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Overview

• Classification: induce f (x)→ {ω1, ω2} such that it predicts
the class ωi of instance x

• Performance erodes quickly when data is imbalanced
[Akbani et al., 2004, Wu and Chang, 2005]

• oil spill classification, gene function annotation, medical and
text classification, radiation classification

• Costly mistakes on the minority class

• For this reason, class imbalance is an essential problem in
machine learning

• AAAI’00, ICML’03, ACM SIGKDD Explorations’04,
PAKDD’09, ICMLA’12



Managing Class Imbalance

• Obvious solution to imbalance is more examples
• This is impractical in many domains due to prior factors

• Synthetic oversampling provides an alternative which generates
minority class instances

• Balances the training set
• Reduces the prediction bias by expanding the minority space
• Avoids overfitting caused by random oversampling
• Avoids information loss caused by random undersampling



Synthetic Oversampling: A brief history

• SMOTE introduced data generation for class imbalance
[Chawla et al., 2002]

• Designed to solve specific problems in existing methods
• Overfitting caused by random oversampling
• Information loss caused by random undersampling

• The initial success motivated many other studies involving it
• Subsequent studies:

• Identified weaknesses
• Offered variations on the standard algorithm



Claim

To maximize the likelihood of generating instances that will
improve the predictive performance, we should design synthetic
oversampling methods with generative biases that match the
properties of the target data.



Generative Bias

• Generative bias → how probability mass is spread through the
feature space.

• This dictates how the minority space is expanded
• When the minority class is small, an appropriate generative
bias is essential

• Maximizes the likelihood of benefiting classifier induction



SMOTE

1: procedure Synthetic Minority Oversampling TEchnique
Input: Minority training instances X
Input: Number of nearest neighbours k
Output: Synthesized minority instances Y

2: Do
3: Sample xi from X;
4: Sample xj ∈ kNN(xi ) from kNN set of xi ;
5: Synthesize instances as xnew = xi + (xj − xi )× δ;
6: Add xnew to Y;
7: While generate more samples
8: Return: Synthetic instances Y
9: end procedure



SMOTE

• Key aspects of its generative bias
• Use of k-nearest neighbours
• Generation within the convex-hull of minority training instances



SMOTE and its Generative Bias

• Many weaknesses have been articulated
• These haven’t examined its generative bias in relation to data

properties
• We have studied SMOTE in terms of its generative bias in
relation to manifold data

• Empirically, we have found it to be weak on such domains
• Two properties give the theoretical basis for this:

• Nearest neighbour querying performs poorly in high
dimensional domains

• Straight-line distance measures are inappropriate for sparse
manifolds



Synthetic Oversampling and the Manifold
what we want and what we get

Figure: Manifold-based versus SMOTE for synthetic oversampling a
manifold.



The Manifold Property

• Manifold property → probability density resides in a
lower-dimensional embedded space

• Text, images, speech, spectral data, etc .
• g(F)→M: A mapping from the feature space F to the
latent manifold spaceM

• Linear and non-linear representation are possible

• They improve performance on many machine learning
problems [Zhang and Chen, 2005, Tuzel et al., 2007]

• Has not been applied in problems of synthetic oversampling
• Increases the likelihood of generating novel instances that

resemble to target domain



Framework for Manifold-Based Synthetic Oversampling

Figure: General framework for synthetic oversampling.



Framework for Manifold-Based Synthetic Oversampling -
PCA Sampling

Figure: The process of synthesizing instances via PCA



Denoising Autoencoder

• Fully connected ANN
• Standard autoencoder learns
to:

• Compress x into hidden
space
z = fθ(x) = s(Wx + b)

• Decompress back to
feature space
y = g ′

θ(z) = s(W′y + b′)
• Trained to minimize the

squared error∑
(X− g(f (X)))2

• Denoising is a form of
regularization

Output Layer

Input Layer

Hidden
 Layer

Figure: Structure of an autoencoder.



Framework for Manifold-Based Synthetic Oversampling -
Autoencoder Sampling

1: procedure DAE-MOS
Input: Minority training instances X
Output: Synthesized minority instances Y

2: Train DAE g(W,b)(f(W′,b′)(X));
3: Generate sample initiation points P in feature space;
4: Generate instance Y as g(W,b)(f(W′,b′)(P));
5: Return: Synthetic instances Y
6: end procedure



Framework for Manifold-Based Synthetic Oversampling -
Autoencoder Sampling

Figure: Three steps of synthesization for the autoencoder formalization.



Synthetically Oversampling Handwritten 4s

Figure: From left to right, handwritten fours synthesized by DAE, PCA,
SMOTE and kernel-based methods.



Noisy Helix



Noisy Helix
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Noisy Helix



Noisy Swiss Roll



Noisy Swiss Roll



Noisy Swiss Roll



Noisy Swiss Roll



Gamma-ray Spectra Results

• Use spectra from NaI detectors to:
• Detect radioactive threats at high-profile events
• Perform national environmental monitoring

Figure: Example background spectra and target spectra.



Gamma-ray Spectra Results
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Figure: AUC results on the gamma-ray spectra datasets.



UCI Results

Figure: Bar plots of the performance difference
AUC (MOS)− AUC (SMOTE ) sorted by the top M(·) methods .



Conclusions and Future Work

• Key point: consider the relationship between the generative
bias and the target domain

• Design accordingly
• Practically:

• Demonstrated the weaknesses of existing methods on manifold
data

• Developed a framework for manifold-based synthetic
oversampling

• We demonstrated the benefit of the framework in terms of the
AUC.

• Future Work
• Extend to multi-class and multi-label
• Study the potential within deep learning



Publications

Publications:
• Bellinger, C., Japkowicz, N. and Drummond, C (2015). Synthetic Oversampling for Radioactive

Threat Detection. In Proceedings of 14th International Conference on Machine Learning and
Applications , 2015 (Best paper)

• Bellinger, C., Drummond, C and Japkowicz, N. (2016). Beyond the Boundaries of SMOTE: A
Framework for Manifold-Base Synthetic Oversampling. In Proceedings of European Conference
on Machine Learning, 2016

Under Review:
• Bellinger, C., Drummond, C and Japkowicz, N. (2016). Beyond the Boundaries of SMOTE: A

Framework for Manifold-Base Synthetic Oversampling. In Machine Learning Journal, 2016



Questions?
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Appendix - UCI Data

Table: UCI Datasets applied in these experiments.
min class dim

Breast Malignant 9
Diabetes Positive 8
Ecoli 1 7
Heart Statlog Present 13
Ionosphere B 34
letter R 16
musK2 1 166
opt Digits 4 64
Ozone One 1 72
Pen Digits 3 16
Satlog 4 36
Segmentation Brickface 19
Sonar Rock 60
Vehicle Saab 18
Wave 1 40
Yeast MIT 8



Appendix - UCI Data

Table: AUC results on the benchmark UCI datasets for the baseline,
SMOTE and the two manifold-based methods DAE and PCA.

Baseline SMOTE MOSPCA MOSDAE

Musk2 0.724 0.776 0.767 0.793
Opt Digits 0.828 0.830 0.850 0.916
Wave-form 0.657 0.725 0.733 0.755
Satlog 0.675 0.770 0.776 0.778
Ionospher 0.778 0.855 0.836 0.829
Sonar 0.724 0.733 0.742 0.740
Ozone One 0.625 0.710 0.709 0.702
Segment 0.864 0.889 0.879 0.960
Vehicle 0.581 0.657 0.665 0.667
Pen Digits 0.946 0.957 0.972 0.974
Breast 0.915 0.930 0.943 0.953
Yeast 0.602 0.703 0.707 0.653
Ecoli 0.887 0.937 0.950 0.923
Heart 0.755 0.782 0.776 0.770
Letter 0.762 0.936 0.878 0.870
Diabetes 0.569 0.709 0.662 0.652

Total Wins 0 5 3 8



Appendix - Manifold Augmented UCI Data

Table: Mean loss in AUC results between the benchmark UCI datasets
and their augmented version for the baseline, SMOTE and the two
manifold-based methods DAE and PCA.

SMOTE MOSPCA MOSDEAGO

Wave-form 0.078 0.038 0.065
Segment 0.046 0.038 0.035
Ozone One 0.071 0.055 0.051
Sonar 0.082 0.061 0.061
Musk2 0.134 0.094 0.073
Vehicle 0.074 0.065 0.056
Satlog 0.092 0.095 0.067
Opt Digits 0.015 0.001 0.036
Letter 0.213 0.098 0.078
Ionospher 0.033 0.055 0.053
Breast -0.001 0.002 0.009
Pen Digits 0.035 0.016 0.016
Ecoli 0.027 0.021 0.016
Yeast 0.066 0.023 0.018
Diabetes 0.106 0.045 0.014
Heart 0.028 0.007 0.001

Total Wins 2 4 10



Appendix - Manifold Conformance Test

Table: Factor analysis methods.

Acronym Summary Reference
PL Profile Likelihood: Searches for the scree by finding the λn that

maximizes the difference between the distribution of 1...n and n +
1...m, where n is the number of eigenvalues.

[Zhu and Ghodsi, 2006]

Fact Factors: Compares the scree of factors of the observed data with
that of a random data matrix. Reports the number of factors with
eigenvalues > eigenvalues of random data.

[Revelle, 2016]

Comp Components: Compares the scree of components of the observed
data with that of a random data matrix. Reports the number of
components with eigenvalues > eigenvalues of random data.

[Revelle, 2016]

MAP Velicer’s Minimum Average Partial criterion: Applies principal com-
ponents analysis and follows this by examining a series of matrices
of partial correlations.

[Revelle and Rocklin, 1979]

VSS Very Simple Structure criterion: Compares the original correlation
matrix to that reproduced by a simplified version of the original factor
matrix.

[Velicer, 1976]

BIC Bayesian Information Criterion: Chooses the most likely model from
a set of models.

[Schwarz, 1978]

ABIC Sample Size Adjusted BIC: Chooses the most likely model from a set
of models.

[Schwarz, 1978]

PA Parallel Analysis: Creates a random data matrix and compares the
eigenvalues values calculated on it to the eigenvalue calculated on
the target domain. All components with eigenvalues greater than
the mean of the eigenvalues for the random data are kept.

[Humphreys and Montanelli, R. G., 1975]



Appendix - Manifold Conformance Test

Table: Factor analysis methods.

Acronym Summary Reference
CD Data comparison: Variant on PA that reproduces the observed cor-

relation matrix rather than generating random data.
[Ruscio and Roche, 2012]

λ > µ λ > mean(λ): Selects the end of the scree as the point where the
eigenvalues become less than the mean of the eigenvalues.

[Revelle, 2016]

OC Optimal Coordinate: Determines the location of the scree by mea-
suring the gradients associated with eigenvalues and their preceding
coordinates.

[Raiche et al., 2006]

AF Acceleration Factor: Numerical solution for determining the coordi-
nate where the slope of the curve changes most abruptly.

[Raiche et al., 2006]



Appendix - Manifold Conformance Test

m(D) = F(D)/dim(D). (1)

Table: Correlation between difference AUC (MOS)− AUC (SMOTE ) and
M(·).

FACT COMP MAP BIC ABIC DC
DIFF -0.507 -0.506 0.346 -0.139 -0.225 0.377

λ > µ PA OC AF PL
DIFF -0.007 -0.448 -0.381 -0.520 -0.306



Appendix - Manifold Conformance Test

Table: Number of times each method produced the top mean AUC above
and below M(·) score threshold for the top factor analysis methods.

Total Wins
Threshold Num DS PCA DAE MOS SMOTE

Comp < 0.176 20 16 19 19 1
≥ 0.176 12 7 4 7 5

Fact < 0.206 19 15 18 18 1
≥ 0.206 13 8 5 8 5

PL < 0.125 18 14 17 17 1
≥ 0.125 14 9 6 9 5

OC < 0.154 17 13 14 16 1
≥ 0.154 15 10 9 10 5

PA < 0.164 16 12 15 15 1
≥ 0.164 16 11 8 11 5

AF < 0.016 8 6 7 7 1
≥ 0.016 24 17 16 19 5



Appendix

Figure: Bar plots of the performance difference AUC (DAE )−AUC (PCA)
sorted by M(·) using the Comp and PL methods .



Appendix

Figure: Bar plots of the performance difference AUC (DAE )−AUC (PCA)
sorted by M(·) using the Comp and PL methods .


