AEGO

Denoising Autoencoder-Based Generative Minority
Oversampling

Colin Bellinger

Electrical Engineering and Computer Science
University of Ottawa
cbell052@uottawa.ca

Outline

- · Class imbalance
- Coping with Imbalance
 - Sampling
 - Cost adjustments
 - SMOTE
- AEGO: denoising AutoEncoder-based Generative Oversampling
- Experiments
 - Artificial
 - UCI
 - Gamma-ray spectral data
- Conclusions

Types of Imbalance

Imbalance Realized

Coping with Imbalance

- Sampling
 - RUS
 - randomly undersampling majority class
 - ROS
 - randomly oversample minority class
 - Informative sampling
 - remove border/overlap
- Cost Adjustment
 - "encourage" correct classification of minority class

SMOTE

- Synthetically oversample minority class
- RUS majority

Pros and Cons

	Cost	ROS	RUS	SMOTE
Strengths	Reflect costForce min clsf	- Simple	- Decrease hias of mai	Synthminority instRUS
Weaknesses	 Mod algo Select costs Overfit Requires overlap No new min info 	OverfitRequires overlapNo new min info	- Variable	Convex hullkNNRequiresoverlap

AEGO

- Desire a system that:
 - takes advantage of RUS
 - generate diverse synthetic minority instance
 - influenced by minority training instance
 - perceived shape and density
 - expand convex-hull

AEGO System

AEGO Sampling

Pros and Cons

	Cost	ROS	RUS	SMOTE	AEGO
Strengths	Reflect costForce min clsf	- Simple	SimpleDec bias of maj class	- Synth min - RUS	Synth minRUSOutside convex hullDensity est.
Weaknesses	RequiresoverlapNo new min	 No new Overfit Requires overlap No new min info Dep on min inst 	Lost infoVariableNo new min infoDep on min inst	 Convex hull kNN Requires overlap Dep on min inst 	ParametersLess obv synth setDepends on min inst

Autoencoder

- Traditionally seen in OCC
 - Learns to "recognize" target class
 - Reject test instance with high RE
- Recent interest and advancements in DL community
 - Stacked AE

AE Components

- Traditional
 - compression to ensure learning
- Recent
 - over-complete with sparsity and denoising

Denoising Autoencoder

- Much discussion regarding learning
 - parametric vs. nonparametric?
- DAE shown to reproduce latent distribution

SMOTE Vs AEGO

AEGO: Sample Size

AEGO: DAE Vs AE

Iris Data

AEGO: Variability

Changing parameters

Discussion

- Generally good coverage
- Coverage depends on:
 - samples
 - parameters
- Nonetheless, robust to a wide range of parameters
- Ongoing research
 - training error and error propagation
 - stopping criteria

Experimental Method

- Modified UCI
 - m vs n classes with m underrepresented
 - 3 to 25 minority training instances
 - repeated 10 times
- Gamma-ray spectral data
 - +20,000 majority vs 49 minority
 - 5x2CV
- AUC evaluation
 - {BRUS, SMOTE, AEGO} + MLP

UCI Results

Compare by dataset

Dataset	AEGO	SMOTE	BRUS
Pen	3	9	0
Veh	12	0	0
Seg	6	5	1
Stat	7	4	0
Pima	4	8	0
Opt	3	9	0
Letter	8	4	0
Hab	6	8	0
Germ	3	9	0
Ecoli	7	5	0
Contra	6	4	2
Yeast	1	12	0
Wins	6	6	0

Compare by min trn size

	AEGO	SMOTE	BRUS
3	7	4	0
5	7	4	0
7	6	5	0
9	6	5	0
10	6	4	0
13	4	5	1
15	6	5	0
17	4	7	0
19	5	4	1
21	5	5	0
23	5	4	0
25	3	4	0
Wins	8	3	0

UCI Results

0.900 0.800 0.500 3 5 7 9 11 13 15 17 19 21 23 25 Minority Training Class Size

Pen digits (1,5,7)

Saanich Results

5x2CV

	MLP	BRUS	SMOTE	AEGO
1	0.893	0.766	0.757	0.869
2	0.592	0.679	0.745	0.827
3	0.676	0.720	0.719	0.881
4	0.803	0.728	0.844	0.888
5	0.910	0.729	0.861	0.909
6	0.842	0.798	0.945	0.957
7	0.626	0.798	0.856	0.927
8	0.937	0.707	0.755	0.874
9	0.599	0.746	0.746	0.833
10	0.980	0.834	0.952	0.975
Mean	0.786	0.742	0.818	0.894

Conclusion

- Novel form of Synthetic oversampling
 - denoising AutoEncoder-based Generative Oversampling (AEGO)
 - model minority class with DAE and "sample" the model
 - represents shape and density
 - expands beyond the convex-hull
- Regularly better on 124 UCI benchmark DS
 - notably strong with small minority training size
- Statistical better on Saanich domain

Thank You!

Colin Bellinger
Electrical Engineering and Computer Science
University of Ottawa
cbell052@uottawa.ca