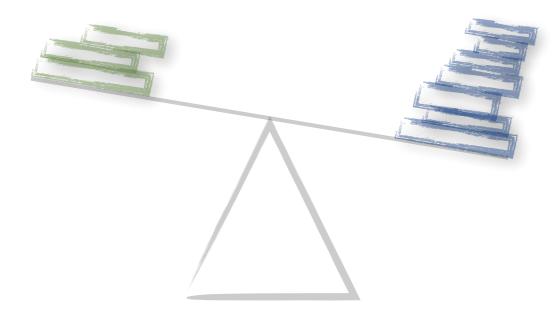
Sampling a longer life

Binary versus one-class classification revisited



Colin Bellinger, Shiven Sharma, Osmar R. Zaiane and Nathalie Japkowicz

Motivation

- Class imbalance recognized as an important problem for two decades
- Generated many conference papers, workshops and special issues
 - Workshops CIPPP @ ICMLA 2012, LIDS I @ AAAI 2001, LIDS II @ ICML 2003, etc.
 - Workshop on Learning in the Presence of Class Imbalance and Concept Drift @ IJCAI 2017
 - Learning with Imbalanced Domains: Theory and Applications @ ECML 2017
 - Special Issues: SIGKDD Explorations Special Issue on Learning from Imbalanced Data Sets 2014
- We have advanced our understanding and developed many great methods

Motivation

- Class imbalance recognized as in important problem for two decades
 - Workshops CIPPP @ ICMLA 2012,

 Workshop on Learning in the Presence of Class Imbalance a 	
But which methods should we	
 apply and when should we apply 	a
them?	

 We have advanced our understanding and developed many great methods

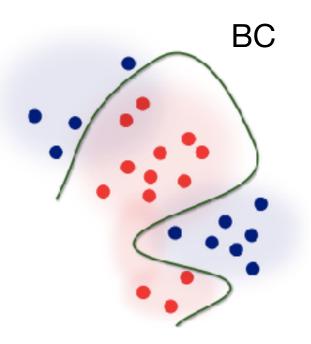
Research Questions

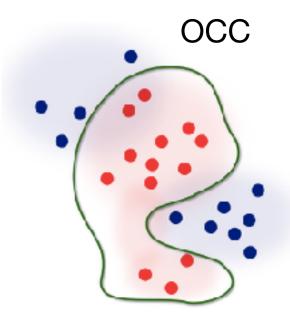
R1: Given a dataset D, with complexity C, which paradigm should be applied?

R2: How are the paradigms affected by aspects of complexity?

Classification Overview

- Classification Paradigms:
 - Binary classification (BC): learn from both classes
 - Make predictions about two
 - One-class classification (OCC): learn from a single class
 - Make predictions about two
 - Required for extreme imbalance
- Binary classifiers are perceived to be more powerful than OCC
 - Motivated much research to extend their usefulness
 - We focus on sampling





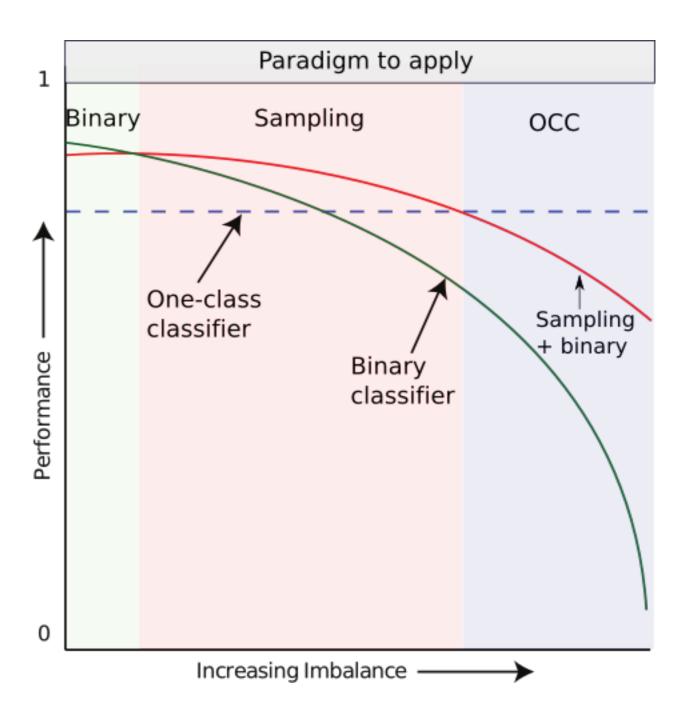
Classification Overview

•	Classification Paradigms: • Binary classification (BC): learn from both classes	BC
	At which level of imbalance to OCC?	switch to
•	 Required for extreme imbalance Binary classifiers are perceived to be more powerful than OCC 	

• Motivated much research to extend their usefulness

Perfomance Assessment

- Objective: intuitively assess the resilience of sampling to imbalance
 - Start with standard performance curves
 - x-axis = increasing class imbalance for a dataset
 - y-axis = classifier performance on the dataset



Perfomance Assessment

- Objective: intuitively assess the resilience of sampling to imbalance
 - Start with standard performance curves

x-axis - increasing class

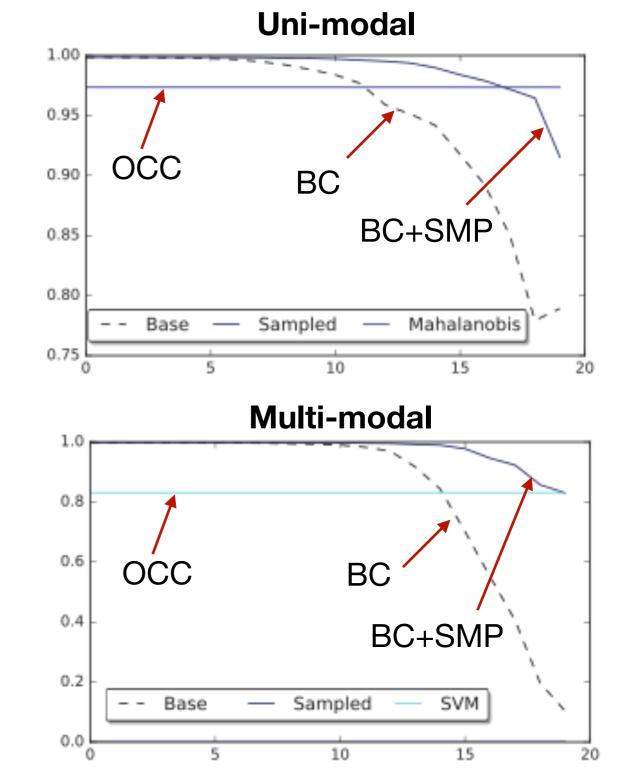
Paradigm to apply Binary Sampling OCC One-class classifier Binary Classifier

To what extent is the red line greater than the others, with respect to imbalance and complexity

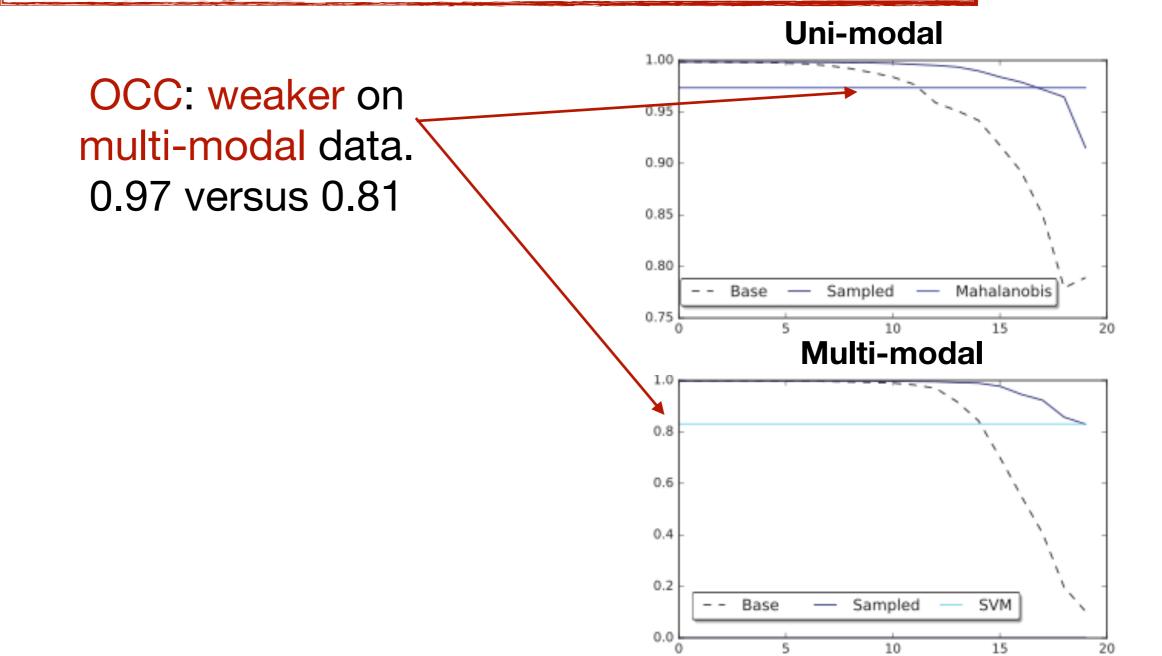
Experimental Framework

- 4 artificial datasets (various combinations of modality and overlap)
- 14 benchmark datasets
- Binary classifiers: NB, MLP, kNN, DT, SVM
- One-class classifiers: AE, one-class SVM, Mahalanobis distance
- Sampling methods: ROS, RUS, SMOTE, Borderline SMOTE, SMOTE with OSS, ADASYN
- Evaluation: g-mean over increasing imbalance
 - We report the best method from each category only
- To understand the impact of imbalance
 - Minority class under-sampled exponentially from the original size to 4

- Trends over unimodal and multimodal data with no overlap
- G-mean on the y-axis
- Increasing imbalance from left to right on the x-axis



Trends over unimodal and multimodal data with no overlap

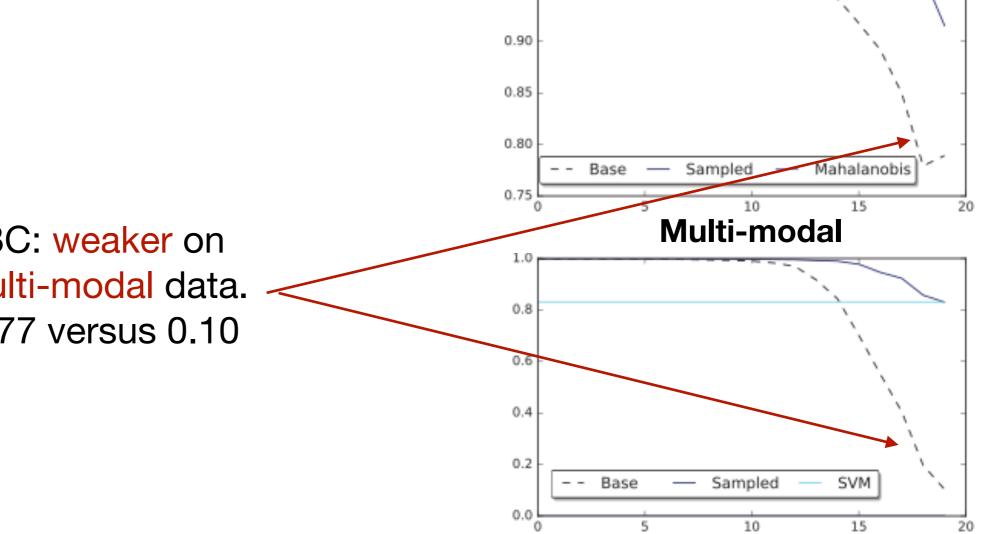


Trends over unimodal and multimodal data with no overlap

OCC: weaker on multi-modal data. 0.97 versus 0.81

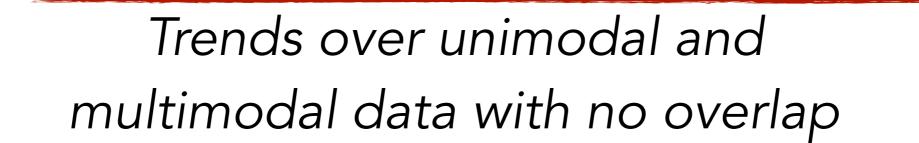
> BC: weaker on multi-modal data. 0.77 versus 0.10

Uni-modal



1.00

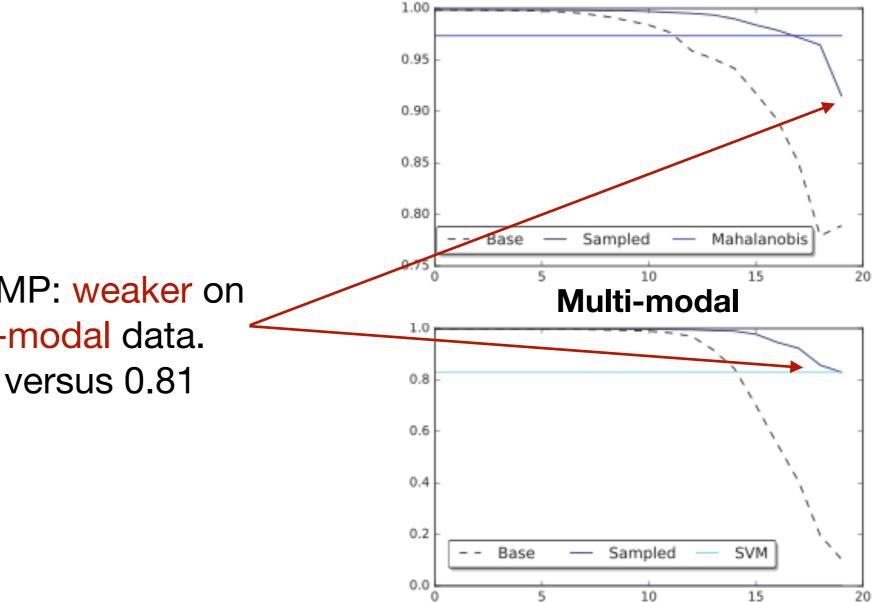
0.95



OCC: weaker on multi-modal data. 0.97 versus 0.81

> BC + SMP: weaker on multi-modal data. 0.92 versus 0.81

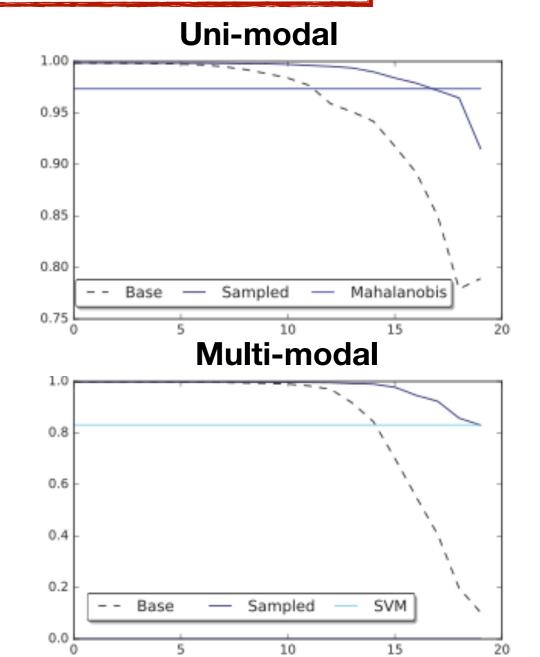
BC: weaker on multi-modal data. 0.77 versus 0.10



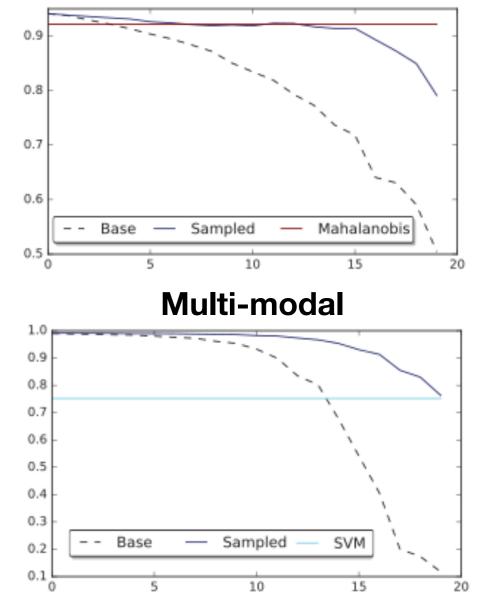
Uni-modal

Trends over unimodal and multimodal data with no overlap

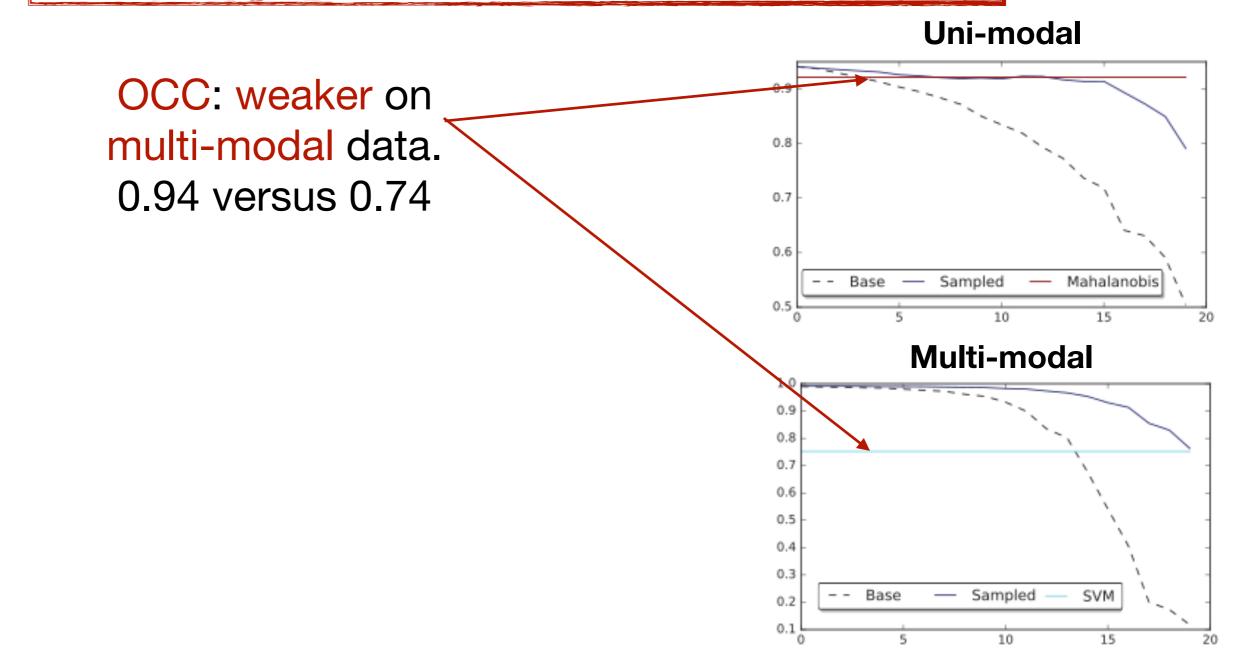
- OCC impacted by modality
- BC and BC+SMP are more affected by imbalance on multimodal domains
- BC+SMP is always more robust than OCC on multi-modal



Trends over unimodal and multimodal data with overlap

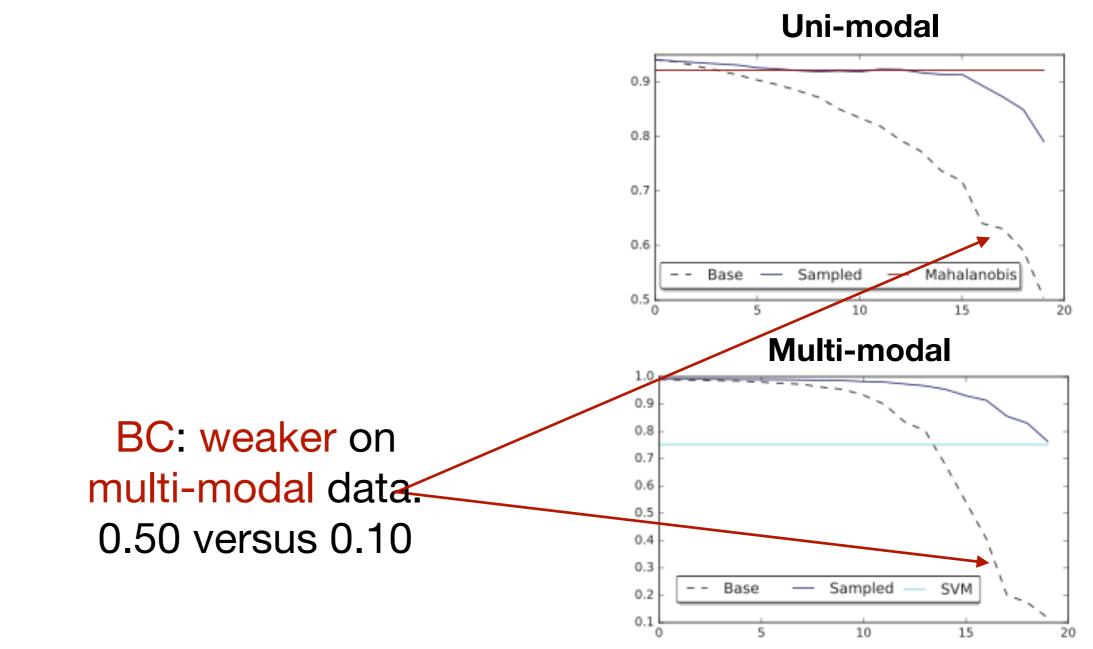


Trends over unimodal and multimodal data with overlap



Trends over unimodal and multimodal data with overlap

OCC: weaker on multi-modal data. 0.97 versus 0.81



Trends over unimodal and multimodal data with overlap

OCC: weaker on multi-modal data. 0.97 versus 0.81 BC + SMP: weaker on multi-modal data. 0.79 versus 0.74. The degradation is small relative to others

0.50 versus 0.10

0.6 Mahalanob Base Sampled 0.5 15 10 20 Multi-modal 0.9 0.8 0.7 0.6 0.5 0.4 0.3 Base Sampled SVM 0.2 0.1 10 15 20

Uni-modal

0.9

0.8

0.7

Trends over unimodal and multimodal data with overlap

OCC: weaker on multi-modal data. 0.97 versus 0.81

BC+SMP: weaker on multi-modal data. 0.79 versus 0.74

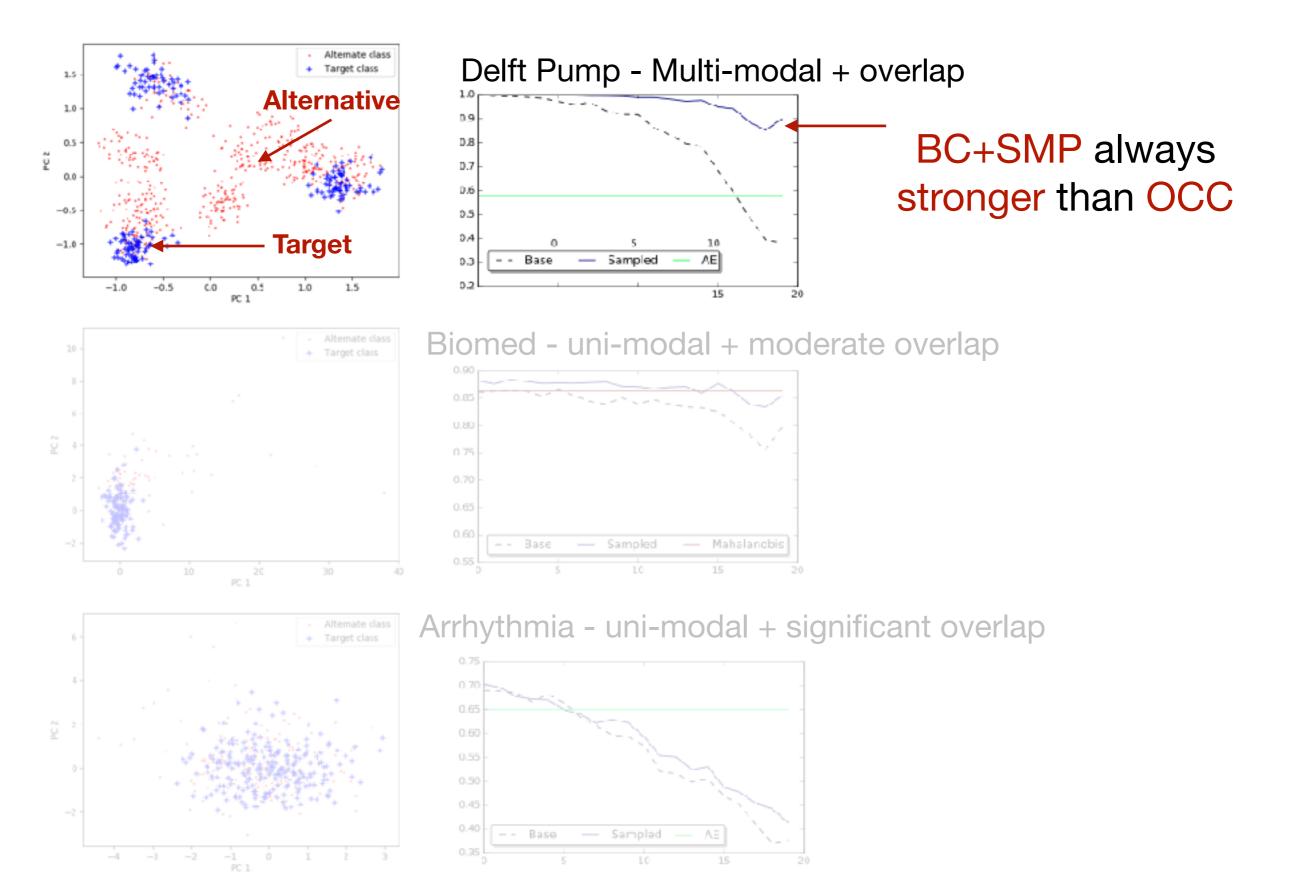
BC: weaker on multi-modal data. 0.50 versus 0.10

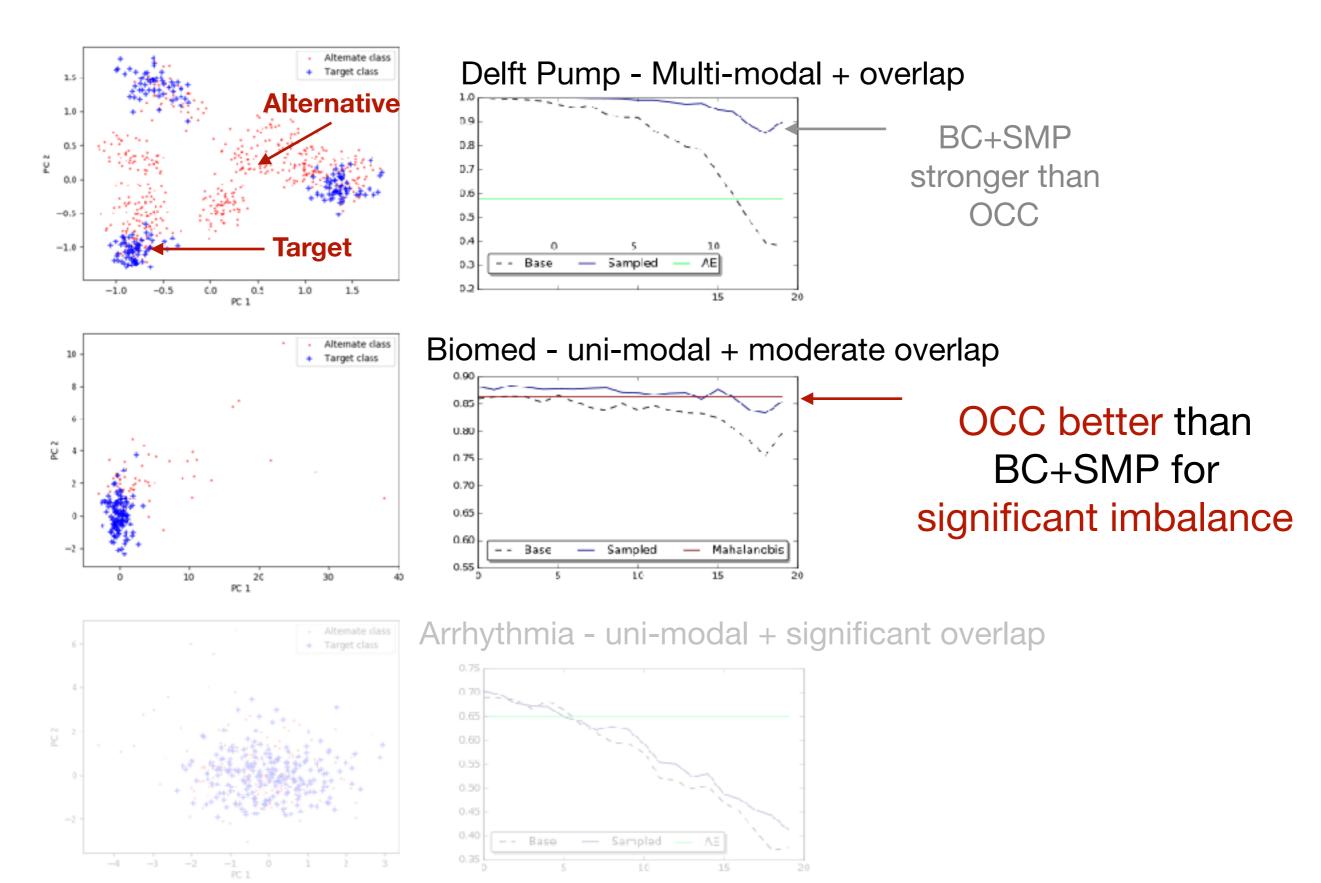
- OCC impacted by modality
- Again, imbalance is made worse by complexity
 - Particularly modality
- BC+SMP is always more robust then OCC on multi-modal
- 0.9 0.8 0.7 0.6 Mahalanobis Base Sampled 0.5 15 10 20 **Multi-modal** 0.9 0.8 0.7 0.6 0.5 0.4 0.3 Sampled SVM Base 0.2 0.1 15 10

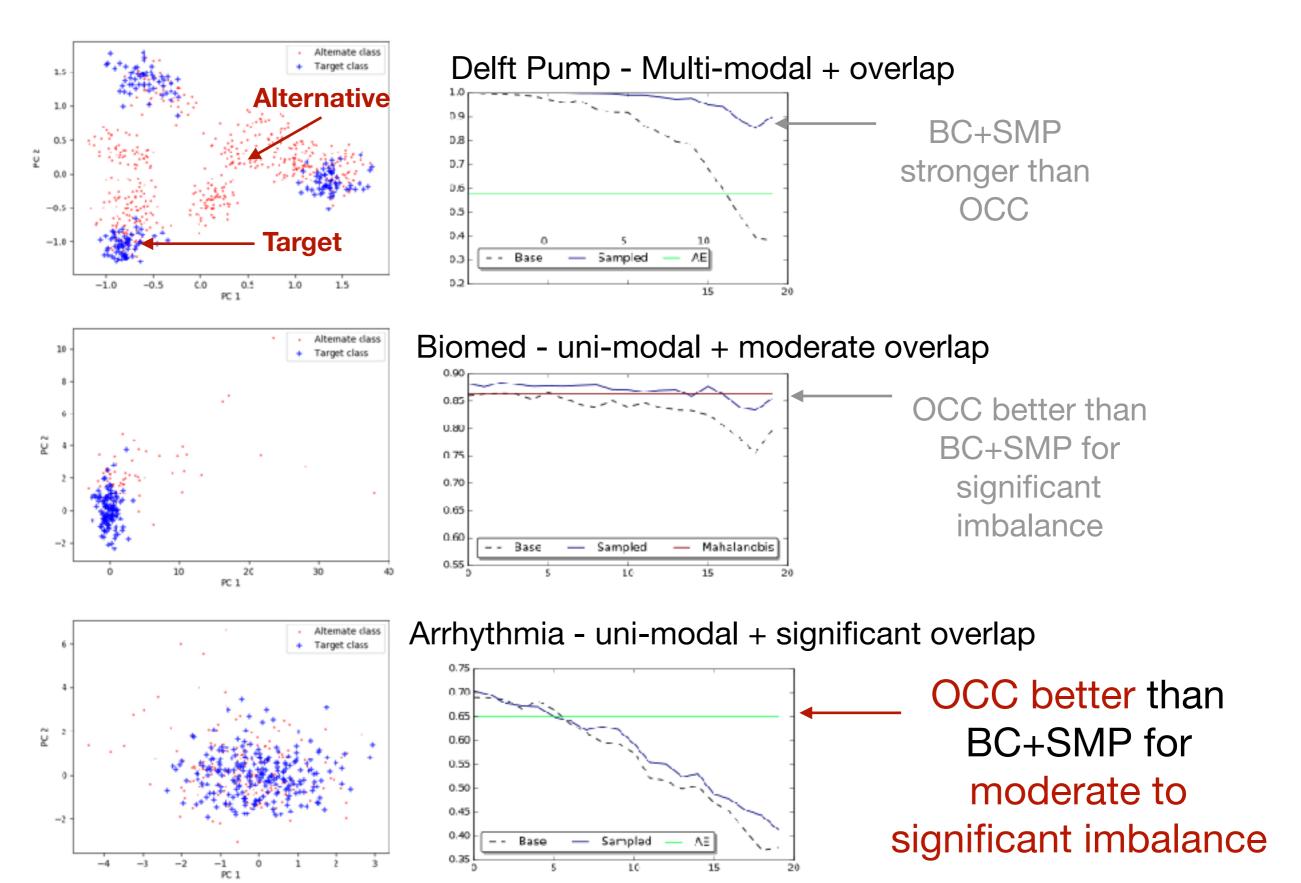
Uni-modal

Hypothesis demonstrated on three benchmark datasets

More in the paper

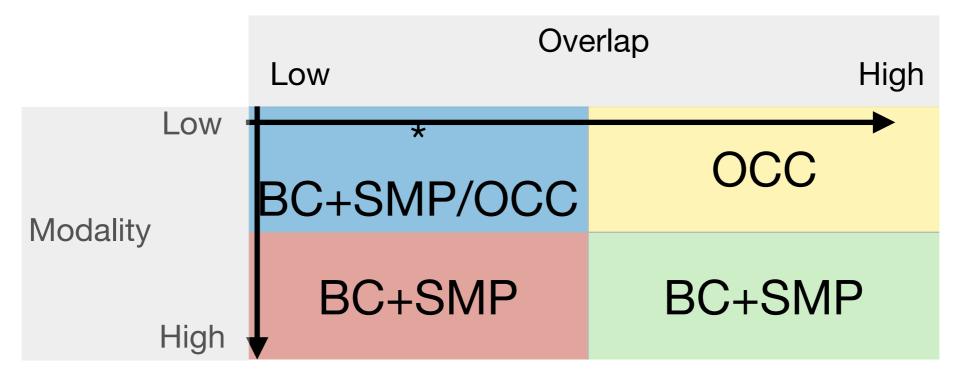






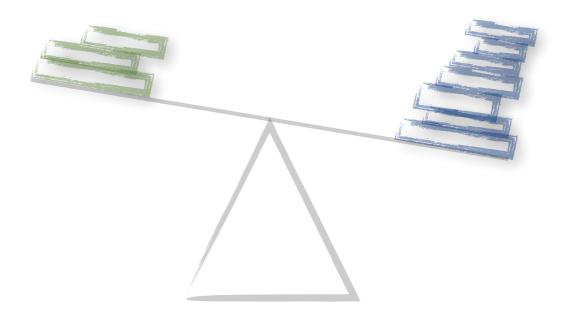
Conclusion

Application prescription



- Future work:
 - Other domain properties such as dimensionality, variance and feature correlations, etc.
 - Meta-learning on data properties and choice of classification method
 - Analyze the trends at an algorithmic level

Thank You!



Dataset	M	d	Modality	Overlap
Diabetes	66	8	unimodal	significant
Sonar	24	60	unimodal,spread	$\operatorname{significant}$
Delft pump AR app. [†]	94	160	multi-modal	$\operatorname{significant}$
Alphabets	749	15	multi-modal	$\operatorname{significant}$
ForestC1	624	54	unimodal	$\operatorname{significant}$
Biomed healthy [†]	33	5	unimodal, spread	moderate
Waveform 0^{\dagger}	149	21	unimodal	moderate
Heart	30	13	multi-modal	moderate
Cancer wpbc non-ret ^{\dagger}	23	33	unimodal	significant
Spambase spam ^{\dagger}	906	57	unimodal, spread	moderate
ForestC2C5	600	54	unimodal	moderate
Forest	742	54	bimodal	moderate
Ionosphere	31	34	unimodal	moderate
$\operatorname{Arrhythmia} \operatorname{normal}^{\dagger}$	91	278	unimodal	significant

Table 2: Classifier statistics for the benchmark datasets.								
Dataset	B_{nat}	B_{imb}	S_{nat}	S_{imb}	OCC	l	size	
Delft pump	0.997	0.384	0.999	0.852	0.578	∞	-/5/94	
Diabetes	0.657	0.226	0.743	0.634	0.615	∞	-/42/66	
Sonar	0.721	0.418	0.773	0.656	0.543	∞	-/9/24	
Alphabets	0.972	0.081	0.990	0.524	0.707	16.23	9/146/769	
ForestC1	0.803	0.623	0.823	0.674	0.724	11.00	15/165/624	
Waveform	0.868	0.269	0.880	0.719	0.777	5.20	5/26/149	
Biomed	0.866	0.755	0.884	0.833	0.863	2.60	6/16/33	
Cancer wpbc	0.566	0.330	0.611	0.490	0.496	2.30	4/9/23	
Heart	0.821	0.575	0.830	0.731	0.740	2.20	4/9/30	
Ionosphere	0.846	0.659	0.868	0.687	0.846	1.93	16/31/31	
Spambase	0.895	0.458	0.909	0.604	0.801	1.37	16/22/906	
ForestC2C5	0.827	0.474	0.851	0.604	0.754	1.28	25/32/600	
Forest	0.900	0.546	0.911	0.647	0.789	1.24	12/15/742	
Arrhythmia	0.680	0.379	0.703	0.413	0.650	1.20	39/47/91	