AEGO

Denoising Autoencoder-Based Generative Minority Oversampling

Colin Bellinger
Electrical Engineering and Computer Science
University of Ottawa
cbell052@uottawa.ca

Outline

- Class imbalance
- Coping with Imbalance
- Sampling
- Cost adjustments
- SMOTE
- AEGO: denoising AutoEncoder-based Generative Oversampling
- Experiments
- Artificial
- UCI
- Gamma-ray spectral data
- Conclusions

Types of Imbalance

Imbalance Realized

Coping with Imbalance

- Sampling
- RUS
- randomly undersampling majority class
- ROS
- randomly oversample minority class
- Informative sampling
- remove border/overlap
- Cost Adjustment
- "encourage" correct classification of minority class

SMOTE

- Synthetically oversample minority class
- RUS majority

Pros and Cons

	Cost	ROS	RUS	SMOTE
Strengths	Reflect cost Force min clsf	- Simple	- Simple - Decrease bias of maj class	Synth minority inst RUS
Weaknesses	- Mod algo - Select costs - Overfit - Requires overlap - No new min info	- Overfit - Requires overlap - No new min info	- Lost info - Variable - No new min info	- Convex hull - kNN - Requires overlap

AEGO

- Desire a system that:
- takes advantage of RUS
- generate diverse synthetic minority instance
- influenced by minority training instance
- perceived shape and density
- expand convex-hull

AEGO System

AEGO Sampling

Pros and Cons

	Cost	ROS	RUS	SMOTE	AECO
Strengths	- Reflect cost - Force min clsf	- Simple	- Simple - Dec bias of maj class	- Synth min - RUS	- Synth min - RUS - Outside convex hull - Density est.
Weaknesses	- Mod algo - Select costs - Overfit - Requires overlap - No new min info - Dep on min inst	- No new - Overfit - Requires overlap - No new min info - Dep on min inst	- Lost info - Variable - No new min info - Dep on min inst	- Convex hull - kNN - Requires overlap - Dep on min inst	- Parameters - Less obv synth set - Depends on min inst

Autoencoder

- Traditionally seen in OCC
- Learns to "recognize" target class
- Reject test instance with high RE
- Recent interest and advancements in DL community
- Stacked AE

AE Components

- Traditional
- compression to ensure learning
- Recent
- over-complete with sparsity and denoising

Denoising Autoencoder

- Much discussion regarding learning
- parametric vs. nonparametric?
- DAE shown to reproduce latent distribution

SMOTE Vs AEGO

AEGO: Sample Size

Min trn $=3$

labels

AEGO: DAE Vs AE

Iris Data

AEGO: Variability

Changing parameters

Discussion

- Generally good coverage
- Coverage depends on:
- samples
- parameters
- Nonetheless, robust to a wide range of parameters
- Ongoing research
- training error and error propagation
- stopping criteria

Experimental Method

- Modified UCI
- m vs n classes with m underrepresented
- 3 to 25 minority training instances
- repeated 10 times
- Gamma-ray spectral data
- +20,000 majority vs 49 minority
- $5 \times 2 \mathrm{CV}$
- AUC evaluation
- $\{B R U S, S M O T E, A E G O\}+M L P$

UCI Results

Compare by dataset

Dataset	AEGO	SMOTE	BRUS
Pen	3	9	0
Veh	12	0	0
Seg	6	5	1
Stat	7	4	0
Pima	4	8	0
Opt	3	9	0
Letter	8	4	0
Hab	6	8	0
Germ	3	9	0
Ecoli	7	5	0
Contra	6	4	2
Yeast	1	12	0
Wins	$\mathbf{6}$	$\mathbf{6}$	$\mathbf{0}$

Compare by min trn size

	AEGO	SMOTE	BRUS
3	7	4	0
5	7	4	0
7	6	5	0
9	6	5	0
10	6	4	0
13	4	5	1
15	6	5	0
17	4	7	0
19	5	4	1
21	5	5	0
$\mathbf{2 3}$	5	4	0
25	3	4	0
Wins	$\mathbf{8}$	$\mathbf{3}$	$\mathbf{0}$

UCI Results

Pen digits $(1,5,7)$

Saanich Results

$5 \times 2 C V$

	MLP	BRUS	SMOTE	AEGO
$\mathbf{1}$	0.893	0.766	0.757	0.869
$\mathbf{2}$	0.592	0.679	0.745	0.827
$\mathbf{3}$	0.676	0.720	0.719	0.881
$\mathbf{4}$	0.803	0.728	0.844	0.888
$\mathbf{5}$	0.910	0.729	0.861	0.909
$\mathbf{6}$	0.842	0.798	0.945	0.957
$\mathbf{7}$	0.626	0.798	0.856	0.927
$\mathbf{8}$	0.937	0.707	0.755	0.874
$\mathbf{9}$	0.599	0.746	0.746	0.833
$\mathbf{1 0}$	0.980	0.834	0.952	0.975
Mean	0.786	0.742	0.818	0.894

Conclusion

- Novel form of Synthetic oversampling
- denoising AutoEncoder-based Generative Oversampling (AEGO)
- model minority class with DAE and "sample" the model
- represents shape and density
- expands beyond the convex-hull
- Regularly better on 124 UCI benchmark DS
- notably strong with small minority training size
- Statistical better on Saanich domain

Thank You!

Colin Bellinger

Electrical Engineering and Computer Science
University of Ottawa
cbell052@uottawa.ca

