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The Comprehensive Test Ban Treaty (CTBT)

The CTBT is a United Nations treaty which will bans all nuclear
explosions in the environment when it enters into force.

http://www.ctbto.org/
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CTBT - Problem Statement

Develop and deploy a verification regime capable of ensuring the
integrity of the CTBT by the time it enters into force.

Choices inherent in the development of a verification strategy.

1 Feature selection

2 Procedure for the collection and/or measurement of features

3 Receptor placement

4 Classification strategy
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CTBT - Design decisions

(1) Feature selection: 131mXe,133 Xe,133m Xe and 135Xe

selected for intermediate rates of decay
due to their property of being inert

(2) Air sampling equipment

sampling occurs over 12 or 24 hours
filter is cooled
followed by analysis which produces a gamma ray spectrum
feature vector extraction
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CTBT - Design decisions

(3) Receptor location is largely an open question

ideally, elevated and subject to regular wind
the form of the global network which maximizes the likelihood
of detection is not entirely clear

(4) Classification

input feature vector
output detonation decision
complicating factors: radioxenon emitted from medical isotope
production facilities and nuclear power generation
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Motivation

Health Canada Dataset

real (background) data collected from five receptor sites
infused with artificial explosion data

Limitations

explosion instances greatly outnumber background instances
overall limited supply
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Related Work

Data generation is particularly useful when:

Limited or, no, ”real” data available for one or more classes
Added flexibility to increase understanding of classifier and
improve confidence in future performance

Both motivating factors in terms of CTBT verification.

limited/no ”real” explosion data
HC background data under-represented - particularly a concern
for one-class learning
Developed classifiers will be deployed in a highly variable
environment

Manipulations to the generation process will provide insight
into classifier behaviour during evolving conditions. - ex. MIs
come on- or go off-line, change in global wind patterns etc. -

see [Dietterich97, Alaiz08, Langley94, Zhu04]
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Atmospheric Processes

Fate of pollutants affected by atmospheric flows

byproduct of energy exchange
interplay between lower atmosphere and the earth’s surface
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Modelling the Atmosphere

divided into sections based on
vertical temperature gradient

pollutants generally emitted
into the troposphere

lowest layer
rises approx. 15km
contains atmospheric
boundary layer (ABL) and
convective boundary layer
(CBL)
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Figure: Vertical temperature profile of the
atmosphere (recreated from [Cooper03].)
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Atmospheric Processes

Atmospheric boundary layer

lowest portion of the troposphere
motion suffers from frictional drag
resulting energy exchange affects a temperature and moisture
profile
produces convective eddies in the above CBL

Convective boundary layer

bounded below by ABL and on top by inversion layer
upper bound is dependent upon meteorological conditions and
has a significant effect on surface pollution levels
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Atmospheric Processes

Dispersion processes

advection: transfers pollution in the direction of mean wind
diffusion: shifts concentration levels down the gradient scale

Advection

limited by frictional forces resulting from surface roughness
wind speed increases significantly in first 10 metres
surface effect dissipates beyond 1 kilometre

Diffusion

random process, causes eddies to exchange and mix with
neighbouring parts of atmosphere
largely dependent upon surface roughness and buoyancy.
stability term can be used to classify the degree to which
mixing occurs
stable: little mixing
unstable: well mixed
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Atmospheric Processes

Effect of mixing and layering on
plume [Beychok94]

in the inset z vs T diagram,
the dashed line represents dry
adiabatic lapse rate and the
solid line represents measured
lapse rate.
out is the resulting plume
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Modelling the Atmosphere

Frames of reference

Eulerian:

views atmosphere from a fixed point
inspects parcels of air as they move past

Lagrangian:

describes behaviour wrt moving fluids
point of reference within an advecting parcel
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Modelling the Atmosphere

Lagrangian particle models

mathematically follow pollutants as they disperse by:

applying calculations of the statistical trajectory of parcels
random walk approach

previously used to model radionuclide dispersion by
[Izraehl90, Desiato92]
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Modelling the Atmosphere

K-theory

adheres to the hypothesis of gradient transfers

ie. assumes a shift down the gradient scale

provides a comprehensive description of atmospheric
dispersion

example of its application can be seen in
[Lauritzen99, Maccracken78]
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Modelling the Atmosphere

The main equation of K-theory:

Dχ

Dt
=

∂

∂x

(
Kx
∂χ

∂x

)
+

∂

∂y

(
Ky
∂χ

∂y

)
+

∂

∂z

(
Kz
∂χ

∂z

)
(1)

where:

t: time
χ: the mean concentration of the pollutants
Kx ,y ,z : eddie diffusivity in the three coordinate directions
Dχ
Dt : the Lagrangian time derivative

accounts for diffusion in the three component directions
(anisotropic)
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Modelling the Atmosphere

Assume isotropic diffusion:

this assumes diffusion is constant and independent of spacial
direction

resulting eq’n is analogous to Fick’s law of molecular diffusion

Dχ

Dt
= K∇2x (2)

where:

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

and
K = Kx = Ky = Kz

this can be used to model diffusion in 1-, 2- or 3-dimensions
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Modelling the Atmosphere

1-dimensional Fickian diffusion eq’n:

∂χ

∂t
+ u

∂χ

∂x
= K

∂2χ

∂x2
(3)

where:
v = w = 0

and

the first term represents the rate of change of χ at a selected
fixed point in space

the second term represents the advection of the pollutant at
velocity u
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Modelling the Atmosphere

Gaussian puff model:

sol’n to Fickian diffusion equation

models diffusion from an instaneous point source of emission
strength Q

assume mean concentration of dispersing pollutant is forms a
Gaussian distribution

χ(x , y , z , t) =
Q

(4πt)
3
2 (KxKyKz )

1
2

exp

[
−
(

(x − ut)2

4Kx t
+

y2

4Ky t
+

z2

4Kz t

)]
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Modelling the Atmosphere

Boundary conditions Gaussian puff model:

1 χ→ 0 as t →∞ for all coordinates −∞ < x , y , z <∞
2 χ→ 0 as t → 0 for all coordinates except where x , y , z = 0

3
∫∞
−∞ χdxdydz = Q

[Oliveira98] applied a variant of the puff model to predict the
dispersion of radionuclides from a nuclear power plant in Brazil
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Modelling the Atmosphere

Gaussian plume model:

models diffusion from a continuous point source (Q), emitted
from an elevated industrial stack

infinite number of puffs superimposed on each other

mathematically speaking, integrate with respect to time

as a matter of convenience, diffusion along x-axis is ignored

χ(x , y , z , t) =
Q

2πσyσzu
exp

(
−
(

y2

2σ2
y

+
z2

2σ2
z

))
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Modelling the Atmosphere

Gaussian plume model:

account for reflection at surface

χ(x , y , z , t) =
Q

2πσyσzu
exp

(
− y2

2σ2
y

)
[
exp

(
− (z − H)2

2σ2
z

)
+ exp

(
− (z + H)2

2σ2
z

)]
where:

h is the height of the plumes centreline

in much the same way, reflection at an inversion layer can be
accounted for

for some further examples of the application of Gaussian
models see [AlKhayat92, Simmonds93, Lyons90]
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Simulating Dispersion

Objective:

Generate a dataset containing a series of radioxenon
measurements

Receptor-specific datasets contain feature vectors of:

cumulative quantity of radioxenon measured over 12 or 24
hours
class label (background or explosion)
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Simulating Dispersion

1 Define hypothetical world

2 Simulation for j=1:n days

(i) For each day, simulate i=1:24
hours

generate Gaussian random
variables about the means
calculate background
radioxenon levels
if explosion, added expls
levels to bkgnd levels
add hourly mean to
cumulative daily count

(ii) Record daily value

3 Output dataset

Hypothetical
World

Output Results

Industrial
Variables

Meteorological
Variables

Calc. bkgnd levels

Explosion?

Calc. expl levels

Add hourly mean 
concentration

Record daily
statistics
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Simulating Dispersion

Sample dataset:

Important features are xenon 131m, 133, 133m and 135

Considerations season, wind speed and direction
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Simulating Dispersion

Sample map:

1 industrial emitter (green)
3 receptors (blue)
10 explosions (heat colours)
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Simulating Dispersion

plotted results for receptor 2:

background data in red
explosions in black
generally up-wind from industry → low background levels
two peaks (expl 4 and expl 5)

Colin Bellinger Modelling and Classifying Random Phenomena



Preliminary Results

Classifier Class TPR FPR AUC

MLP
target 0.845 0 0.896
outlier 1 0.155 0.896

J48
target 0.997 0 0.990
outlier 1 0.003 0.990

IBK
target 0.995 0 0.998
outlier 1 0.005 0.998

NB
target 0.039 0.1 0.754
outlier 0.990 0.964 0.754

CDCPE [Hempstalk08]
target 0.902 0.013 0.650
outlier 0.087 0.098 0.650
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Conclusion

Examined strategies for modelling atmospheric dispersion

In the spirit of the CTBT

applied a Gaussian assumption to model the dispersion of
radioxenon
generate background noise and random Phenomena

Utilized Weka to classify the preliminary dataset
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