Gamma-Ray Spectrum Analysis and Classification

A Machine Learning Perspective

Colin Bellinger School of Electrical Engineering and Computer Science University of Ottawa, Canada cbell052@uottawa.ca

Outline

Overview
 Data
 Experiments
 Results
 Conclusion / Future Work

Background

HC Radiation Protection Bureau
Radioactivity monitoring network
Support CTBT
Secure public events against possible radioactive threats, etc.

HC Problem Statement

Goal: monitor and detect radioactive threats
 Political gatherings, sporting events, etc.
 Strategy: Utilize human experts and ML algorithms

Minimize human involvement

HC Objective

"Compile a multi-categorical dataset of gamma-ray spectra for use in the development and testing of ML algorithms"

An ML Perspective

Few ``real" isotopes measured, thus... How to build the model Multi-class, one-class, static, dynamic, etc. How to evaluate the model What metrics to use How certain can we be of the model

Collection:

18 GRS detectors at Vancouver 2010
1,024 int-valued channels
One reading / station / minute
|DS| = 43,000 x 18
Bkgrnd + I, Tc, Th, Cs, Co

Bkgrnd Rain Vs No-Rain

Tc Rain Vs Bkgrnd

PCA Rain Vs No-Rain

Naive Bayes Classification Results

ML System

Hyp: Readings that are most dissimilar are of significant interest

Data Processing

An ML Perspective

Rain separation: ML to identify heavy rain events

Binary Vs OC learning
Extra info Vs labelling
Static Vs temporal classification
Simplicity Vs leveraged context
ocSVM, SVM, J48, NB, IBK

Binary rain separation

ML System

Hyp: Readings that are most dissimilar are of significant interest

Algorithms applied
 Binary: SVM, J48, NB, MLP, IBK
 Performed well, but inappropriate
 One class: ocSVM, AA
 Pour results, slow training

Alternate Algorithms: based on the hypothesis of ranking and anomalies

> Mahalonibis Distance

Alternate Algorithms... continued

Variance in Angle Spectrum

Outlier Point *Low* Variance between angles **Regular Point** *High* Variance between angles

Hypothesis

Anomalous instances near the top

Results

Isotope	Station 13	Station 12	Station 6
Thallium	NA	NA	0/2
Iodine	1/5	1/2	1/2
Technicium	1/3	0/2	1/7
Caesium	8/15	NA	NA
Cobalt 50.1	19/304	3/304	0/304
Cobalt 50.2	19/314	3/314	0/314
Cobalt 75.1	2/307	0/307	0/307
Cobalt 75.2	1/320	0/320	0/320
Cobalt 100.1	0/305	0/305	0/305
Cobalt 100.2	0	0	0
Cobalt 200.1	0	0	0
Cobalt 2002	0	0	0
Cobalt 300.1	0	0	0
Cobalt 300.1	0	0	0
Cobalt 500.1	0	0	0
Cobalt 500.2	0	0	0

Friday, 6 July, 12

HC

Results

1-Phase Vs 2-Phase System

Conclusion

Proposed a 2-phased ML system
I - separate rain from non-rain
II - rank instance according to rarity
Significantly outperforms HC's system
HC - no Co less than 200 strength

Future Work

Aim: minimize expert involvement @ i.e., reduce FPs Improved rain separation may hold key OC learning on positive class Sector Expectation Maximization Semi-supervised Temporal analysis

Future Work

Other open questions...

Threshold selection

Where do we draw the line between normal and abnormal

Individual isotope classification

 Classification of instances belonging to multiple classes

Temporal analysis

Thank you!

Gamma-Ray Spectrum Analysis A Machine Learning Perspective

Colin Bellinger School of Electrical Engineering and Computer Science University of Ottawa, Canada cbell052@uottawa.ca