one-

lass classifiers and data properties has not been as thoroughly

onsidered. A recent study on the impact of data complexity on

ne-class classifiers is conducted in Bellinger, Sharma, Zaiane, and

apkowicz (2017) ; the authors highlight that multi-modality result-

ng from the presence of sub-concepts, as well as class overlap, can

ause a significant degradation in the performance of both binary

nd one-class classifiers as imbalance increases. 

In order to make the one-class classifiers more robust to the

resence of sub-concepts, Sharma (2016) and Sharma, Bellinger,

nd Nathalie (2012) demonstrated that by isolating and learning

ver each sub-concept, better one-class classifier systems can be

roduced. Isolation is performed by clustering as in Jo and Japkow-

cz (2004) , and a separate one-class classification model is induced

or each cluster. This is the motivation for our multi-classifier sys-

em, and corresponds to a general approach for building ensem-

les of one-class classifiers ( Jackowski, Krawczyk, & Woniak, 2014;

rawczyk, 2015; Lipka, Stein, & Anderka, 2012 ); by grouping mul-

iple classifiers into as single system, their collective strengths can

e harnessed. 

Finally, we note that whilst each of these multiple classifier

ethods can help to deal with sub-concepts, they implicitly as-

ume that the sub-concepts are well represented. Our results sug-

est that the relative frequency of the target class sub-concepts

ave implications on the performance of mutli-classifier systems. 
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Fig. 1. The plot on the left in log-scale depicts a background instance, and the plot on the right depicts an instance containing the medical isotope Technetium. The key 

difference in the Technetium signals is in its magnitude and the additional valley and peak after the first peak. 
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Table 1 

Distribution of types of spectra for the three sites. Background and outlier are 

classes that we want to predict. Background no rain and Background rain is the 

distribution of the two sub-concepts in the background class. 

Type Vancouver Saanich Thunder Bay 

Background 39,023 19,063 45,952 

Outlier 23 44 731 

Background no rain 33,246 18,990 45,820 

Background rain 5777 607 905 
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. Gamma-ray spectra domain 

.1. Background 

The physicists at Health Canada were interested in employing a

achine learning solution for automatically identifying anomalous

amma-ray spectra as measured by NaI (Sodium Iodide) gamma-

ay spectrometers. To this end, they provided us with two types

f gamma-ray spectra datasets. The first class of data results from

 network of gamma-ray spectroscopes that are intended for en-

ironmental monitoring. We refer to this as the national moni-

oring network. Data from two nodes (Saanich and Thunder Bay)

ith different radiation backgrounds and complexities are utilized.

he second class of data is from the radiation security domain

nd was collected and monitored during the Vancouver 2010 Win-

er Olympics. We refer to these as the Saanich, Thunder Bay and

lympics datasets, respectively. 

The environmental monitoring network of gamma-ray spec-

rometers collects data at fifteen minute intervals. The result is a

arge dataset of gamma-ray spectra each composed 512 channel

pectra (each channel can be thought of as a feature in the ma-

hine learning context.) The network is designed to detect threats

o human health and environment. The vast majority of measure-

ents are solely affected by elements in the local background;

hese instances are considered to be of no interest. Notably, natural

vents, such as changes in the wind or heavy rain, can cause sig-

ificant changes in the background. Alternatively, non-background

pectra are cases of interest that should be reviewed by a human

nalyst. Given the large number of readings resulting from the net-

ork each day, machine classification is essential to ensure that

he appropriate spectra are given attention in a timely manner. 

The Olympics data was recorded at the entrance to Olympic

enues in Vancouver. Due to security requirements, this data was

ollected at one-minute intervals, resulting in significantly more

oisy data. Each spectra is composed of 1,024 channels. As no true

pectra of interest were recorded during the Games, to evaluate

ur system, we utilize anomalies that occurred due to the pres-

nce of three medical isotopes, namely Iodine, Thallium and Tech-

etium, and a Caesium check-source as the outlier class. 

A sample target (left) and outlier (right) instance from the Van-

ouver dataset is plotted in log form in Fig. 1 . In the plots, energy

s represented in terms of channels on the x -axis and the counts,

hich indicate the intensity, are recorded on the y -axis. The subtle

s

ifference in the target and outlier can be seen in the shape and

agnitude of the lower channels of the spectrum. It is important

o note, however, that the shape and location of the change is de-

endent upon the radioisotope involved in the outlier, along with

he quantity and amount of decay that has occurred. 

In addition to the challenge presented by imbalance in the

lasses, this domain also contains sub-concepts in the target class

ssociated with heavy rain events. The physicists at Health Canada

rovided us with an additional set of labels indicating whether a

iven spectra was impacted by rain or not. For simplicity, we re-

er to these sub-categories as the rain and no-rain sub-concepts.

able 1 reports the distribution of the spectra corresponding to

he target and outlier classes, as well as the of the rain and no-

ain sub-concepts, for all three data sets. In the Vancouver and

aanich datasets, the class imbalance is too severe for any binary

lassifier. Whilst there are more outlier examples for the Thunder

ay dataset, it is purely a one-class classification task due to the

equirement to detect outliers occurring in all areas of the data-

pace. 

.2. Challenges of within-class imbalance: the sub-concept of rain 

In our work, the gamma-ray spectra impacted by rain had

 greater likelihood of being misclassified as outliers than spec-

ra not impacted by rain. More generally, within-class imbalance

auses data from the poorly sampled sub-concepts to be treated

s outliers by the one-class classifiers. In order to illustrate this

henomenon, let us consider the exemplary domain in Fig. 2 . The

arget class is represented by blue circles and the outlier class is

epresented by red squares. The target class is composed of a main

oncept (along the bottom) that is well-sampled, and a sparsely

ampled sub-concept spreading upwards in the figure. 
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Fig. 2. This figure shows an exemplary one-class classification domain with within- 

class imbalance. A single classifier is plotted with four different thresholds showing 

the impact of target and outlier predictions. 

Table 2 

Accuracy of one-class classifiers over background rain and no-rain spectra. 

Thunder Bay Saanich Vancouver 

Rain No-rain Rain No-rain Rain No-rain 

AE 0.880 0.903 0.852 0.905 0.775 0.925 

ocSVM 0.883 0.901 0.910 0.946 0.804 0.912 

MD 0.762 0.801 0.761 0.815 0.669 0.874 
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Two factors combine to determine the class prediction of a test

instance in one-class classification; the rank or likelihood of the

instances according to the induced model, and the classification

threshold as determined by a rejection rate. If we assume a con-

stant classifier that models the data well, the rejection rate deter-

mines the decision boundary. Setting a low rejection rate, τ , e.g. ,

1%, causes a threshold that keeps the majority ( e.g. , 99%) of tar-

get training instances inside the decision boundary. The risk of a

low rejection rate is a higher false negative rate. As the rejection

rate is increased, the decision boundary restricts itself to the dens-

est parts of the training set and more target instances fall outside

it. Doing so may improve the classification of outliers, and prevent

overfitting noise, but can also degrade performance on the target

class. This is incrementally depicted for an arbitrary classifier f τ
with rejection rates τ = 20 , τ = 15 , τ = 5 and τ = 1 in Fig. 2 . With

respect to the rarer sub-concept, we observe that by increasing the

rejection rate, the sub-concept is forced outside the boundary. As a

result, classifiers f τ=15 and f τ=20 have increasing numbers of target

instances classified as outliers. 

Because of the limitation of one-class classifiers, and complexity

of our domain, we are required to set relatively high rejection rate

to ensure good accuracy on the outlier class. The impact of this is

an elevated false positive rate, which contradicts our objective of

high accuracy on both classes. 

3.3. Demonstration on gamma-ray specta datasets 

The visualizations of the gamma-ray spectra datasets using the

first two principle components in Fig. 3 demonstrates the existence

of sub-concepts in the Saanich and Thunder Bay data. The rain sub-

concept is not as clear for the Vancouver data in two-dimensions.

It is more visible in three-dimensions, however, we have omited

this in the interest of space. 

As we demonstrated in Fig. 2 , within-class imbalance results in

the one-class classifiers treating the data from the minority sub-

concept as an outlier, thus causing the accuracy over it to be much

lower. We verify this on our gamma-ray spectra domains by ex-

amining the accuracy of classifiers on the target rain and no-rain

sub-concepts. These results are shown in Table 2 . The Mahalanobis

distance (MD), reconstruction error of an autoencoder (AE) and a

one-class support vector machine (ocSVM) are employed in these

experiments to demonstrate their limitations in terms of accuracy
n each class. We have selected these three classifiers because they

epresent the three paradigms, are known to have produced good

esults in real-world applications, and have been widely applied.

hey are discussed in greater detail in subsequent section. In each

ase the accuracy achieved on the target rain sub-concept is lower

han the accuracy on the target no-rain sub-concept. We describe

he two systems that we developed to address this issue in the

ollowing section. 

. Developed systems 

In order to solve the one-class classification problem, we tested

E, ocSVM and MD. Together these one-class classification meth-

ds cover the spectrum of possible of strategies (recognition-,

oundary- and density-based.) 

.1. Applied one-class classifiers 

.1.1. Autoencoder 

The autoencoder (AE) is a form of neural network which has

n input layer, one or more hidden layers and an output layer

 Hanson, 1987 ). The number of output nodes equals the number

f input nodes, whereas the user defines the number of hidden

ayers and units per layer. The network is trained, layer-wise, in

 top-down fashion to optimize an unsupervised objective func-

ion using backpropagation with stochastic gradient descent. We

se the common objective of minimizing the squared reconstruc-

ion error. For more details on designing and training autoen-

oders, the reader is directed to the textbook of Goodfellow, Ben-

io, and Courville (2016) . To avoid overfitting, denoising is used

uring training ( Vincent, Larochelle, Lajoie, Bengio, & Manzagol,

010 ). 

Given a query instance x a classification is made using the

quared reconstruction error 
(
x − f θ (g θ ′ (x )) 

)2 
. A low reconstruc-

ion error indicates that the instance is recognized by the network,

hereas a higher reconstruction error indicates that the instance is

ot recognized and likely comes from a different distribution than

he training distribution. Given a fitted model f θ ( · ) and a threshold

, a query instance x is classified by 
(

f θ (x ) − x 
)2 ≤ τ, where the x

s assigned to the target class if the squared reconstruction error is

ess than the threshold. 

.1.2. One-class SVM 

One-Class Support Vector Machines (ocSVMs) ( Schölkopf, Platt,

hawe-Taylor, Smola, & Williamson, 2001 ) are a modification of the

tandard binary SVMs. Whereas binary SVMs apply an optimization

rocess to find the maximum margin hyperplane that separates

he training instances into the two classes, in ocSVM we do not

ave data from both classes. In this case, the origin of the trans-

ormed feature space is treated as the sole instance of the outlier

lass, and the optimization process finds a hyperplane that maxi-

izes the distance to the origin, subject to a relaxation parameter

. The free parameter ν behaves similarly to the rejection rate dis-

ussed in the context of AE, with the added benefit that it is incor-

orated into the optimization process so that the decision bound-

ry is determined during training. 

The One-Class SVM returns a function f that is positive on in-

tances belonging to S , and negative on those belonging to the

omplement of S : 

f (x ) = 

{
+1 if x ∈ S 

−1 if x ∈ S 
(1)

n other words, the algorithm for One-Class SVM generates a func-

ion f that returns +1 in a region S capturing the vast majority of

nstances (the target class), and returns a −1 in the rest of the re-

ion. 



C. Bellinger et al. / Expert Systems With Applications 108 (2018) 223–232 227 

Fig. 3. Presence of the rain sub-concept at Saanich, Thunder Bay and Vancouver datasets. 
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.1.3. Mahalanobis distance 

The Mahalanobis distance is a parametric distance measure

sed for Gaussian distributions. By estimating the parameters of

he Gaussian distribution for the target class from the training data

nd setting a threshold on the maximum distance that a query

oint can be from the sample mean, the Mahalanobis distance

orms a simple, but often effective, one-class classifier. 

To calculate the Mahalanobis distance we first estimate mean

and the covariance matrix � the target class. With these, the

ahalanobis distance between an instance x from the mean μ is

alculated as: 

D (x, μ) = (x − μ) T �−1 (x − μ) . (2)

learly, the larger the Mahalanobis distance between an instance

nd the mean, the lower the likelihood of that instance being

enerated by the underlying pdf . A Mahalanobis distance classifier

MD) is formed by specifying a distance threshold to the mean of

he target class beyond which a test instances is considered as be-

onging to the outlier class. In line with the previous methodology,

he distance threshold τ is selected as the distance which produces

he specified rejection rate on a validation set. The rejection rate is

et to optimize the true positive rate. 
.2. Addressing the impact of sub-concepts 

In the following subsections, we describe two approaches for

ealing with the rain sub-concepts in our gamma-ray spectra data.

ach of these strategies requires us to have labels indicating which

ubconcept (rain or no-rain) the training instance belongs to. In

amma-ray spectra classification, this is not an issue because the

omain experts can do this in an automated manner using their

nowledge of the physical properties of the spectra. 

.2.1. Two tiered multiple classifier system 

The first system we developed to address the negative impact

f the rain sub-concept in the gamma-ray spectra data has a two-

iered architecture for classification. The motivation for this ap-

roach is that it simplifies the target distribution by dividing it

nto two one-class classification problems. A one-class classifier is

nduced for each sub-concept in the target class. This is visualized

n Fig. 4 , where one-class classifier A is induced for the main (no-

ain) sub-concept and one-class classifier B is induced for the rain

ub-concept. By separating the concepts, we simplify the distribu-

ion over which the classifiers are induced. 

As described in Sharma et al. (2012) , this system utilizes the

ub-concept labels (background rain/no-rain) in the first tier of the

ascade classifier to induce a discrimination layer for novel spec-

ra. At test time, the binary classifier predicts the sub-concept the
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Fig. 4. Managing the subconcept via a two-tiered approach. 

Fig. 5. Training and classification for the two-tiered support. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Managing the subconcept via synthetic oversampling. 
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spectra is associated with, and based on this it is passed to the

appropriate one-class classifier. Fig. 5 illustrates the training and

classification architecture. 

4.2.2. Resampling the small subconcept 

Our recent work with the newly shared gamma-ray spectra do-

mains has shown that the multiple classifier approach is nega-

tively impacted by the low frequency of instances in the rain sub-

concept. Thus, we have proposed an alternative method that uti-

lizes a pre-processing sampling phase to balance the rain and no-

rain sub-concepts. This solution is inspired by methods employed

to rectify between-class imbalance in binary classification prob-

lems, where additional samples are generated in order to produce

a better representation of the poorly sampled class. With oversam-

pling, there is always the risk of the newly generated instances

overlapping with the other classes. However, in our domain, our

analysis of the data properties with the domain experts, along with

post-sampling analysis of the data, indicated that overlapping was

not an issue. 

We apply random oversampling (ROS), which randomly repli-

cates rain spectra, and two methods of synthetic oversampling

to generate samples to balance the rain sub-concept. In our con-

text, synthetic oversampling is expected to be beneficial because

it generates unique samples to represent the minority sub-concept

rather than replicating existing ones or discarding potentially use-

ful instances of the no-rain sub-concept. This is visualized for our

exemplary domain in Fig. 6 . We perform synthetic oversampling
ith SMOTE and manifold-based synthetic oversmpling (MOS). For

ompleteness, we also apply random undersampling (RUS) to bal-

nce the sub-concepts be randomly removing training instances

rom no-rain sub-concept. 

. Experimental method 

The objective of this work is to assess the extent to which our

wo-tiered multi-classifier approach, and sub-concept empower-

ent approach, help to improve the overall predictive performance

f one-class classifiers by addressing the weakness on the rain sub-

oncept in our radioactive threat detection domain. The remainder

f this section describes the methodology applied to test this. 

.1. Datasets 

The three gamma-ray spectra datasets from the radioactive

hreat detection domain described in Section 3 are used in these

xperiments. As indicated in Table 1 , each dataset has a large num-

er of instances and is highly imbalanced. The Vancouver dataset

as 1024 dimensions, with 39,023 background instances and 23 in-

tances of the outlier class. The Saanich and Thunder Bay datasets

ave 512 dimensions. They have 19,112 and and 11,745 background

nstances, and 44 and 731 outlier instances respectively. 

.2. Algorithms 

.2.1. One-class classifiers 

For testing and validating our two systems, we employ three

ne-class classifiers for modeling the target spectra: AE, ocSVM

nd the MD. Both the ocSVM and AE require a number of parame-

ers to be set. For ocSVM, we utilized the RBF kernel function. This

s the most commonly used kernel function and we found it to be

ost appropriate for our task. The parameters were optimized in

he following ranges: ν = [0 , 1] , C = [2 −5 , 2 10 ] , and γ = [2 −15 , 2 3 ]

ia a random search. The ranges were set based on the recommen-

ations in Chang and Lin (2011) . The random search of the param-

ter space is selected rather than a grid search because it is an ef-

cient method to discover a good parameter set. Nonetheless, we

ote that the SVM result could be further refined via a grid search.

he result would be one of fine tuning, but is not expected to sig-

ificantly change the results. The model in the random parameter

earch that produced a rejection rate closest to the objective rejec-

ion rate on an independent validation set was kept and applied to

he test set. 

For the AE, we used bottleneck architecture with three hid-

en layers of size of size 40, 25, 40 for the Saanich and Olympics

atasts, and 75,35,75 for Thunder Bay. In each case, sigmoid, relu,

igmoid activations were used in the hidden layers, and linear ac-

ivation at the output layer. The network was trained with batches

f 250 instances for 30 0 0 epochs with early stopping using the

ean square error loss, l 1 regularization at the hidden layers, and
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Fig. 7. Baseline SVM performance and the SVM performance after empowerment to 25%, 50% and 75% of the no-rain sub-concept with each oversampling method. 
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t  
he Gaussian denoising parameter set to 0.01. These parameters

ere selected based on our previous experience with the data and

sing autoencoders. The threshold τ was set such that it produced

 rejection rate on an independent validation set that matched the

ser-specified rejection rate. 

No parameters were required to be set for the MD classifier.

owever, for all three classifiers, the threshold τ was set such that

t maximizes the per-class accuracy. 

.2.2. Two-tiered system 

The two-tiered multi-classifier system includes a binary classi-

er at the top tier, which predicts whether the test instances be-

ongs to the rain or no-rain sub-concept. In our previous work, we

valuated a full range of binary classifiers for this task and found

hat the Naïve Bayes classifier produced the greatest improvement

n performance of the overall system ( Sharma et al., 2012 ). For this

eason, we apply the Naïve Bayes classifier in this work. The three

ne-class classifier are applied in the second tier of the system ac-

ording to the process defined above. 

.2.3. Rain sub-concept empowerment system 

Sub-concept empowerment experiments applied RUS, ROS,

MOTE and MOS. Each sampling method was applied to alleviate

he imbalance by increasing the rain sub-concept to 25%, 50%, 75%,

nd 100% of the no-rain sub-concept size. In addition, the SMOTE
lgorithm has a single parameter, nearest neighbours k . We set

 = 7 based on the proposal in the original work ( Chawla, Bowyer,

all, & Ke., 2002 ). 

The denoising autoencoder implementation of the MOS system

ncludes the parameters previously discussed with respect to the

utoencoder one-class classifier. In addition, it includes a step size

arameter σ that must be set. This dictates the size of the ran-

om step taken along the latent manifold that is used to generate

ynthetic instances. We set σ = 1 and performed a random search

f the parameter space, keeping the model that minimized the

quared reconstruction error as described in Bellinger et al. (2017) .

.3. Evaluation 

We use the geometric mean (g-mean) to evaluate the perfor-

ance of the classification systems. We have selected the g-mean

ecause it provides a combined assessment of accuracy on the tar-

et and the outlier class in a single value ( Kubat, Matwin et al.,

997 ). Given the accuracy on the target class a + and the accuracy

n the outlier class a −, the g-mean for a classification model f on

est set X is calculated as: g − mean f (X ) = 

√ 

a + × a −. This enables

s to easily evaluate the extent to which we are achieving the do-

ain objective of producing high accuracy on both classes. 

In our results, we report the mean 5 × 2-fold cross valida-

ion of the g-mean. 5 × 2-fold cross validation is used in place
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Table 3 

Mean and standard deviation of the 5 × 2CV G-means for each all systems on each 

dataset. 

Thunder Bay Saanich Vancouver 

Mean Std Mean Std Mean Std 

Baseline 0.635 0.098 0.842 0.008 0.873 0.010 

TT 0.612 0.022 0.837 0.024 0.883 0.005 

RUS 0.643 0.010 0.748 0.018 0.731 0.009 

ROS 0.402 0.008 0.884 0.018 0.874 0.012 

SMOTE 0.674 0.025 0.884 0.016 0.844 0.020 

MOS 0.670 0.032 0.850 0.015 0.876 0.011 
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1 Empowerment by X % implies that the minority sub-concept is X % the size of 

the majority sub-concept. 
of the more common ten-fold version because it has been ob-

served that it has a lower probability of issuing a Type I error

( Dietterich, 1998 ). In addition, k -fold cross validation with larger

k values was established with small datasets in mind; the size of

the datasets is not a concern here. 

In order to perform 2-fold cross validation in a one-class set-

ting, we first divide the dataset into two subsets based on class

lines. Therefore, D 

+ contains all of the target class instances and

D 

− contains all of the outlier class instances. Next, D 

+ and D 

− are

each randomly partitioned into two equal sized folds D 

+ 
1 

and D 

+ 
2 
,

and D 

−
1 

and D 

−
2 

. In the first round of 2-fold cross validation, the

one-class classifier is trained on D 

+ 
1 

and tested on the combined

set X = D 

+ 
2 

∪ D 

−
2 

. In the second round, the one-class classifier is

trained on D 

+ 
2 

and tested on the combined set X = D 

+ 
1 

∪ D 

−
1 

. This

process is randomly repeat five times. Finally, we used the com-

bined 5 × 2 CV F -test to evaluate the statistical significance of the

results ( Alpaydm, 1999 ). 

6. Results 

6.1. System comparison 

The mean and standard deviation of the 5 × 2-fold CV g-mean

for each classification system is shown in Table 3 . The first row of

this table reports the g-mean produced by the baseline classifier

for each dataset. Specifically, on the Thunder Bay dataset, the best

baseline g-mean of 0.635 is produced by AE. The best baseline on

Saanich is 0.842 and the best baseline on Olympics is 0.873; these

are both produced with the Mahalanobis distance (MD). The subse-

quent rows of the table show the results of the best combination of

classifier and corrective strategy (TT, RUS, ROS, SMOTE and MOS).

On each dataset, at least one of the corrective measures causes an

improvement beyond g-mean of the best baseline classifier. Using

the MOS approach to synthetic oversampling led to improvements

on all datasets. This shows that it is always beneficial to deal with

the rain sub-concept. The best system for each dataset is printed in

bold text, and pertain to ocSVM with SMOTE, AE with SMOTE and

TT with AE on Thunder Bay, Saanich, and Olympics, respectively. 

The Olympics dataset is the easiest dataset with respect to the

g-mean. MD produced the highest baseline performance suggesting

that the underlying distribution is Gaussian in nature. As shown in

Fig. 3 , the rain sub-concept does not appear as an overly distinct

concept. Furthermore, the relative imbalance between rain and no-

rain spectra is less severe as compared to the other datasets, as

noted in Table 1 . These factors cause all classifiers under all sys-

tems to perform relatively well. Due to the stronger baseline per-

formance, only slight improvements can be made to the baseline

results. These are produced by TT, ROS and MOS. As we hypoth-

esized, owing to the relatively well represented sub-concepts TT

produces the best overall result. 

The rain sub-concept in the Saanich dataset is less well repre-

sented and more dispersed from the larger no-rain sub-concept.

Here, TT does not perform well, and the performance decreases
elative to the baseline. On this dataset SMOTE with AE leads to

he greatest overall improvement, and each sampling method (ROS,

MOTE, and MOS) produces some improvement. 

The Thunder Bay dataset is the most challenging of the three

atasets. Once again, the sub-concept on this dataset is very much

ispersed from the main rain sub-concept and TT causes a de-

rease in the g-mean, whereas the synthetic oversampling meth-

ds produce noteworthy increases in the baseline from 0.635 to

.670 and 0.674 with MOS and SMOTE respectively. Interestingly,

n this case RUS produces a slight increase over the best baseline,

hereas ROS causes a large decrease to 0.402. 

To summarize, we hypothesized that the dispersion and com-

lexity in the rain sub-concepts necessitated the use of a

esampling-based approach to balance the sub-concepts and im-

rove performance beyond the TT system on the more complex

hunder Bay and Saanich datasets. Our results show that this is

ndeed the case. We verified the statistical significance of the im-

rovement using the combined 5 × 2 CV F -test. We were able to

eject the null hypothesis which states that there is no difference

etween the performance of the TT system and corrective resam-

ling with 0.95 confidence on both the Thunder Bay and Saanich

atasets. 

.1.1. Effect of sub-concept empowerment 

Challenging questions arise with applying oversampling to deal

ith imbalance. The main question is: how much oversampling is

he correct amount? Reinforcing noise and increasing class overlap

re risks associated with oversampling, and therefore, it is worth

xamining the impact of the amount of oversampling on classifier

erformance. 

Our collaboration with domains experts makes us confident

hat the oversampling methods are not reinforcing noise. However,

he other questions are difficult to assess a priori . Thus, to evalu-

te these questions, we plot the changes in performance on each

ataset for decreasing levels of empowerment. 

These plots, and our previous results, show that synthetic over-

ampling with SMOTE and MOS is more helpful for SVM than ROS

o we focus on them. At each level of empowerment on the Thun-

er Bay and Saanich datasets, the combinations of SVM and syn-

hetic oversampling cause an improvement beyond the baseline,

nd the improvement is consistent after empowerment to 25%, 50%

nd 75% of the no-rain sub-concept. 1 Alternatively, when empow-

rment is applied to the Olympics dataset, the outcome is very

ensitive to the level of oversampling. In particular, empowerment

o anything over 50% of the no-rain sub-concept leads to a de-

rease in the baseline performance. We believe that this results

rom the fact that the rain sub-concept is relatively well repre-

ented in thy Olympics dataset. Thus, excessive empowerment has

he negative impact of skewing the underlying distribution. 

.2. Discussion 

We considered five means of managing the sub-concept im-

alance: a cascade classification approach formed of two tiers,

andom oversampling, random undersampling, and synthetic over-

ampling with SMOTE and with MOS. The pre-processing simplifies

he system by enabling a single one-class classifier to be trained

n a well represented target class. Indeed, our results demonstrate

hat by pre-processing with sampling we improve upon the base-

ine classifiers and multiple classifier system when measured by

he geometric mean of the per-class accuracy. It should be noted

hat the presence of noisy samples in the sub-concept could im-

act classifier performance, as new samples may reinforce noise.
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n our data, analysis done in with the physicists at Health Canada

ndicated that there are no noisy samples in the rain spectra, and

hus oversampling does not cause any degradation in classifier per-

ormance. However, in other domains, this can indeed be an issue,

nd identifying and dealing with noise would be an essential pre-

rocessing step. 

Not all of the combinations of classifiers and corrective mea-

ure were equally effective on our data. The choice of the best

re-processing method depends both on the properties of the data

nd the classifier. Overall, our results show that the sampling ap-

roaches are typically superior to the cascade approach on datasets

here the sub-concept is a lot rarer. This is particularly the case

hen ocSVM is selected as the classifier. 

Synthetic oversampling is particularly beneficial SVM and AE on

ur data. In particular, SVM only received a significant benefit from

ynthetic oversampling, where as AE benefited from all corrective

easures. With respect to SVM, this is likely because synthetic

versampling generates new instances that serve as potential sup-

ort vectors. In the case of MD, replicated samples help to shift the

ean to cover more of the rain subconcept. Likewise, by inflating

he rain sub-concept through replication seems to be sufficient to

ssist AE to the corresponding area of the data space. 

. Conclusion 

The detection of radionuclides for ensuring public safety and

onitoring environmental threats is an important area in the field

f gamma-ray spectroscopy. Machine learning has the potential

o be a key tool to aid in this task, and we were provided with

ata from three sites in Canada, Vancouver, Saanich and Thun-

er Bay, to develop a machine learning solution for detecting

nomalous gamma-ray spectra. Our research identified that both

etween class imbalance (between benign and anomalous spec-

ra), and within-class imbalance (between spectra impacted by rain

nd those that are not), are major challenges within this domain.

hile the between-class imbalance necessitates the utilization of

ne-class classifiers, the within-class imbalance impacts the per-

ormance of the utilized one-class classifiers. 

Our previous work proposed a multiple classifier system ap-

roach to simplify the target distribution, thereby improving per-

ormance. In this work, we reevaluate this system on the origi-

al dataset and two new gamma-ray spectral datasets. Our latest

esults show that the multiple classifier system is negatively im-

acted by the low frequency of training instances in the rain sub-

oncepts in the newer datasets. To this end, we employ concept-

mpowerment to mitigate the impact of within-class imbalance,

y oversampling the rarer sub-concept. The resulting classifier sys-

ems improve upon the baseline as well as the multiple classifier

ystem proposed in our previous work. 

This work has initiated a discussion on the impact of within

lass imbalance in one-class classification. However, there is a no-

iceable dearth of research into understanding the impact of imbal-

nced sub-concepts in one-class classification. Our future work will

xamine this topic more directly. In addition, due to our domain

ocus, we have not fully considered the degree to which multiple

lassifier systems are, in general, impacted (or not) by within-class

mbalance. Given that ensembles and multiple classifiers systems

re often found to be very robust, some variation may, in fact, be

eneficial for domains impacted by within-class imbalance. 
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