
CCCG 2016, Vancouver, British Columbia, August 3–5, 2016

Polynomial volume point set embedding of graphs in 3D∗

Farshad Barahimi† Stephen Wismath‡

Abstract

Two algorithms are presented for computing a point-set
embedding of a graph in 3D on a given point set with a
volume that is polynomial in the size of the graph and
the size of the point set, and with at most a logarithmic
number of bends per edge. This resolves the previously
open general 3D point set embedding problem [12].

1 Introduction

A drawing of a graph, is a mapping of each vertex to
a point in 2D or 3D Euclidean space and each edge to
a simple curve between the mapped points of its end-
points. Although 2D graph drawing has been stud-
ied extensively, there has also been some significant
progress on drawing graphs in 3D. One such model is a
3D Fary grid drawing, in which each vertex is mapped
to an integer grid point in 3D Cartesian coordinate sys-
tem and each edge is mapped to a straight line segment,
such that there is no crossing between edges or vertices.

Cohen, et al. [5] showed that it is possible to have
a 3D Fary grid drawing of any graph with n vertices
such that the volume does not exceed n× 2n× 2n. Al-
though they proved that their O(n3) result is asymp-
totically optimal for complete graphs, other classes of
graphs can be drawn in a lower volume. Calamoneri
and Sterbini [4] showed that it is possible to draw every
4-colorable graph on integer coordinates and with no
crossing in an O(n2) volume. Pach, et al. [13] showed
that for any constant r, every r-colorable graph can
be drawn crossing-free on integer coordinates in O(n2)
volume. They also showed that their result is asymp-
totically tight by showing that a balanced complete 2-
partite graph with n vertices requires Ω(n2) volume.

Bose, et al. [2] showed that the maximum number of
non-crossing edges that can be contained in anX×Y ×Z
volume is exactly (2X−1)(2Y −1)(2Z−1)−XY Z and
as a result, m+n

8 is a lower bound for the volume of a
3D Fary grid drawing of a graph with n vertices and m
edges.

Felsner, et al. [9] showed that it is possible to have a

∗Supported in part by the Natural Sciences and Engineering
Research Council of Canada.
†Department of Mathematics and Computer Science, Univer-

sity of Lethbridge, farshad.barahimi@uleth.ca
‡Department of Mathematics and Computer Science, Univer-

sity of Lethbridge, wismath@uleth.ca

3D Fary grid drawing of any outerplanar graph with n
vertices in O(n) volume, using a 3D prism. It remains
an open problem to determine if all planar graphs can
be drawn in linear volume.

Although in the above results each edge is a straight
line segment, another model of drawing graphs in 3D
introduces bends to subdivide an edge into straight line
segments. Unless otherwise specified, we assume here
that all such bend points occur at points with integer
coordinates.

Dujmović and Wood [8] showed that it is possible to
obtain a 3D crossing-free grid drawing of every graph
with n vertices and m edges in a O(n + m log q) vol-
ume and with O(log q) bends per edge, where q is the
queue number of the graph. The problem of computing
the queue number of a graph is NP-Complete [10]. Di
Battista, et al. [6] showed that the queue number of
every planar graph is O(log2 n) and based on these two
results, every planar graph can be drawn crossing-free
on integer coordinates in an O(n log log n) volume and
with O(log log n) bends per edge; they also showed that
any planar graph can thus be drawn in O(n log8 n) vol-
ume. Dujmović [7] has recently shown that the queue
number of planar graphs is O(log n), thus improving the
volume bound to O(n logn).

After acceptance of this paper, we were made aware of
a result by D. Wood [15] that uses a technique similar to
ours. Both these results were obtained independently.

1.1 Point set embedding

The class of point set embedding problems studies the
layout of graphs when a set of fixed points are given
for the location of vertices. If the mapping between
the vertices and points is specified then it is called with
mapping otherwise it is called without mapping. In the
with mapping variant of the problem the layout is de-
termined only by establishing the position of the bends,
whereas in the without mapping variant of the prob-
lem, identifying the mapping between the vertices and
the given point set, is also required.

One formulation of the two dimensional point set em-
bedding problem (2DPSE) was suggested by Meijer and
Wismath [12]:

Given a planar graph G with n vertices, V =
{v1, v2, . . . , vn}, and given a set of n distinct
points P = {p1, p2, . . . , pn} each with inte-

80



28th Canadian Conference on Computational Geometry, 2016

ger coordinates in the plane, can G be drawn
crossing-free on P with vi at pi and with a
number of bends polynomial in n and in an
area polynomial in n and the dimension of P?

Cabello [3] considered a version of the problem where
bends are not allowed and proved that it is NP-Hard
to determine whether a planar graph has a straight-
line crossing-free drawing on a predefined set of points
when the mapping between the vertices and the points
is not specified. Pach and Wenger [14] proved that it
is possible to draw any planar graph crossing-free on
a predefined set of points with O(n2) bends per edge
where the mapping between vertices and points is fixed
(but bend points are not constrained to occur at integral
coordinates). Kaufmann and Wiese [11] proved that
it is possible to have a crossing-free drawing of every
planar graph, with at most two bends per edge where
each vertex can be positioned at any point of a set of
predefined positions, but the area of the drawing may
be exponential.

In 3D similar issues can be considered. Meijer and
Wismath [12] formulated the three dimensional point
set embedding problem (3DPSE) as follows:

Given a graph G with n vertices, V =
{v1, v2, . . . , vn}, and a set of n distinct points
P = {p1, p2, . . . , pn} each with integer coor-
dinates in three dimensions, can G be drawn
crossing-free on P with vi at pi and with a
number of bends polynomial in n and in a vol-
ume polynomial in n and the dimension of P?

In this paper without loss of generality, the bounding
box of P is assumed to range from (1, 1, 1) to (w, l, h).

In [12], this general problem is stated as an open prob-
lem and solutions to modified versions of the problem
are given. Barahimi [1], in his master’s dissertation pro-
vided two algorithms for the general problem, one of
which is presented in section 2, and the second one is
replaced by another algorithm discussed in section 3.

The first modification to 3DPSE that is considered
in [12] is to remove the polynomial volume constraint
from the problem definition. They prove that Kn can
be drawn crossing-free on any predefined set of integer
points in 3D with at most 3 bends per edge, but the vol-
ume is unbounded. The proof incrementally adds edges
to the graph. For each endpoint of each edge, a visi-
ble bend point outside the bounding box of the current
drawing is found and the endpoint is connected to that
bend. The bends found for each edge can be connected
by finding a third visible bend point and connecting
both to it. The idea of finding visible bend points is
used in the proposed algorithms in sections 2 and 3 but
the visible bend points are found in a bounded volume.

The second modification to 3DPSE that is consid-
ered in [12] is to restrict P to the XY plane and the

problem is called 3DPSEp. They proved that a graph
with n vertices and m edges can be drawn crossing-
free in 3D with vertices on a predefined set of integer
points in a W × H rectangular area of the XY plane
using O(logm) bends per edge and within a bounding
box of max(W,m) × (H + 3) × (2 + logm). To cre-
ate such a drawing, they first introduce a method to
draw a perfect matching of two sets of m points in 2D
on O(logm) tracks with O(logm) bends per edge and
no X-Crossings. An X-Crossing occurs if there are two
edges (u, v) and (w, z) such that u and w are on the
same track and v and z are both on a different track,
and u appears before w in their track but v appears af-
ter z in their track. This track layout can be converted
to 3D without any edge crossings in a box of volume of
m× 3× (1 + logm) and with O(logm) bends per edge.
This technique is also used in the first proposed algo-
rithm of this paper described in section 2. To draw an
arbitrary graph in 3D, two lines are considered and for
each edge two bend points are added, one on the first
line and one on the second line. In the first line the
order of the bends representing edges is lexicographic
meaning that edges of the vertex vi appear before the
edges of the vertex vi+1. For the second line the order
of the bends representing edges is opposite of the first
line meaning that edges of the vertex vi appear after the
edges of the vertex vi+1. The two corresponding bends
of each edge on these two lines are connected on O(log n)
tracks with O(log n) bends using the perfect matching
technique. Next another line is added for vertices of
the graph and vertices are connected to the correspond-
ing bend of their incident edges without creating any
crossings. For the 3DPSEp problem, without loss of
generality it is assumed that the vertices are ordered by
X coordinate and then by Y coordinate in case of a tie.
The vertices are placed in the Z = 0 plane. The first line
for the matching is placed at the Z = −1 plane and the
second line of the matching is put on the Z = 1 + logm
plane.

Barahimi [1], in his master’s dissertation proposed
two algorithms for the general 3DPSE problem.The
first algorithm which is also presented here creates a
drawing of volume O(m + n + w) × O(m + n + l) ×
O(log n+ h), with at most O(log n) bends per edge. A
second algorithm is proposed in this paper which fits
the drawing in a O(m+ n+ w)×O(m+ n+ l)×O(h)
volume and uses only one bend per edge.

2 The algorithm with a logarithmic number of bends
per edge

In this section an algorithm is given which will produce
a drawing of size
O(m + n + w) × O(m + n + l) × O(log n + h), with at
most O(log n) bends per edge.

81



CCCG 2016, Vancouver, British Columbia, August 3–5, 2016

2.1 General idea

The algorithm has three phases and the general ideas
are outlined below while details follow later:

• Phase one: Consider two rectangles RA and RB

that lie in planes parallel to the XY plane. RA is
one unit in front of the bounding box of the points
in the direction of the Z axis and RB is one unit
from the back of the bounding box of the points
in the direction of the Z axis. For each edge find
two visible integer bend points, one in RA and one
in RB . Connect the first vertex of the edge to the
bend point in RA and connect the second vertex of
the edge to the bend point in RB .

• Phase two: Consider two lines LA and LB parallel
to the Y axis. LA is at least one unit in front of
RA in the direction of the Z axis and two units to
the left of RA in the direction of the X axis. LB

is one unit from the back of RB in the direction of
the Z axis and two units to the left of RA in the
direction of the X axis. Connect each bend point in
RA to a corresponding integer bend point in LA and
connect each bend point in RB to a corresponding
integer bend point in LA.

• Phase three: Each edge has two corresponding
bend points in LA and LB . If the corresponding
bend points of each edge in LA and LB are con-
nected then they form a matching. This match-
ing can be drawn crossing free using the perfect
matching technique of [12] in a bounding box of
3×m× (1 + logm).

Figure 1 shows a conceptual picture of RA, RB , LA,
LB and the bounding box of the points.

Figure 1: The conceptual picture of RA, RB , LA, LB

and the bounding box of the points.

2.2 Phase one

Let k = max(n,m). Let PA denote the plane z = h+ 1
and RA denote the rectangle going from (1, 1, h+ 1) to
(2k, 2k, h+1) in the plane PA. Let PB denote the plane
z = 0 and RB denote the rectangle going from (1, 1, 0)
to (2k, 2k, 0) in the plane PB . A point s is visible from
point t if the line segment connecting s to t does not
intersect any vertex of G or any line segment that is
previously drawn. The edges are considered one by one
in m steps. At the ith step (1 ≤ i ≤ m), the ith edge
ei, connecting vertices ui and wi is considered. Now a
visible integer bend point ai from ui is found in RA and
a line segment αi is drawn between ui and ai. Next a
visible integer bend point bi from wi is found in RB and
a line segment βi is drawn between wi and bi. At the
end of this phase each edge has one corresponding bend
point in RA and one corresponding bend point in RB .

To prove that there is always a visible integer bend
point from ui in RA, or from wi in RB , at the ith step
of this phase of the algorithm, consider that there are
only two ways that an integer bend point in RA or RB

becomes invisible from ui or wi:

1. A previously drawn line segment is between RA

and ui, or RB and wi. The previously drawn line
segment can be any of αj or βj for 1 ≤ j < i,
or αi for wi. There are at most 2k − 1 such line
segments and each line segment can make at most
2k integer points of RA or RB invisible. So this
case will make at most (2k− 1)2k integer points of
RA or RB invisible. To prove that each such line
segment connecting vertices or bend points q and
t, will make at most 2k integer points in RA or RB

invisible from a vertex v which can be ui or wi,
consider the plane Pvqt containing v, q and t. If
the plane Pvqt intersects with the plane PA or PB

the intersection will be a line. This line can contain
at most 2k integer points of RA or RB . If v, q, and
t are collinear, at most one integer point of RA or
RB is made invisible.

2. A vertex is between RA and ui, or RB and wi: This
can be any vertex other than ui or wi. Each such
vertex can make at most one integer point of RA or
RB invisible. There are at most k−1 such vertices.
So this case can make at most k − 1 integer points
of RA or RB invisible.

Subtracting the maximum number of invisible points
of both cases from the number of integer points of RA

or RB , leaves at least k + 1 visible points as shown in
equation 1.

4k2 − (2k − 1)2k − (k − 1) = k + 1 (1)

82



28th Canadian Conference on Computational Geometry, 2016

2.3 Phase two

Let λ = max(h + 2, logm). Let LA denote the line
segment going from (−1, 1, λ) to (−1,m, λ) and let
LB denote the line segment going from (−1, 1,−1) to
(−1,m,−1).

For each bend point ai in RA, find a corresponding
integer bend point in LA called āi and draw a line seg-
ment between ai and āi. To find such corresponding
bend points, consider the integer bend points of LA in
the order of increasing Y coordinate and consider ai
integer bend points in the order of X coordinate and
in case of a tie in the order of Y coordinate, and match
them one by one. This ordering will avoid any crossings.

Similarly, for each bend point bi in RB , find a corre-
sponding integer bend point in LB called b̄i and draw
a line segment between bi and b̄i. To find such corre-
sponding bend points, consider the integer bend points
of LB in the order of increasing Y coordinate and con-
sider bi integer bend points in the order of X coordinate
and in case of a tie in the order of Y coordinate, and
match them one by one. This ordering will avoid any
crossings. At the end of this phase each edge has four
corresponding bend points, one in RA, one in LA, one
in LR and one in LB .

2.4 Phase three

Each edge ei has a corresponding bend point āi in LA

and a corresponding bend point b̄i in LB . If each āi is
connected directly to each b̄i they form a perfect match-
ing but it may introduce crossings. To avoid crossings
the perfect matching technique of [12] is used to draw
this perfect matching in 3D. Such a 3D perfect match-
ing drawing can be drawn in a bounding box of size
3 × m × (1 + logm) using the [-2,0] range of X coor-
dinates and at most O(log n) bends per edge. Also it
is notable that this phase does not use any bend point
on the two lines X = 0, Z = λ and X = 0, Z = −1,
otherwise it may introduce crossings with the line seg-
ments of the previous phase. This phase will add at
most O(log n) bends per edge, and at most three units
to the dimension of drawing in X direction.

2.5 Summary

Each phase of the algorithm does not create any cross-
ings. Each of the three phases uses different partitions
of space which will avoid crossings between the three
phases.

To find the visible points, for each vertex v, the al-
gorithm maintains a set of integer points in RA or RB

that are visible from v. The set is implemented using
a balanced binary search tree. After adding each line
segment at each step of the algorithm, for each vertex
v, the algorithm removes the integer points blocked by
that line segment from the set of visible points of v. The

algorithm has O(m · n · k · log n) time complexity and
O(nk2) memory complexity. The algorithm is summa-
rized in Theorem 1 and Algorithm 2.1. Also figure 2
shows the drawing of K5 on a given point set produced
by the proposed algorithm using software We3Graph [1].

Theorem 1 Given a graph G with m edges, and n ver-
tices, V = {v1, v2, . . . , vn}, and a given set of n distinct
points P = {p1, p2, . . . , pn} each with integer coordinates
in three dimensions, G can be drawn crossing-free on P
with vi at pi and with at most O(log n) bends per edge
and in a O(m+n+w)×O(m+n+l)×O(log n+h) volume
such that each bend has three dimensional integer coor-
dinates. The drawing can be produced in O(m·n·k·log n)
time and O(nk2) memory.

Figure 2: 3D drawing of K5 on a given point set using
the first proposed algorithm. Y axis upward and camera
looking toward the negative side of Z axis direction.

3 The algorithm with one bend per edge

In this section an algorithm is given which will produce
a drawing of size O(m+ n+w)×O(m+ n+ l)×O(h),
with exacly one bend per edge. The algorithm consid-
ers a rectangle parallel to the XY plane in front of the
bounding box of the points in the direction of the Z
axis and for each edge, finds an integer bend point in
that rectangle that is visible from both endpoints of the
edge and connects the endpoints of the edge directly to
the bend point. Here is a detailed explanation of the
algorithm.

Let k = max(n,m). Let PC denote the plane z = h+1
and RC denote the rectangle going from (1, 1, h+ 1) to
(4k, 4k, h+ 1) in the plane PC . A point s is visible from
point t if the line segment connecting s to t does not
intersect any vertex of G or any line segment that is
previously drawn. At the ith step (1 ≤ i ≤ m), the
ith edge ei, connecting vertices ui and wi is considered.
Now an integer bend point ai is found in RC that is
visible both from ui and wi. A line segment αi is drawn
between ui and ai and a line segment βi is drawn be-
tween wi and ai. Figure 3 shows a conceptual picture
of RC and the bounding box of the points.

83



CCCG 2016, Vancouver, British Columbia, August 3–5, 2016

Algorithm 2.1 The algorithm with logarithmic num-
ber of bends per edge

RA denotes the rectangle going from (1, 1, h+ 1) to
(2k, 2k, h+ 1) in the plane z = h+ 1
RB denotes the rectangle going from (1, 1, 0) to
(2k, 2k, 0) in the plane z = 0

1: λ = max(h+ 2, logm)
2: Let Sv be the set of all visible integer points from

the vertex v, in RA.
3: Let Ŝv be the set of all visible integer points from

the vertex v, in RB .
4: for all vertex v in V do
5: for all vertex v2 in V - v do
6: Remove the point in Sv or the point in Ŝv that

is blocked by v2 from v (if it exists).

7: for all edge ei = (ui, wi) in E do
8: Let ai be a point in Sui

9: Draw a line segment αi from ui to ai.
10: for all vertex v in V do
11: Remove every point in Sv and Ŝv that is

blocked by αi from v.

12: Let bi be a point in Ŝwi

13: Draw a line segment βi from wi to bi.
14: for all vertex v in V do
15: Remove every point in Sv and Ŝv that is

blocked by βi from v.

16: counter=1
17: for all αi ordered by x coordinate and in case of a

tie by y coordinate do
18: Draw a line segment between αi and the point

āi = (−1, counter, λ).
19: counter++

20: counter=1
21: for all βi ordered by x coordinate and in case of a

tie by y coordinate do
22: Draw a line segment between βi and the bend

point b̄i = (−1, counter,−1).
23: counter++

24: Use the technique of [12] for drawing a perfect
matching in 3D to connect each āi to b̄i.

To prove that there is always an integer bend point
visible from both of ui and wi in RC at the ith step
of the algorithm, consider that there are only two ways
that an integer bend point in RC becomes invisible from
ui or wi:

1. A previously drawn line segment is between RC

and, ui or wi. The previously drawn line segment
can be any of αj or βj for 1 ≤ j < i. There are
at most 2k − 2 such line segments and each line
segment can make at most 4k integer points of RC

invisible from ui and at most 4k integer points of
RC invisible from wi. So this case will make at

Figure 3: The conceptual picture of RC and the bound-
ing box of the points.

most 2(2k−2)4k integer points of RC invisible from
either of ui or wi. To prove that each such line
segment connecting vertices or bend points q and t,
will make at most 4k integer points in RC invisible
from a vertex v which can be ui or wi, consider the
plane Pvqt containing v, q and t. If the plane Pvqt

intersects with the plane PC the intersection will
be a line. This line can contain at most 4k integer
points of RC . If v, q, and t are collinear, at most
one integer point of RC is made invisible.

2. A vertex is between RC and, ui or wi: This can be
any vertex other than ui or wi. Each such vertex
can make at most one integer point of RC invisi-
ble from ui and at most one integer point of RC

invisible from wi. There are at most k − 1 such
vertices. So this case can make at most 2(k − 1)
integer points of RC invisible from either of ui or
wi.

Subtracting the maximum number of integer points
invisible from both ui and wi of both cases from the
total number of integer points of RC , leaves at least
14k + 2 visible points as shown in equation 2.

16k2 − 2(2k − 2)4k − 2(k − 1) = 14k + 2 (2)

To find the visible points, for each vertex v, the algo-
rithm maintains a set of integer points in RC that are
visible from v. The set is implemented using a 2D ar-
ray. After adding each line segment at each step of the
algorithm, for each vertex v, the algorithm removes the
integer points blocked by that line segment from the set
of visible points of v. The algorithm has O(mk2) time
complexity and O(nk2) memory complexity. The algo-
rithm is summarized in Theorem 2 and Algorithm 3.1.
Also figure 4 shows the drawing of K5 on a given point
set using the proposed algorithm.

Theorem 2 Given a graph G with m edges, and n ver-
tices, V = {v1, v2, . . . , vn}, and a given set of n distinct

84



28th Canadian Conference on Computational Geometry, 2016

points P = {p1, p2, . . . , pn} each with integer coordi-
nates in three dimensions, G can be drawn crossing-free
on P with vi at pi and with exactly one bend per edge
and in a O(m+ n+ w)×O(m+ n+ l)×O(h) volume
such that each bend has three dimensional integer coor-
dinates. The drawing can be produced in O(mk2) time
and O(nk2) memory.

Algorithm 3.1 The algorithm with one bend per edge

RC denotes the rectangle going from (1, 1, h+ 1) to
(4k, 4k, h+ 1) in the plane z = h+ 1

1: Let Sv be the set of all visible integer points from
the vertex v, in RC .

2: for all vertex v in V do
3: for all vertex v2 in V - v do
4: Remove the point in Sv that is blocked by v2

from v (if it exists).

5: for all edge ei = (ui, wi) in E do
6: Let ai be a point in both Sui

and Swi

7: Draw a line segment αi from ui to ai.
8: Draw a line segment βi from wi to ai.
9: for all vertex v in V do

10: Remove every point in Sv that is blocked by αi

or βi from v.

Figure 4: 3D drawing of K5 on a given point set us-
ing the second algorithm. Y axis upward and camera
looking toward the negative side of Z axis direction.

4 Comparison of the two algorithms

While the second algorithm, with lower number of bends
per edge provides an equal or better asymptotic volume,
the first algorithm with a better asymptotic running
time for dense graphs, might result in lower exact vol-
ume since it uses two 2k × 2k rectangles instead of one
4k × 4k rectangle to find visible integer bend points.

5 Conclusions and open problems

Two algorithms were presented to answer a previously
raised question in the 3D graph drawing literature. Al-
though the algorithms run in polynomial time, improv-
ing the practical and asymptotic runtime performance
should be considered. Also, although the algorithms
produce drawings in 3D without crossings, edges can be
very close, thus finding an algorithm which can guar-
antee a particular minimum distance between edges or
vertices is another area which can be investigated.

References

[1] F. Barahimi. Web-based drawing software for graphs
in 3d and two layout algorithms. Master’s thesis, U. of
Lethbridge, Dept. of Math. and Comp. Sci., 2015.

[2] P. Bose, J. Czyzowicz, P. Morin, and D. R. Wood. The
maximum number of edges in a three-dimensional grid-
drawing. J. Graph Alg. & App., 8(1):21–26, 2004.

[3] S. Cabello. Planar embeddability of the vertices of a
graph using a fixed point set is np-hard. J. Graph Alg.
& App., 10(2):353–363, 2006.

[4] T. Calamoneri and A. Sterbini. 3d straight-line grid
drawing of 4-colorable graphs. Information Processing
Letters, 63(2):97–102, 1997.

[5] R. Cohen, P. Eades, T. Lin, and F. Ruskey. Three-
dimensional graph drawing. Algorithmica, 17(2):199–
208, 1997.

[6] G. Di Battista, F. Frati, and J. Pach. On the
queue number of planar graphs. SIAM J. Computing,
42(6):2243–2285, 2013.

[7] V. Dujmović. Graph layouts via layered separators. J.
of Combinatorial Theory, Series B, 110:79–89, 2015.

[8] V. Dujmović and D. Wood. Stacks, queues and tracks:
Layouts of graph subdivisions. Discrete Math. & The-
oretical Computer Science, 7(1), 2006.

[9] S. Felsner, G. Liotta, and S. Wismath. Straight-line
drawings on restricted integer grids in two and three
dimensions. J. Graph Alg. & App., 7(4):363–398, 2003.

[10] L. Heath and A. Rosenberg. Laying out graphs using
queues. SIAM J. Computing, 21(5):927–958, 1992.

[11] M. Kaufmann and R. Wiese. Embedding vertices at
points: Few bends suffice for planar graphs. J. Graph
Alg. & App., 6(1):115–129, 2002.

[12] H. Meijer and S. Wismath. Point set embedding in 3d.
J. Graph Alg. & App., 19(1):243–257, 2015.

[13] J. Pach, T. Thiele, and G. Toth. Three-dimensional grid
drawings of graphs. In G. Di Battista, editor, Graph
Drawing, volume 1353 of LNCS, pages 47–51. Springer
Berlin Heidelberg, 1997.

[14] J. Pach and R. Wenger. Embedding planar graphs
at fixed vertex locations. Graphs and Combinatorics,
17(4):717–728, 2001.

[15] D. Wood. Three dimensional graph drawing with
fixed vertices and one bend per edge. arXiv:
http://arxiv.org/abs/1606.09188, 2016.

85


