Modelling and Classifying Stochastically Episodic Events

Colin Bellinger Supervisor: Dr. B. John Oommen

Carleton University, School of Computer Science

16 August, 2010

Overview

Introduction

Demonstration Domain

Modelling and Simulating SE Events

Classifying SE Events

Classification Results

Conclusion

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

Stochastically Episodic (SE) Events

Pattern Recognition (PR) of a novel domain of problems

Exemplary SE event problems include:

- 1. Large-scale tectonic movements
- 2. Industrial failure
- 3. Successful network attacks
- 4. Nuclear weapons tests
- Interwoven in a background of noise-like, non-SE events.

A Generalized PR Problem

- The previous problems fit into a novel category of PR
 - ► SE event recognition
- Identifiable via four fundamental characteristics
 - 1. Data: presents itself as a time-series
 - 2. State-of-nature: dominated by a single class
 - 3. The minority class: extremely challenging to identify
 - 4. SE events: rarely and randomly within the data sequence

A Domain Comparison

Traditional one-class PR versus SE event recognition

Domain	Temporal	ID	Imbalance	Imbalance	Interwoven
		Challenge	Type I	Type II	
Mammogram	No	Low	Yes	Medium	No
Continuous typist recognition	No	Low	Yes	Medium	No
Password hardening	No	Low	Yes	Medium	No
Mechanical fault detection	No [*]	Low	Yes	Medium	No
Intrusion detection	No [*]	High	Yes	High	No
Oil spill	No*	High	Yes	Medium	No [*]
CTBT verification	Yes	High	Yes	High	Yes

- CTBT problem: exemplifies SE event domain
- Traditional one-class problems do not contain the collective set of SE event features
 - Possibility to reformulate some as SE event problems exists

Suggests a new point of exploration

The Challenge of Detecting SE Events

- ► As a PR problem, SE events pose a significant challenge
 - Extremely difficult to manually identify
 - ightarrow "dirty" training and testing sets
 - Inherently rare
 - \rightarrow Inhibits the learning of a PDF
 - $\rightarrow~$ In practice, SE events are unpredictable
 - $\rightarrow~$ Insufficient to compile representative set for training/testing

Demonstration Domain

Comprehensive Nuclear Test-Ban-Treaty (CTBT)

- Bans the detonation of nuclear weapons
- Requires verification strategy

Proposed Strategy

- Measure four radionuclides
 - Emitted from industry and nuclear detonations
- Poses a PR problem
 - Distinguish bkgrnd source isotopes from detonation source

M&S: Problem Overview

- Necessity
 - Data required for development of PR systems
 - "Real" SE event data: inherently difficult to acquire
- M&S Challenge
 - Majority of readings: bkgrnd noise
 - Bkgrnd dist'n: well-defined
 - SE event dist'n: extremely difficult to estimate
- ► *M&S Solution*: divide-and-conquer strategy
 - Bkgrnd sources:
 - Knowledge of propagation medium + bkgrnd emission rates
 - SE event sources:
 - Knowledge of propagation medium + probabilistic decisions

Divide-and-Conquer Strategy (Pictorial Overview)

- 1. Bkgrnd Module:
 - Simulate source's affect on receptor
 - Record in bkgrnd table
- 2. SE Event Generation Module:
 - Generate random SE events
 - Subjected to same meteorology
 - Record in SE event table
- 3. Merge tables and assign class labels

Background Simulation Setup

Simulation:

- Specify meteorological and emissions stats
- Modelled with continuous emission source Atmospheric Transport Model (ATM)

$$ATM = \chi_{GPlume} = \frac{Q}{2\pi\sigma_y\sigma_z\overline{u}} exp\left(-\frac{y^2}{2\sigma_y^2}\right) \left[exp\left(-\frac{(z-H)^2}{2\sigma_z^2}\right) + exp\left(-\frac{(z+H)^2}{2\sigma_z^2}\right)\right]$$

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ ● の Q (2)

Background Simulation Results

Results:

- Hourly concentrations
- Distributions are well-behaved
- $\overline{\chi}$ decreases with successive R_i
- Decay overwhelms plume dispersion process
 - σ decrease with distances

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

frequency

SE Event Simulation Setup

- Identical meteorological stats
- Demonstrate 4 upwind detonations
 - Illustrate effect on receptor site R₁
- Modelled with instantaneous point source ATM

$$ATM = \chi_{GPuff} = \frac{Q}{(4\pi t)^{\frac{3}{2}} (\sigma_x \sigma_y \sigma_z)^{\frac{1}{2}}} exp\left[-\frac{(x-\overline{u}t)^2}{2\sigma_x} + \frac{y^2}{2\sigma_y} + \frac{z^2}{2\sigma_z}\right]$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Superimposed Simulation Results

Smaller, narrower peaks

- Cloud size and magnitude decrease with distance
- Visible PR challenges
 - Outliers in bkgrnd data
 - Seasonal met. variations
 - Classification based on single reading

Classification: Scenario-Specific Approaches

- Possible scenarios:
 - ► S1: Small set of SE event data accurately labelled
 - S2: Insufficient training set
 - No appropriately labelled SE events
 - A few mislabelled as non-SE events
- Classification strategies
 - S1: Apply a standard binary/one-class classifier
 - Avoid overly optimistic performance estimates for binary classifiers
 - S2: Apply a one-class classifier
 - Insufficient data for binary classifiers
 - \blacktriangleright Noise due to mislabelled SE event \rightarrow one-class classifiers applied in unconventional way

Classifier Assessment

- Results: ensemble mean AUC
 - Over ten iterations

- 23 detonation ranges
- 10 simulations per range
 - Random detonations
 - Constant bkgrnd and met stats
- Performance consideration
 - Overall
 - Function of distance

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

 Expanded feature-space

Overall Performance

Scenario 1

	Mean	Max	Min	STDV
NB	0.772	0.939	0.504	0.074
MLP	0.869	0.976	0.674	0.067
NN	0.741	0.913	0.584	0.071
J48	0.774	0.98	0.500	0.148
SVM	0.528	0.813	0.500	0.065
ocNN	0.540	0.875	0.496	0.087
PDEN	0.487	0.943	0.182	0.156
socNN	0.603	0.842	0.405	0.094
AA	0.656	0.970	0.251	0.140

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- ANN classifiers are superior
 - MLP (binary)
 - Low variability
 - ► AA (one-class)
 - Considerable variability

Overall Performance

Scenario 2

	Mean	Max	Min	STDV
ocNN	0.505	1	0.496	0.042
PDEN	0.507	1	0.075	0.185
socNN	0.587	1	0.292	0.171
AA	0.621	1	0.024	0.225

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- Significantly more challenging
 - On average: top classifiers degrade only slightly
 - Minimum AUC extremely poor

Performance as a Function of Distance

Scenario 1: Binary Learners

Minimum Detonation Range (in 100 Kilometres)

- MLP superior at all distances
- ▶ NB, NN and J48: comparable
- Hull coincides with industrial source

Performance as a Function of Distance

Scenario 1: One-class Learners

Minimum Detonation Range (in 100 Kilometres)

- AA and socNN generally superior
- AUC degrades with detonation distances
- Unable to associate low values with detonations

Performance as a Function of Distance

Scenario 2

Minimum Detonation Range (in 100 Kilometres)

- AA and socNN: similar to S1
- Highly variable
 - Nature of SE event in training set has significant affect

Expanded Feature-Space

э

- WD: classifiers learn direction to bkgrnd source
- All classifiers benefit
 - ► Top 3: J48, NN, MLP
 - Hull significantly reduced
- J48: nearly perfect

Expanded Feature-Space

Scenario 1: One-class Learners

- All classifiers benefit
- socNN improved more than AA
- Similar to S1 binary
 - NN approach improved more than ANN approach

Expanded Feature-Space

Scenario 2

・ロト ・ 雪 ト ・ ヨ ト

э

- Performances increase and stabilize
- socNN improves more that AA
 - socNN generally superior

Conclusion

Contributions

- 1. Modelling and Simulation
 - Framework for exploration of SE events
 - Propagated through background of noise-like, non-SE events

- Applications:
 - PR system development + exploratory M&S
- 2. Pattern Recognition
 - New category of PR problems
 - SE event recognition
 - Two SE event classification techniques

Conclusion

Future Work

- Modelling and Simulation
 - Explore:
 - Environmental and industrial disaster scenarios
 - Incorporate:
 - Increasingly sophisticated ATM into framework
- Pattern Recognition
 - Emphasize temporal nature of the data
 - Explore PR as an early warning system
 - Derive:
 - Increasingly sophisticated SE event recognition algorithms