Gamma-Ray Spectrum Analysis and Classification

A Machine Learning Perspective

Colin Bellinger
School of Electrical Engineering and Computer Science
University of Ottawa, Canada
cbell052@uottawa.ca

Outline

- Overview
- Data
- Experiments
- Results
- Conclusion / Future Work

Background

- HC Radiation Protection Bureau
- Radioactivity monitoring network
- Support CTBT
- Secure public events against possible radioactive threats, etc.

HC Problem Statement

- Goal: monitor and detect radioactive threats
- Political gatherings, sporting events, etc.
- Strategy: Utilize human experts and ML algorithms
- Minimize human involvement

HC Objective

"Compile a multi-categorical dataset of gamma-ray spectra for use in the development and testing of ML algorithms"

An ML Perspective

- Few "real" isotopes measured, thus...
- How to build the model
- Multi-class, one-class, static, dynamic, etc.
- How to evaluate the model
- What metrics to use
- How certain can we be of the model

NARNIA Data

- Collection:
- 18 GRS detectors at Vancouver 2010
- 1,024 int-valued channels
- One reading / station / minute - \mid DS $\mid=43,000 \times 18$
- Bkgrnd + I, Tc, Th, Cs, Co

NARNIA Data

Bkgrnd
 Rain Vs No-Rain

TC
Rain Vs Bkgrnd

NARNIA Data

PCA Rain Vs No-Rain

NARNIA Data

Naive Bayes Classification Results

ML System

Hyp: Readings that are most dissimilar are of significant interest

Data Processing

An ML Perspective

- Rain separation: ML to identify heavy rain events
- Binary Vs OC learning
- Extra info Vs labelling
- Static Vs temporal classification
- Simplicity Vs leveraged context
- ocSVM, SVM, J48, NB, IBK

Experiments

Binary rain separation

ML System

Hyp: Readings that are most dissimilar are of significant interest

Experiments

- Algorithms applied
- Binary: SVM, J48, NB, MLP, IBK
- Performed well, but inappropriate
- One class: ocSVM, AA
- Pour results, slow training

Experiments

Alternate Algorithms: based on the hypothesis of ranking and anomalies

Mahalonibis
Distance

Experiments

Alternate Algorithms... continued

Variance in Angle Spectrum

Hypothesis

Anomalous instances near the top

Progression of Mahalanobis Distance across ranks

Results

Isotope	Station 13	Station 12	Station 6
Thallium	NA	NA	$0 / 2$
Iodine	$1 / 5$	$1 / 2$	$1 / 2$
Technicium	$1 / 3$	$0 / 2$	$1 / 7$
Caesium	$8 / 15$	NA	NA
Cobalt 50.1	$19 / 304$	$3 / 304$	$0 / 304$
Cobalt 50.2	$19 / 314$	$3 / 314$	$0 / 314$
Cobalt 75.1	$2 / 307$	$0 / 307$	$0 / 307$
Cobalt 75.2	$1 / 320$	$0 / 320$	$0 / 320$
Cobalt 100.1	$0 / 305$	$0 / 305$	$0 / 305$
Cobalt 100.2	0	0	0
Cobalt 200.1	0	0	0
	Cohnlt 2002	0	0
Cobalt 300.1	0	0	0
	Cobalt 300.1	0	0
	Cobalt 500.1	0	0
Cobalt 500.2	0	0	0

Results

1-Phase Vs 2-Phase System

Conclusion

- Proposed a 2-phased ML system
- I - separate rain from non-rain
- II - rank instance according to rarity
- Significantly outperforms HC's system
(HC - no Co less than 200 strength

Future Work

- Aim: minimize expert involvement
- i.e., reduce FPs
- Improved rain separation may hold key
- OC learning on positive class
- Expectation Maximization
- Semi-supervised
- Temporal analysis

Future Work

Other open questions...

- Threshold selection
- Where do we draw the line between normal and abnormal
- Individual isotope classification
- Classification of instances belonging to multiple classes
- Temporal analysis

Thank you!

Gamma-Ray Spectrum Analysis

A Machine Learning Perspective

Colin Bellinger

School of Electrical Engineering and Computer Science
University of Ottawa, Canada
cbell052@uottawa.ca

