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Stochastically Episodic (SE) Events

I Pattern Recognition (PR) of a novel domain of problems

Exemplary SE event problems include:

1. Large-scale tectonic movements

2. Industrial failure

3. Successful network attacks

4. Nuclear weapons tests

I Interwoven in a background of noise-like, non-SE events.



A Generalized PR Problem

I The previous problems fit into a novel category of PR
I SE event recognition

I Identifiable via four fundamental characteristics

1. Data: presents itself as a time-series
2. State-of-nature: dominated by a single class
3. The minority class: extremely challenging to identify
4. SE events: rarely and randomly within the data sequence



A Domain Comparison

Traditional one-class PR versus SE event recognition

Domain Temporal ID Imbalance Imbalance Interwoven
Challenge Type I Type II

Mammogram No Low Yes Medium No
Continuous typist recognition No Low Yes Medium No

Password hardening No Low Yes Medium No

Mechanical fault detection No* Low Yes Medium No

Intrusion detection No* High Yes High No

Oil spill No* High Yes Medium No*

CTBT verification Yes High Yes High Yes

I CTBT problem: exemplifies SE event domain

I Traditional one-class problems do not contain the collective
set of SE event features

I Possibility to reformulate some as SE event problems exists
I Suggests a new point of exploration



The Challenge of Detecting SE Events

I As a PR problem, SE events pose a significant challenge

I Extremely difficult to manually identify

→ “dirty” training and testing sets

I Inherently rare

→ Inhibits the learning of a PDF
→ In practice, SE events are unpredictable
→ Insufficient to compile representative set for training/testing



Demonstration Domain

Comprehensive Nuclear Test-Ban-Treaty (CTBT)

I Bans the detonation of nuclear weapons

I Requires verification strategy

Proposed Strategy

I Measure four radionuclides
I Emitted from industry and nuclear detonations

I Poses a PR problem
I Distinguish bkgrnd source isotopes from detonation source



M&S: Problem Overview

I Necessity
I Data required for development of PR systems
I “Real” SE event data: inherently difficult to acquire

I M&S Challenge
I Majority of readings: bkgrnd noise
I Bkgrnd dist’n: well-defined
I SE event dist’n: extremely difficult to estimate

I M&S Solution: divide-and-conquer strategy
I Bkgrnd sources:

I Knowledge of propagation medium + bkgrnd emission rates

I SE event sources:
I Knowledge of propagation medium + probabilistic decisions



Divide-and-Conquer Strategy (Pictorial Overview)

SE Event

Background

Superimposed
result

1. Bkgrnd Module:
I Simulate source’s affect on receptor
I Record in bkgrnd table

2. SE Event Generation Module:
I Generate random SE events
I Subjected to same meteorology
I Record in SE event table

3. Merge tables and assign class labels



Background Simulation Setup

I

I

Mean Wind 

Plume Path

Source

Receptors

with: mean    =  

std dev  = Simulation:

I Specify meteorological
and emissions stats

I Modelled with
continuous emission
source Atmospheric
Transport Model
(ATM)
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Background Simulation Results
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Results:

I Hourly concentrations

I Distributions are well-behaved

I χ decreases with successive Ri

I Decay overwhelms plume
dispersion process

I σ decrease with distances



SE Event Simulation Setup

Mean Wind 

Plume Path

Test Sites

Receptor

with: mean    =  

std dev  = I Identical meteorological
stats

I Demonstrate 4 upwind
detonations

I Illustrate effect on
receptor site R1

I Modelled with
instantaneous point
source ATM
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Superimposed Simulation Results

I Smaller, narrower peaks
I Cloud size and magnitude

decrease with distance

I Visible PR challenges
I Outliers in bkgrnd data
I Seasonal met. variations
I Classification based on

single reading
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Classification: Scenario-Specific Approaches

I Possible scenarios:
I S1: Small set of SE event data accurately labelled
I S2: Insufficient training set

I No appropriately labelled SE events
I A few mislabelled as non-SE events

I Classification strategies
I S1: Apply a standard binary/one-class classifier

I Avoid overly optimistic performance estimates for binary
classifiers

I S2: Apply a one-class classifier
I Insufficient data for binary classifiers
I Noise due to mislabelled SE event → one-class classifiers

applied in unconventional way



Classifier Assessment

I Results: ensemble mean AUC
I Over ten iterations
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Receptor
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x Random Explosion

I 23 detonation ranges

I 10 simulations per range

I Random detonations
I Constant bkgrnd and

met stats

I Performance consideration

I Overall
I Function of distance
I Expanded

feature-space



Overall Performance
Scenario 1

Mean Max Min STDV

NB 0.772 0.939 0.504 0.074
MLP 0.869 0.976 0.674 0.067
NN 0.741 0.913 0.584 0.071
J48 0.774 0.98 0.500 0.148

SVM 0.528 0.813 0.500 0.065
ocNN 0.540 0.875 0.496 0.087
PDEN 0.487 0.943 0.182 0.156
socNN 0.603 0.842 0.405 0.094

AA 0.656 0.970 0.251 0.140

I ANN classifiers are superior

I MLP (binary)
I Low variability

I AA (one-class)
I Considerable variability



Overall Performance

Scenario 2

Mean Max Min STDV

ocNN 0.505 1 0.496 0.042
PDEN 0.507 1 0.075 0.185
socNN 0.587 1 0.292 0.171

AA 0.621 1 0.024 0.225

I Significantly more challenging
I On average: top classifiers degrade only slightly
I Minimum AUC extremely poor



Performance as a Function of Distance

Scenario 1: Binary Learners
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I MLP superior at all distances

I NB, NN and J48: comparable

I Hull coincides with industrial source



Performance as a Function of Distance

Scenario 1: One-class Learners

0
.0

0
.4

0
.8

5 22 39 56 73 90 107 124

I AA and socNN generally superior

I AUC degrades with detonation distances

I Unable to associate low values with detonations



Performance as a Function of Distance

Scenario 2
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I AA and socNN: similar to S1
I Highly variable

I Nature of SE event in training set has significant affect



Expanded Feature-Space

Scenario 1: Binary Learners
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I WD: classifiers learn direction to bkgrnd source
I All classifiers benefit

I Top 3: J48, NN, MLP
I Hull significantly reduced

I J48: nearly perfect



Expanded Feature-Space

Scenario 1: One-class Learners
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I All classifiers benefit

I socNN improved more than AA
I Similar to S1 binary

I NN approach improved more than ANN approach



Expanded Feature-Space

Scenario 2
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I Performances increase and stabilize
I socNN improves more that AA

I socNN generally superior



Conclusion

Contributions

1. Modelling and Simulation
I Framework for exploration of SE events

I Propagated through background of noise-like, non-SE events

I Applications:
I PR system development + exploratory M&S

2. Pattern Recognition
I New category of PR problems

I SE event recognition

I Two SE event classification techniques



Conclusion

Future Work

I Modelling and Simulation
I Explore:

I Environmental and industrial disaster scenarios

I Incorporate:
I Increasingly sophisticated ATM into framework

I Pattern Recognition
I Emphasize temporal nature of the data

I Explore PR as an early warning system

I Derive:
I Increasingly sophisticated SE event recognition algorithms
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