
Modelling and Classifying Random Phenomena

Colin Bellinger

School of Computer Science
Carleton University
Ottawa, Canada

cbelling@scs.carleton.ca

12 March, 2010



Overview

I Pattern Recognition
I nomenclature
I existing approaches

I Data generation
I CTBT
I dispersion modelling and simulation

I Preliminary results



Classification - Overview

I Automated identification of classes:
I digits: 0 - 10
I vehicles: car/truck
I typist: a specific user
I disease: cancer/not cancer



Classification - Binary versus One-class learning

I Binary: concept learning process utilizes examples from both
classes in the binary classification task

I Given labelled examples of two classes, define a function to
identify new unlabelled examples

I One-class: concept learning process utilizes examples from
single class in the binary classification task

I Given labelled examples of a single class, define a function to
identify new unlabelled examples of that target class.



Classification - Classifiers
I Artificial Neural Network: MLP, Autoassociator

I MLP: output is the actual classification
I Autossociator: aims to reproduce (recognise) input at output

layer

X j
1 X j

2

...
X j

n−1 X j
n−1

Input Layer

Ouput Layer

Multi-Layer Perceptron

y j
1

x j
1 x j

2

...
x j
n−1 x j

n−1

y j
1 y j

1 ... y j
n−1 y j

n

Input Layer

Ouput Layer

Autoassociator



Classification - Classifiers

I SVM: binary and one-class

I Define a hyperplane which maximizes the gap.



Classification - Classifiers
I Combined Density and Class Probability Estimator
I Step 1: Examine the data points of the positive class.



Classification - Classifiers
I Step 2: Determine the reference distribution, such as normal

or multi-variate normal distribution, of the positive class.



Classification - Classifiers
I Step 3: Then use our knowledge of the distribution to

generate points around the positive class.



Classification - Classifiers
I Step 4: Apply a standard binary classi[U+FB01]er.



Classification - Classifier comparison

CDCPE versus bagged decision tree (BDT)
I AUC averaged over 15 UCI datasets

I CDCPE: 0.843
I BDT: 0.940

CDCPE versus libSVM
I FAR AND IPR averaged over 15 UCI datasets

I CDCPE: 0.147, 0.157
I libSVM: 0.113, 0.331

I Discrimination-based approaches are general more robust.

I However, one-class learners can be competitive.



The Comprehensive Test Ban Treaty (CTBT)

The CTBT is a United Nations treaty which will bans all nuclear
explosions in the environment when it enters into force.

http://www.ctbto.org/



Simulating Dispersion

Objective:

I Generate a dataset containing a series of radioxenon
measurements

I Receptor-specific datasets contain feature vectors of:
I cumulative quantity of radioxenon measured over 12 or 24

hours
I class label (background or explosion)



Modelling the Atmosphere

I Lagrangian particle models:
I mathematically disperse pollutants via Markovian process
I each step depends on current atmospheric conditions

I Gradient transfer models:
I gradient parameters define diffusion
I wind speed defines down-wind advection

I Gaussian models:
I distribution of pollutant assumes a Gaussian form
I wind speed defines down-wind advection



Modelling the Atmosphere

Gaussian puff model:

I sol’n to Fickian diffusion equation

I models diffusion from an instaneous point source of emission
strength Q

I assume mean concentration of dispersing pollutant forms a
Gaussian distribution
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Modelling the Atmosphere

Gaussian plume model:

I models diffusion from a continuous point source (Q), emitted
from an elevated industrial stack

I infinite number of puffs superimposed on each other

I mathematically speaking, integrate with respect to time

I as a matter of convenience, diffusion along x-axis is ignored
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Modelling the Atmosphere

Gaussian plume model:

I account for reflection at surface
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where:

h is the height of the plumes centreline

I in much the same way, reflection at an inversion layer can be
accounted for



Simulating Dispersion

1. Define hypothetical world

2. Simulation for j=1:n days

(i) For each day, simulate i=1:24
hours

I generate Gaussian random
variables about the means

I calculate background
radioxenon levels

I if explosion, added expls
levels to bkgnd levels

I add hourly mean to
cumulative daily count

(ii) Record daily value

3. Output dataset

Hypothetical
World

Output Results

Industrial
Variables

Meteorological
Variables

Calc. bkgnd levels

Explosion?

Calc. expl levels

Add hourly mean 
concentration

Record daily
statistics



Simulating Dispersion
Sample map:

I 1 industrial emitter (green)
I 3 receptors (blue)
I 10 explosions (heat colours)



Simulating Dispersion
plotted results for receptor 2:

I background data in black
I explosions in red
I generally up-wind from industry → low background levels
I two main peaks (expl 4 and expl 5)



Preliminary Results

Classifier Class TPR FPR AUC

MLP
target 0.845 0 0.896
outlier 1 0.155 0.896

J48
target 0.997 0 0.990
outlier 1 0.003 0.990

IBK
target 0.995 0 0.998
outlier 1 0.005 0.998

NB
target 0.039 0.1 0.754
outlier 0.990 0.964 0.754

CDCPE
target 0.902 0.013 0.650
outlier 0.087 0.098 0.650



Conclusion

I Examined strategies for modelling atmospheric dispersion
I In the spirit of the CTBT

I applied a Gaussian assumption to model the dispersion of
radioxenon

I generate background noise and random phenomena

I Utilized Weka to classify the preliminary dataset


