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ABSTRACT

Parallel sorting algorithms have already been proposed for a variety of multiple instruction
streams, multiple data streams (MIMD) architectures. These algorithms often exploit the
strengths of the particular machine to achieve high performance. In many cases, however, the
existing algorithms cannot achieve comparable performance on other architectures. Parallel
Sorting by Regular Sampling (PSRS) is an algorithm that is suitable for a diverse range of
MIMD architectures. It has good load balancing properties, modest communication needs
and good memory locality of reference. If there are no duplicate keys, PSRS guarantees to
balance the work among the processors within a factor of two of optimal in theory, regardless
of the data value distribution, and within a few percent of optimal in practice. This paper
presents new theoretical and empirical results for PSRS. The theoretical analysis of PSRS
is extended to include a lower bound and a tighter upper bound on the work done by a
processor. The effect of duplicate keys is addressed analytically and shown that, in practice,
it is not a concern. In addition, the issues of oversampling and undersampling the data are
introduced and analyzed. Empirically, PSRS has been implemented on four diverse MIMD
architectures and a network of workstations. On all of the machines, for both random and
application-generated data sets, the algorithm achieves good results. PSRS is not necessarily
the best parallel sorting algorithm for any specific machine. But PSRS will achieve good
performance on a wide spectrum of machines before any strengths of the architecture are
exploited.



1 Introduction

Sorting is a problem of fundamental interest in computing science. For n data items, se-
quential comparison-based sorting has a time complexity of Q(nlogn) and mergesort, for
example, is O(nlogn), leaving no possibility for substantial improvements in sequential al-
gorithms. However, significant improvements may be possible through parallelism. Many
innovative MIMD parallel sorting algorithms have been proposed. In particular, extensive
research has been done with sorting on hypercubes ([1, 4, 10, 14, 17, 18, 19], for example),
shared memory architectures ([5, 12, 21], for example) and networks of workstations ([13, 20],
for example). These algorithms often exploit the strengths of the architecture, while trying
to minimize the effects of the weaknesses. Unfortunately, these algorithms usually do not
generalize well to other MIMD machines.

Parallel Sorting by Regular Sampling (PSRS) is a new MIMD parallel sorting algorithm
[15, 16]. The regular sampling load balancing heuristic distinguishes PSRS from other parallel
sorting algorithms. Regular sampling has good analytical and empirical properties. Also,
PSRS has modest communication needs and exhibits good per task locality of reference,
reducing memory and communication contention. In theory, if there are no duplicate data
values, PSRS guarantees to distribute the work among processors within a factor of two of
optimal load balancing, regardless of the data value distribution. In practice, PSRS achieves
near-perfect load balancing.

This paper makes three important contributions to our understanding of PSRS:

1. New analytical results. Given p processors and n keys to sort, the ideal case is that
each processor works on % data items. It has been proven that in PSRS, no processor
has to work on more than 2?” data items if n > p*, assuming no duplicate keys [15, 16].
In this paper, a lower bound (L = - 1) and a tighter upper bound (U = 2?” -1)
on the amount of work done by each processor is proven. Other results on the load
balancing bounds are also presented.

2. Addresses the duplicate keys issue. Some algorithms depend on having an uniform
data value distribution to achieve good load balancing ([10], for example), or restrict the
data to contain no duplicates' ([1, 22], for example). PSRS can handle arbitrary data
value distributions and further analysis shows that the presence of duplicates increases
the upper bound on load balancing linearly. If a single key can be duplicated a
maximum of d times (d = 0 implies no duplicates), then the upper bound on the number
of data items a processor must work with becomes U’ = U + d. If more than one data
value is duplicated, then d represents the key with the most number of duplicates. Since
the 2?” term dominates the bound, duplicates do not cause problems until individual
keys are repeated O(%) times. This point is illustrated empirically by running PSRS
on some application-generated data (the IMOX data set, utilized extensively in image
processing and pattern recognition [2]) that contains a high percentage of duplicate
items.

3. New empirical results. The original implementation of the algorithm was on a
virtual memory, demand-paged Myrias SPS-2 with 64 processors. It achieved a 44-fold

Tt is assumed that there is no computationally inexpensive way of removing duplicates. Techniques such
as adding secondary keys may require substantial modifications to the data.



speedup while sorting 8,000,000 four-byte integers [15, 16]. This paper describes the
performance of PSRS on a BBN T(C2000 (shared memory), an Intel iPSC/2-386, an
iPSC/860 (distributed memory with hypercube interconnections), and a network of
workstations (distributed memory with a LAN interconnection). In all cases, good
speedups are reported for problems of sufficient granularity, demonstrating that PSRS
can be successfully used on a variety of different MIMD machines.

Although there is a plethora of parallel sorting algorithms, few have the overall versa-

tility of PSRS:

1. Good analytical properties. There is a good theoretical upper bound on the worst
case load balancing.

2. Robust on different data sets. Arbitrary data value distributions do not cause
problems. Unless individual keys are repeated O(%) times, theoretical and empirical
results show that duplicates are not a problem.

3. Suitable for different architectures. It is empirically shown to be suitable for a
diverse range of MIMD architectures. Although PSRS may not be the best parallel
sorting algorithm for any particular MIMD architecture, it is a good algorithm for a
wide spectrum of architectures.

Section 2 describes the PSRS algorithm. Section 3 provides an analysis of the algo-
rithm, in particular its load balancing properties. Section 4 presents empirical results of im-
plementing PSRS on 4 machines (3 different architectures), for both random and application-
generated data. Section 5 provides some concluding perspectives on PSRS.

2 The PSRS Algorithm

PSRS is a combination of a sequential sort, a load balancing phase, a data exchange and a
parallel merge. Although any sequential sorting and merge algorithm can be used, PSRS is
demonstrated using quicksort? and successive 2-way merge. Given n data items® (indices 1,
2, 3, ..., n) and p processors (1, 2, 3, ..., p), PSRS consists of four phases. Note that this
description differs slightly from that in [15, 16].
Refer to Figure 1 for an example, with n = 36, p = 3 and the keys 0, 1, 2, ..., 35. For
P

brevity, let p = |2] and w = =g

1. Phase One: Sort Local Data. Each processor is assigned a contiguous block of
2 items. The blocks assigned to different processors are disjoint. Each processor, in
parallel, sorts their local block of items using sequential quicksort.

Begin the regular sampling load balancing heuristic. All p processors, in parallel, select
the data items at local indices 1,w+1,2w+1,...,(p— 1)w+1 to form a representative
sample of the locally sorted block®. The p? selected data items, p from each of p

2For n data items, quicksort is O(nlogn) in practice, but may have a worst case of O(n?). If this is a
problem, an algorithm with a worst case of O(nlogn), such as mergesort, can be used.

3The terms data items, data values and keys are used interchangeably

“Note that including the first key of the list is unnecessary. It is included to simplify the analysis, allowing
each of p processors to take p samples, instead of p — 1. Including this extra sample does not affect the
analysis nor alter the behavior of the algorithm.



processors, are a reqular sample of the entire data array. The local regular samples
represent the keys and their value distribution at each processor.

In Figure 1, each processor is assigned % = 12 contiguous keys to sort. Each processor
takes three samples, at the 1st, 5th and 9th indices since w = % = 4, to form the local
regular sample. Note that the distance between the indices of the samples is of fixed

size.

2. Phase Two: Find Pivots then Partition. One designated processor gathers and
sorts the local regular samples. p—1 pivots are selected from the sorted regular sample,
at indices p + p,2p + p,3p + p,...,(p — 1) + p. Each processor receives a copy of the
pivots and forms p partitions from their sorted local blocks. A partition is contiguous
internally and is disjoint from the other partitions.

In Figure 1, the 9 samples are collected together and sorted. From this list (0, 3, 7,
10, 13, 16, 22, 23, 27), p — 1 = 2 pivots are selected. The pivots are 10 and 22 (at the

4th and 7th indices), because p = |Z] = 1. All processors then create three partitions.

3. Phase 3: Exchange Partitions. In parallel, each processor ¢ keeps the ith partition
for itself and assigns the jth partition to the jth processor. For example, processor
1 receives partition 1 from all of the processors. Therefore, each processor keeps one
partition, and reassigns p — 1 partitions.

For example, in Figure 1, processor 3 sends the list (3, 4, 5, 6, 10) to processor 1, sends
(14, 15, 20, 22) to processor 2, and keeps (26, 31, 32) for itself.

4. Phase 4: Merge Partitions. Each processor, in parallel, merges its p partitions
into a single list that is disjoint from the merged lists of the other processors. The
concatenation of all the lists is the final sorted list.

Note that in Figure 1, the keys in the final merged partitions at each processor are
also partitioned by the pivots 10 and 22. The final sorted list is distributed over the 3
Processors.

On a distributed memory MIMD architecture, information is communicated with mes-
sages: the local regular samples from Phase 1 (p messages of size O(p)), the pivots of Phase 2
(p messages of size O(p)) and the partitions of Phase 3 (p processors sending p — 1 messages
of size O(%)) On a shared memory architecture, all information is communicated through
shared memory. In particular, Phase 3 reduces to reading and writing partitions from and
to shared memory.

For pseudo-code and more details, please refer to [15, 16].

Intuitively, the notion of a regular sample to estimate the value distribution of the
keys is appealing. By sampling the locally sorted blocks of all the processors, and not just
a subset, the entire data array is represented. By sampling after the local blocks have been
sorted, the order information of the data is captured. Since the pivots, as selected in Phase
2, divide the regular sample into almost equal partitions, the pivots should also divide the
entire data array into nearly equal partitions. Also, the fixed distance intervals of the regular
sampling heuristic allows a formal analysis of its effectiveness, which is presented in the next
section.

Given the extensive literature on parallel sorting, it is not surprising that PSRS is
similar to other algorithms. For example, PSRS is similar to the balanced bin sort [22] and
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Figure 1: PSRS Example
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the load balanced sort [1]. However, both have different approaches to load balancing than
PSRS. The balanced bin sort’s heuristic is also based on sampling, and results in an upper
bound of —” items that must be merged by a single processor. The bound is inferior to
PSRS’. The load balanced sort uses an algorithm that samples and then iteratively modifies
its choice of pivots until it achieves perfect load balancing. The overhead of iterating is
significant because it requires additional messages and synchronization for each iteration.
Also, since the algorithm iterates until perfect load balancing is achieved, duplicate keys are
problematic.

The description of PSRS given above specifies that the number of samples, s, taken by
each processor in Phase 1 is equal to p (i.e. s = p). However, it is a natural and common
extension of sampling-based algorithms to consider the techniques of undersampling (s < p)
and oversampling (s > p). Intuitively, since the number of samples represents the amount of
information available to the load balancing heuristic, undersampling results in poorer load
balancing and oversampling results in better load balancing. These variations of the regular
sampling heuristic will also be considered later on.

PSRS combines many of the successful aspects of the MIMD sorting algorithms that
preceded it, and introduces the simple, but effective notion of a regular sample to help
pick good pivots for the final parallel merge. The regular sample is the key, non-cosmetic
difference between PSRS and similar sorting algorithms.

3 Time Complexity and Load Balancing

For all architectures, the time complexity of PSRS is asymptotic to O(% logn) when n > p?,
which is cost optimal [15, 16].

Another important concern in parallel sorting is load balancing. In Phase 1, the work-
load 1s evenly distributed to all processors. Phase 2 is largely sequential. Phase 3 depends
on the communication properties of the computer. This section concentrates on the load
balancing issue in Phase 4. A lower bound and a tighter upper bound on the number of data
items each processor must merge are presented. The analysis is a function of the number of
data items to be sorted, the number of processors used, the sample size and the number of
times a data item is duplicated.

The keys to be sorted are the set {X;}7_;. There are at most d 4+ 1 duplicates of any
distinct value, d > 0; 1.e., for any Xy, there are at least n — d — 1 other X, values with
Xi; # Xi. The number of processors used is p, p > 2 and p is usually a power of 2. The
quantity | ] is useful and is denoted by a shorthand notation ¢. In Phase 1, each processor
takes s local regular samples, and when gathered and sorted, the regular samples form the
ordered set {Y;}. In essence, each sample Y; represents a group of (w—1) X elements whose
keys are greater than Y; but less than the next sample, Y;;1, with w = z%' For convenience,
it is assumed that (ps)|n and w > 2. In Phase 4, processor ¢ will merge ®; X elements, which
are the elements between the (¢ — 1)th pivot and the ith pivot. N(cond) denotes the number
of X elements satisfying a certain condition cond. For example, N(< Y(i_l)ﬁ_a) represents

the size of the set {Xp|Xp < Y(i_1)s40}-

For easy reference, the above notations are summarized below.



{Xr}?2; keys to be sorted
V)75 regular samples, V) C {X,)

s the number of sample Y’s taken by each processor in Phase 1
P the number of processors used

d the number of duplicates for the key with the most duplicates
. 2]

w o5, it is assumed that (ps)|n and w > 2

o, the number of X elements merged by processor ¢ in Phase 4
N(cond) the number of X elements satisfying a certain condition cond
n % is the undersampling factor and s = %

The bounds for ®;, the number of keys to merge per processor in Phase 4 is derived, in
the general case. The numerical example given in Section 2 is for a special case where d = 0
and s = p.

All the X elements to be merged in Phase 4 by processor ¢ must be greater than
Y(i—1)s+o and less than or equal to Yi,,.

Lemma 1:

Consider the X elements which are less than or equal to Y{;_1)s4,, which is a pivot
selected in Phase 2, for processor 7, where 1 <1 < p:

>w((t—1)s+o—p)+p if t—1)s+ 0 >p,
N(S )/(i—l)s—}—cr)
>(—1)s+o otherwise

Proof:

There are (7 —1)s 4+ o samples less than or equal to Y(;_1)s1,, and each of these samples
is within a group of w X elements. If (¢ — 1)s 4+ o > p, there are at most p groups each with
(w—1) X elements greater than Y{;_1)s4,. Therefore,

N(S Yiecayoro) = (i = 1)s + 0hw— plw — 1) = w((i — s + o — p) + .
If (1 —1)s + 0 < p, there are at least (¢ —1)s + o samples less than or equal to Y{;_1)s4,, i.€.,

N(S Y(i—l)s—}—a) > (Z - 1)5 + o.

Lemma 2:

Consider the X elements which are greater than :th pivot selected in Phase 2, Y5y,
for processor 7, where 1 <1 < p:

N(>Yipo) >w((p—i)s—o+1)— 1 —d.

Proof:

Consider the case of d = 0. There are sp— (is+0) = (p—1)s — o samples greater than
Yisto, 1.6, w((p —1)s — o) elements of X greater than Y;s;,. There are w—1 elements of X

7



from the same processor as Y;;1, immediately following Y;,., in the sorted list. These items
are also greater than Yjs,,. Therefore,

N(> YVinro) = wl(p— )3 — o) + (w0 — 1) = w((p— i)s — o 1) — 1.
Consider the case of d > 0 duplicates of Y;s1,:

N(>Yipo) > w((p—i)s—o+1)—1—d.

(|

Based on the above lemmas, the bounds for ®; are derived for three cases of ¢ (1 = 1,
1 <2 < p, and ¢ = p). The upper and lower bounds in these cases are denoted by Uy, L,
Ui, L;, U, and L,, respectively. The overall bounds are denoted by U and L.

1. Upper bound for : = 1:
All the X elements to be merged by processor 1 must be less than or equal to Y, .
By Lemma 2,

N>Ygo) 2w(l(p—1ls—oc+1)—1—-d=n—-—ws—wo+w—-1-4d

and,

O =n—-N(>Yy,) <Uy=w(s+o—-1)+1+d.

2. Lower bound for 7 = 1:
By Lemma 1,
if s +0 > p, then & = N(< Yo_1)540) = L] = w(s + 0 —p) + p;

if s + 0 < p, then ®; = N(< Y(oq)s40) = L7 =5+ 0.

3. Upper bound for = = p:
All the X elements to be merged by processor p must be greater than Y{,_1),4,. Since
(p—1)s+ o > p, by Lemma 1,

N(S 1/(p—l)s—f-a') 2 w((P - 1)5 + o _p) —I_p

and

b, =n— N(< Y(p_1)5+0) <U,=w(s—0o+p)—p.

4. Lower bound for ¢ = p:
By Lemma 2,

D, = N> Ypoiyspo) 2 Ly =w(s —o+1) -1 —d.
5. Upper bound for 1 <2 < p:

q)i =n—- N(§ Y(i—1)5+cr) - N(> Yis—}—a)-
If s>p,ie, (i—1)s+ 0 >p, by Lemma 1l and Lemma 2,

O, <U;=U=n—(ps—s—p+lHw—p+l+d=w(s+p—1)—p+1+d.

8



Ifs<pbut (t—1)s+0>p, & < U
If s<pand (1 —1)s+ 0o < p,
O, <U;=U""=n—(—1)s+o0)—(w((p—1t)s—0c+1)—1-=4d),

which depends on 2.

In the case of s = p/n for integer n > 2, for 2 < ¢ <, we have (1 — 1)s + o < p, thus
Uy=wnps+o—-1)—(n—1)s—o+1+d. Fori>n+1, we have (1 — 1)s + o > p,
thus &, <w(s+p—1)—p+1+d.

6. Lower bound for 1 < ¢ < p:
There are s samples which are greater than Y{;_q),1, and less than or equal to Yi,,.
If s > p, there are (s — p)(w — 1) elements of X must be merged by processor ¢. There
are w — 1 elements of X from the same processor as Y(;_1)s4, immediately following
Y(i—1)s4o in the sorted list. These items are also greater than Y{;_1),4,. Therefore,

®> L= L= s+ (s—p)w—1)+(w—1)=ws—p+1)+p—1
If8<p,q)i2Li:L?*:S.

The overall bounds U and L are derived in three cases of sampling: s = p, s > p and
s < p. When s > p, since wo > w — 1, then U, < U; and L; > L;, so U could only be
either U; or U;, and L could only be either L, or L;. Using the above results, the following
theorems present the bounds in overall case, U and L.

Theorem 1 (Load Balancing Bounds for No Duplicates):
When s = p and d = 0:

L:]%—I-p—l
U =2(2) s —pt1=2(2) ]

Proof:

Sincewa<wp—p,thenU1<UZ'andLi<Lp,thusL:L¢:w—|—p—1:;—2—|—p—1
andU:UZ':pr—w—p—l—l:2(%)—L:2(%)—;—2—p—|—1. ]

Note that when s = p and d > 0,

n n
U=2(-)——=—p+1+d.
%) P

Theorem 2 (Load Balancing Bounds for Duplicates and Oversampling):
In the case with oversampling (¢ = | 5] > p) and duplicates (d > 0):

For 1 <1 < p,

U;=2+

w |3

|3

Li =

w |3

(1-3)+p—1

=S

9



For 1 < <p,

Proof:

Since o > p, then Uy > U; and L, < L;, but

n n . s n n n S n 3.n n
U=—+—|-|—-—4+14d< -+ —()—-—+14+d=(=)—— —4+14+d
1 p—l_psLQJ pS—I- + _p+p3(2) pS—I- + (2)p pS—I- +
and
n n . s n n n 8 n 1l.n 2n
L,=———|- —_1—-d> - —(= - 1 ——1l—-d=(=)—4+——-1—-4d.
P pSLQJ—I_ps T p ps(2 >+ps (2)p+p5

Several conclusions can be drawn from the above theorems for the case s > p:

1. Each processor will merge at least w = o and at most 2(%) — w elements. If oversam-
pling is used (s > p), the upper bound U becomes (%)% — 25 +1+d, which is dominated
by the (%)% term, since the value of d is much smaller than % in practice.

2. Duplicates increase upper bounds and reduce lower bounds linearly, and will cause

only a minor performance degradation, unless an item is duplicated O(%) times.
3. Oversampling improves the bounds for 1 <z < p, but not for ¢ = 1 and ¢+ = p. Thus
oversampling should improve the load balancing in most cases. The gains in Phase 4

from oversampling may be offset by the increased cost of Phase 2.

The case of undersampling (s < p) is more complex. Only the upper bound for ®; is
given to show the effect of undersampling on load balancing, for the case s = % for integer

n > 2 and % is the undersampling factor.

Either U, or U, could be larger depending on the value of d, which is stated in the
following theorem.

Theorem 3 (L.oad Balancing Bounds for Duplicates and Undersampling):
Ifd>0and s = %, then U could be either

Up=(n+3)(5) % = 5 p+1+d o

Uy=(3)(5) —% —3p+1+d,or

10



When s = £, U could be either
Uy = (%)(%)—%—%p—l—l—l—d, or

Up=(3)3) —p

It can be concluded for the undersampling case s = % that:
1. In the case of undersampling, the workload balancing in Phase 4 gets worse.

2. The upper bound of the workload in Phase 4 increases linearly with 5. It is approxi-
mately n + 1 times the optimal (2).

n
P

3. Undersampling is justified only if the time saving in Phase 2 is significant.

4 Empirical Analysis

The theoretical results for PSRS discussed in the last section are encouraging. The up-
per bounds on the load balancing are good, but how realistic are they in practise? In this
section, PSRS is analyzed from an empirical point of view. Implementations of PSRS on sev-
eral different MIMD machines are examined. Both uniformly distributed and nonuniformly
distributed data sets are considered.

4.1 Implementations

In addition to the original Myrias SPS-2 implementation, PSRS has been implemented on
a diverse range of MIMD computers: a BBN TC2000 (interleaved shared memory), Intel
iPSC/2-386 and iPSC/860 hypercubes (distributed memory with hypercube interconnec-
tions) and a local area network (LAN) of workstations (distributed memory with a LAN
interconnection). The number of processors available and the amount of memory per pro-
cessor varies for the different machines. Consequently, the number of experimental data
points for each machine also varies. All four implementations are similar to the Myrias ver-
sion of PSRS, with the exception that the methods of communication and synchronization
are machine dependent. All of the programs are written in C.

The relative cost of communication most distinguishes the different MIMD machines.
It varies from expensive (message passing on a single shared bus) to relatively inexpensive
(shared memory). It should be noted that the TC2000, iPSC/2-386 and iPSC/860 all have
communication hardware whose bandwidth increases as the number of processors increases.
Regardless of the number of processors used for our LAN of workstations, there is always
just one physical wire and the LAN’s bandwidth remains constant. For this reason, the LAN
results reflect greater communication overheads as the problem size and and the number of
processors increase.

Little effort has been made to tailor the program to any of the targeted architectures.
There are several machine and implementation-specific factors that could quickly turn our
experiment into a programming exercise. The goal is to investigate the potential performance
of the algorithm in general, and not to benchmark specific machines or implementations.
Therefore, none of the implementations are, in our opinion, optimized to the hardware.
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The BBN TC2000 is a tightly coupled MIMD multiprocessor with both shared and
local memory. Each processor is a Motorola 88100 RISC processor. Although there are 16
megabytes of RAM physically local to each processor, it is segmented into both shared and
private portions. The shared memory portions on all processor boards are mapped into one
continuous address space by the memory management hardware. Communication between
processor boards is via a high bandwidth, multistage network based on the Butterfly switch.
A reference to a memory location that is not physically local to the processor causes a
memory access request to be sent to the processor board that does contain the data. In this
way, memory is transparently shared among the processors at the application code level.

In the TC2000 implementation, the data array is kept in shared memory. However,
local memory is used to cache each processor’s disjoint piece(s) of the data array in Phases
1 and 4. Since accessing shared memory is more expensive than local memory, the memory
access intensive operations of sequential sorting and merging are performed in local memory.
In effect, shared memory is only used to communicate samples, pivots and data partitions.
The program uses the PCP pre-processor to express the parallelism [6, 8].

The iPSC (Intel Personal Super Computer) is a family of loosely-coupled distributed
memory multiprocessors based on the hypercube architecture. Each node of the iPSC/2-
386 contains an Intel 80386 processor and 8 megabytes of RAM. Communication between
nodes is done via message passing over the hypercube nearest neighbor links. The iPSC/860
uses an Intel 1860 processor at each of the hypercube nodes instead of the 80386. Since the
memory of the iPSC is distributed, all sorting and merging is performed in local memory.
Data samples, pivots and data partitions are communicated between processors by messages.
The program uses the standard Intel message passing libraries [9].

The LAN implementations of PSRS use Sun 4/20 workstations connected by a single
Ethernet with 10 megabit /second bandwidth. There are two different LAN implementations,
each using a different message passing communications package. The first implementation
uses the Network Multiprocessor Package (NMP) [11], a locally produced library that pro-
vides a friendly high-level interface to sockets and TCP/IP. For large sorting problems, it
was discovered that the partitions in Phase 3 fill all of the available message buffers, resulting
in deadlock. Each processor, by default, has only 4K bytes of message buffers, which is in-
sufficient for the volume of communication in Phase 3. The buffer size can be increased, but
only to a system limit of 52K bytes. For sufficiently large problems, the program still dead-
locks. To avoid this, the data is packaged into smaller pieces and is then sent using multiple
synchronized messages. Obviously, the extra synchronization adversely affects performance.

The second implementation uses the ISIS package from Cornell (version 2.1) [3]. It is
claimed that ISIS provides communication performance as fast as remote procedure calls.
However, our version of ISIS requires 30% of each packet as overhead for control information,
thus increasing the number of packets needed and decreasing communication throughput
performance. Programs written in ISIS execute in the form of tasks/threads. Also, the com-
munication protocols of ISIS are timer based. Extra time is required in the communication
protocol, memory management and tasking layers of ISIS. These considerations restrict the
speedups obtainable for PSRS.

Of the two implementations, the NMP-based version provide the better results and
they are reported here. Although the speedups are respectable for a LAN-based MIMD
machine, they should be viewed as lower bounds since an awkward work-around for the
limited buffer sizes of our system is required.
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4.2 Performance Measures and Sequential Timings

Speedup is a measure of how much faster a task can be performed with many processors
compared with one processor:

Sp — Tl/Tp

where S5, is the speedup for p processors, T} is the sequential processing time, and 7, is the
processing time with p processors.

Speedup efficiency is a measure of how the observed speedup compares with linear
speedup, which is ideal. It is defined as:

Ep = Sp/P

Implicitly, efficiency measures the portion of time each processor spends doing “useful” work
that contributes to the final solution.

Because of the large size of some of the data sets, it is impossible to record some of the
single processor times. In these situations, the single processor time is extrapolated based
on the known time of the largest array that could be sorted in local memory without paging.
The following formula is used to extrapolate the times for each machine:

Ti(n)

nlogn

1,000, 000 log 1,000, 000

x Ty(1,000,000)

where Ti(n) is the extrapolated time for 1 processor sorting n elements, and 75(1,000,000)
is the measured time required for 1 processor to sort 1,000,000 elements.

4.3 Experiments Using Random Data

Experiments sorting arrays of integers created with a pseudo-random number generator are
performed. The values are uniformly distributed in the range 0 through 23* — 1. Each data
point reported in the tables below represent the average results over five different sets of
random data. Each set of data is created using a different random number generator seed
value. No tests are made for duplicate data items, of which there were undoubtably a few.
Unless otherwise stated, the sample size is p.

As is the convention in the literature, the data to be sorted is already distributed among
the processors before the timing is begun. After the timing begins, the processors proceed
with the sequential quicksort of Phase 1. When all of the processors have finished their merge
of Phase 4, the sort is considered complete and the timing ends. For distributed memory
machines, the final sorted data array remains distributed among the different processors
at the end of the sort. The concatenation of the memories of the different processors is
considered to be the final sorted array. For the shared memory BBN T(C2000, the final
sorted data array is in shared memory.

During the timings, no other processes or users contended for the processors, except for
the LAN results, which were run with a minimal amount of contention from other processes.
Figures 2, 3, 4 and 5 show the speedups PSRS achieves on the BBN TC2000, iPSC/2-386,
iPSC/860 and a LAN of workstations respectively. The keys are randomly generated and
uniformly distributed. Tables 1, 2, 3 and 4 show the corresponding real execution times.
Note that the number of processors available varies between the machines.

The BBN TC2000 speedups in Figure 2 reinforce the positive conclusions from previous
experiments with the Myrias SPS-2 [16].
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Sorting Times
Sizes (in seconds)

1PE 2PEs 4PEs 8PEs 16PEs 32PEs 64PEs

100,000 1.29  1.04 054 0.28 0.17 0.16 -
200,000 271 222 112 0.60 0.32 0.24 -
400,000 5.81 456 236 1.22 0.65 0.41 -
800,000 | 15.97 949 485 2.51 1.31 0.75 0.75

1,000,000 | 22.15 - 615 3.16 1.66 0.93 0.85
2,000,000 | 46.52 - - - 3.41 1.83 1.32
4,000,000 | 97.49 - - - - 3.68 2.31
8,000,000 | 203.86 - - - - 7.47 4.29

Speedup

Table 1: Sorting times for BBN TC2000, uniform distribution
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Figure 2: Speedups for BBN TC2000, uniform distribution
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Speedup

Sorting Times

Sizes (in seconds)
1PE 2PEs 4PEs 8PEs 16PEs 32PEs
100,000 8.43 4.67 228 1.26 0.66 0.49
200,000 17.82 9.81 4.81 2.61 1.31 0.84
400,000 | 37.86 20.60 10.08 5.44 2.69 1.56
800,000 | 79.63 43.20 21.13 11.36 5.56 3.08
1,000,000 | 101.17 - 26.82 14.37 7.04 3.88
2,000,000 | 212.50 - - - - 7.88
4,000,000 | 445.30 - - - - 16.20

Table 2: Sorting times for iPSC/2-386, uniform distribution
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Figure 3: Speedups for iPSC/2-386, uniform distribution
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Speedup

Sorting Times

Sizes (in seconds)
1PE 4PEs 16PEs 64PEs
100,000 | 0.75  0.26 0.10 0.11
200,000 | 1.59  0.55 0.18 0.15
400,000 | 3.33  1.13 0.37 0.20
800,000 | 7.05 2.45 0.71 0.31
1,000,000 | 8.95 3.02 0.90 0.37
2,000,000 | 18.80 - 1.71 0.63
4,000,000 | 39.40 - - 1.19
8,000,000 | 82.40 - - 2.46

Table 3: Sorting times for iPSC/860, uniform distribution
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Figure 4: Speedups for iPSC/860, uniform distribution
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Speedup

Sorting Times

Sizes (in seconds)

1PE 2PEs 4PEs &8PEs 16PEs
100,000 473 311 1.36 1.13 0.81
200,000 | 10.02 6.59 4.10 1.91 1.57
400,000 | 21.18 10.85 8.11  4.87 3.28
800,000 | 44.63 26.88 14.74 10.47 6.33

1,000,000 | 56.70 36.52 20.60 15.19 8.69

2,000,000 | 119.09 - 39.88 32.68 22.13

4,000,000 | 249.56 - - 84.36  50.93

Table 4. Sorting times for LAN, uniform distribution
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Figure 5: Speedups for LAN, uniform distribution
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The notion of granularity, the amount of computation between communication and
synchronization points, is important to all forms of MIMD programming. Since sequential
processes do not need to communicate or synchronize, granularity is one measure of the ratio
between useful computation and the overheads of parallelism. The effect of granularity on
PSRS for the TC2000 can be seen in the relationship between the number of processors and
the size of the sorting problem.

For a fixed number of processors, increasing the problem size increases the speedup
efficiency. When using 64 processors, the speedup curve grows closer to linear as the problem
size is incrementally increased from 800,000 integers to 8,000,000 integers. For 8,000,000
integers, a maximum speedup of 47.5 is observed for 64 processors. For a fixed problem size,
adding more processors to the solution results in diminishing speedup returns. For 800,000
integers, the speedup remains at 16 whether using 32 processors or 64 processors. Obviously,
larger data sets more effectively offset the overheads of the algorithm and of the machine
through higher granularity. Most importantly, there appears to be no inherent limit on the
speedup for the PSRS algorithm. As long as the problem size is of sufficient granularity,
PSRS can efficiently use an arbitrary number of processors.

The notion of “sufficient granularity” is difficult to quantify and to gain agreement on.
It is clear, however, that it is only of theoretical interest because the size of many problems
cannot or should not be increased simply to take better advantage of additional processors.
In practice, there is usually a specific problem size that must be solved. If PSRS, or another
algorithm, cannot perform well on that particular problem size, then parallelism is of little
use. The issue of improving speedup performance for a fixed problem size will be addressed
later on.

It should be noted that a flat speedup curve for a problem size does not necessarily
indicate poor performance. In particular, the speedup curve between 32 and 64 processors
while sorting 800,000 integers on the TC2000 is flat, but the real time is already a low 0.75
seconds. This compares with a sequential sorting time of 15.97 seconds for the same problem
size. It is unrealistic to expect a parallel algorithm to reduce real running times to arbitrarily
close to zero as additional processors are added.

Overall, the iPSC/2-386 speedups are better than the TC2000, achieving a peak
speedup of 27.49 on 32 processors while sorting 4,000,000 items. Using speedup efficiency as
a measure of performance, this represents our best data point, with each processor spend-
ing 2:73% = 86% of its time doing useful work. PSRS was not tested on a larger dimension
iPSC/2-386 because one was not available at the time.

The Intel hypercube has dedicated nearest neighbor communication connections. The
special communication links of the hypercube allow for fast data transfer between many
different processors and with different communication patterns. It is interesting to note that
the more sophisticated pattern of communication in Phase 3, as described in [15, 16], was not
implemented. Instead of explicitly scheduling and synchronizing the messages so as to take
advantage of the dedicated hypercube links, the implementation simply iterated through all
the node numbers in Phase 3. Apparently, the performance loss from ignoring the hypercube
links is not large enough to spoil the speedups of our implementations.

For problems of large granularity, the speedup efficiency of the TC2000 and the iPSC/2-
386 are similar. It is on the lower granularity experiments that the hypercube is clearly
more efficient than the TC2000. The smaller the dimension of the hypercube, the larger
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the fraction of processors that can be reached by nearest neighbour links®. Since a nearest
neighbour link is an one-stage, direct channel between hypercube nodes, it results in the
fastest possible communication. Consequently, the average cost of communicating one byte
is lower when the dimension of the hypercube is lower. On the TC2000, the number of
stages in the network from processor to nonlocal memory is constant for the size of the full
machine and does not vary as the number of processors in the experiment varies. Thus, while
the communication overhead of the hypercube is lower for small numbers of processors, the
communication overhead for the TC2000 remains constant. This may explain the better
speedup efficiency of the hypercube for small numbers of processors.

The iPSC/860 speedups are lower than the iPSC/2-386’s, achieving a maximum of
33-fold for 64 processors while sorting 8,000,000 items. However, a single 1860 processor
is roughly an order of magnitude faster than a single 80386, using the real time to sort
1,000,000 random integers as a guideline. A faster 1860 processor implies that for a fixed
hypercube and problem size, the granularity of the problem is less on the iPSC/860 than on
the iPSC/2-386. Therefore, the 386-based hypercube achieves better speedup efficiency, but
the 1860-based hypercube achieves faster real times.

Compared to the other results, the performance of sorting on a network of workstations
is markedly lower. Figure 5 shows a peak speedup of 7.1, while sorting 800,000 data items
on 16 machines. Although this sounds like a poor result, it is important to keep in mind
the implementation caveats mentioned previously, and the fact that communication over a
LAN is expensive. The figure also illustrates that bigger data sets do not necessarily achieve
better performance. In this case, the apparent anomaly is explained by the synchronization
added to Phase 3. Bigger data sets require that they be broken down into more 52K byte
pieces, introducing more performance loss due to synchronization overheads.

4.4 Load Balancing and RDFAs
One of the strengths of the PSRS algorithm is the claim of good load balancing. RDFA is

a measure of how evenly a load is balanced among processors during the merge in Phase
4 [15, 16]. It stands for Relative Deviation of the size of the largest partition From the
Average size of the p partitions, and is defined as:

m. mXxp

RDFA = —
nlp  n

where m 1s the maximum number of keys merged by any processor in Phase 4, n is the total
number of elements to sort, and p is the number of processors. Perfect load balancing will
result in a RDFA of 1.0, and the RDFA will always be greater than or equal to 1.0 since
m > 2. If there are no duphcates in the data, Theorem 1 guarantees that the RDFA will be
less than 2.0. If there are duplicates, the upper bound on the RDFA increases linearly with
respect to the number of duplicates for the key with the most duplicates. Duplicates increase
the upper bound on RDFA linearly and will cause only a minor performance degradation,
unless a key is duplicated O(%) times.

Table 5 shows the set of RDFAs for the data used in the experiments. All the RDFAs
are remarkably close to the optimal value of 1. In fact, the worst RDFA (1.075) is within

5For 4 processors, the hypercube is of dimension 2 and 1/2 of the processors are nearest neighbours to
any other. For 32 processors, the hypercube is of dimension 5 and only 5/32 of the processors are nearest
neighbours to any other.
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RDFAs

Sizes

2PEs 4PEs 8PEs 16PEs 32PEs 64PEs
100,000 | 1.002 1.004 1.015 1.038 1.075 -
200,000 | 1.001 1.004 1.008 1.021 1.069 -
400,000 | 1.001 1.003 1.006 1.019 1.045 -
800,000 | 1.001 1.001 1.006 1.011 1.024 1.061

1,000,000 1.002 1.005 1.012 1.018 1.044
2,000,000 : : ~1.006 1.016 1.030
4,000,000 : : : - 1011 1.025
8,000,000 : : : ~1.008 1.016

Table 5. RDFAs for uniform distribution

7.5% of optimum. Clearly, regular sampling does an excellent job of dividing the work of
the parallel merge equally, given an uniformly distributed data set.

4.5 Algorithmic Bottleneck Analysis
The speedups achieved on the TC2000, iPSC/2-386 and iPSC/860 all improve if the problem

size increases and the number of processors is held constant. Likewise, when both the
problem size and the number of processors are increased, the speedups also increase. This is
expected, since an increase in the granularity of work given to each processor better offsets
the system’s and algorithm’s overheads. However, in this section, the algorithm is analyzed
to identify bottlenecks that limit the ability to extrapolate the results to larger numbers of
processors. In particular, when the problem size is constant but the number of processors
increases, the speedup curve eventually flattens or a slowdown is observed. It has already
been argued that it is unrealistic to expect any algorithm to arbitrarily approach zero real
time as processors are added. However, an attempt is made to ameliorate the impact of
reduced granularity.

Figure 6 shows a timing analysis for a sort of 800,000 integers on the TC2000. Figure
6a reproduces the speedup curve for the data size on the TC2000. Figure 6b shows how
much absolute time was spent in Phases 1, 2 and 4 (there is no Phase 3 for the TC2000).
As the number of processors increases, the number of elements each processor has to sort in
Phase 1 and to merge in Phase 4 deceases (222°%). Hence, as shown in Figure 6b, the time
spent in Phases 1 and 4 decreases as more processors are added.

Unfortunately, as the number of processors increases, the amount of work to be done
in Phase 2 also increases. Recall that Phase 2 mainly consists of communicating samples,
sorting samples and communicating pivots. The number of samples is a function of the
number of processors. The absolute time spent in Phase 2 increases marginally, as seen in
Figure 6b. But Figure 6¢ clearly shows that Phase 2 begins to dominate the running time
of the algorithm in terms of its percentage of the real time. The cost of Phase 2 is shown to
quickly grow from being less than 2% of the total cost with 16 processors, to 20% with 32
processors and 40% with 64 processors. Not only does the decreasing 2 ratio contribute to
lower problem granularity, but the increasing communication needs of Phase 2 adds to the
single processor bottleneck.
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Of course, the real times required for Phase 2 do not change when sorting larger
problems with a fixed number of processors, since the amount of work in Phase 2 only
depends on p. However, because larger problems have larger Phases 1 and 4, the percentage
of real time spent in Phase 2 is less, and the impact of the bottleneck is less pronounced. In
fact, reexamining the speedup curve for this data size, it can be seen that the knee in Figure
6a, where it tapers off into a flat line, coincides with the rapid growth of Phase 2’s share
of the total time. Amdahl’s Law predicts the diminishing returns through the addition of
processors to the same problem size.

Figures 7 and 8 show the same timing analysis for the iPSC/2-386 and iPSC/860,
respectively. With the iPSC/2-386, the individual processors are slower than those for the
TC2000. Consequently, more real time is spent in Phases 1 and 4 for the same values of
n and p, reducing the impact of Phase 2. Similarly, the cost of communicating partitions
of data in Phase 3 is still not high enough to dominate the cost of Phases 1 and 4. With
the iPSC/860, the faster processors reduce the granularity of Phases 1 and 4. In fact, the
single largest phase for the iPSC/860, by percentage of real time, is Phase 3. It suggests
that for the iPSC/860, the amount of computational power is not as evenly matched with
communication power as on the TC2000 and the iPSC/2-386. Still, the Phase 2 percentage
grows quickly when the number of processors is doubled from 32 to 64.

For completeness, the same timing analysis for the LAN of workstations implementation
is included in Figure 9. It can be seen in Figure 9c that the percentage of real time spent in
Phase 2 grows as more processors are added to the problem. But, due to the single bus and
fixed bandwidth of the network, the cost of communicating partitions in Phase 3 is by far the
largest fraction of PSRS. In particular, the extra synchronization required in Phase 3 skews
the results, causing this phase to dominate the execution time. Again, the computational
power of the processing nodes (i.e. workstations) is unevenly matched with the cost of
communication. For situations where a network of workstations is the only available parallel
computer, PSRS can still be effectively used when sorting large problems.

The phase-by-phase analysis reveals the important balance between processing power
and communication costs. Because each of the MIMD machines has a different communica-
tion mechanism and strengths, the impact of the communication intensive Phase 3 is also
different. Phase 3 is a machine dependent aspect of our experiment. However, Phase 2 is an
algorithmic bottleneck, independent of any particular MIMD machine. Faster processors or
cheaper communications alone cannot completely solve the Phase 2 bottleneck.

Two broad, and not fully satisfactory, approaches to dealing with the Phase 2 bottle-
neck are offered. First, the sorting of the samples by the lone processor in Phase 2 can itself
be parallelized. Because PSRS is best suited to sorting large numbers of keys, it is probably
not well suited for a parallel Phase 2. A different parallel sorting algorithm, hyperquicksort
[19] for example, may be better suited for sorting the small data sets of Phase 2. Similarly,
the process of gathering the samples can be implemented as a parallel binary tree merge,
but at the cost of additional message and synchronization overheads.

Second, undersampling (when s < p) can be used to reduce the number of elements
communicated and sorted in Phase 2. Undersampling lessens the impact of the Phase 2
bottleneck, but does not solve the fundamental problem. Furthermore, the theoretical results
of Section 3 predict that the upper bound on worst-case load balancing in Phase 4 grows
rapidly as s becomes less than p. There is a clear tradeoff between a shorter Phase 2 and a
potentially longer Phase 4 due to poorer load balancing.

In one experiment, s was set to be 0.5%p, an undersampling factor of 0.5, and PSRS was
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re-run on the TC2000 sorting 800,000 random integers using 64 processors. The percentage
of real time of Phase 2 dropped from 47% (normal sampling) to 24% and the real time for
Phase 2 dropped from 0.4s to 0.2s. However, the real time for the entire sort increased
from 0.75s with normal sampling to 0.83s with an undersampling factor of 0.5, because the
RDFA increased from 1.061 to 1.930. Here, the tradeoff between Phase 2 and Phase 4 was

unsuccessful.

In another experiment, using the nonuniform IMOX data described in the next section,
sorting 800,000 integers using 64 processors on the TC2000 took 0.75s (RDFA of 1.202),
with Phase 2 accounting for 0.35s (47%) of the time. When using an undersampling factor
of 0.5, it took 0.67s (RDFA of 1.737), with Phase 2 accounting for 0.19s (28%) of the time.
This is merely anecdotal evidence that undersampling can indeed be an effective technique.
However, a more thorough study of the cost-benefits of undersampling are beyond the scope
of this paper.

Finally, it should be pointed out that while Phase 2 may become a problem when
increasing the number processors for a fixed problem size, for a given sorting problem with
a fixed number of processors it may not be an issue.

4.6 Experiments Using IMOX Data

The previous sections demonstrated that PSRS performs well on random data with an uni-
form distribution. Most application-generated data, however, does not fit into this simple
model. To further illustrate the versatility of PSRS, the algorithm has been tested on a non-
random, nonuniform value distribution data set from a real application area. This section
reports on the results obtained using the IMOX data set [2], used extensively in image pro-
cessing and pattern recognition. A pattern matrix, derived from the Munson hand-printed
Fortran character set (available from the IEEE Computer Society), consists of 192 binary-
coded (24 by 24) handwritten characters from several authors. Each digitized handwritten
character is either the letter ‘I’) ‘M’, ‘O’, or ‘X’, and is represented by an eight-dimensional
pattern. The feature numbers are the number of squares from the perimeter of the pattern
to the character.

The Euclidean distance for each pair of patterns is calculated. In pattern recognition
and clustering analysis these distances need to be sorted, therefore the distance data is used
to test PSRS. There are (192 x 191)/2 = 18336 distance values. Examination of the data
shows that the it has a bell-shaped distribution curve with most of the numbers clustered
around the center of the scale. The data has many duplicates since over 60 values are
repeated. For example, one data value is repeated 161 items.

The performance on this data set is influenced by both the high number of duplicates
and the nonuniform data. By removing the duplicates, we can see the direct effects of the
data distribution on performance. The 18336 numbers have been randomized by adding two
more lower-significant digits, resulting in fewer duplicate items. Now there are less than
60 values which are repeated 5 or more times, and no data item is duplicated more than 7
times. The randomization does not change the bell shape of the value distribution curve.

The 18336 values were copied and concatenated many times to form a sufficiently large
input to PSRS. Of course, this concatenation process creates an extra duplicate each time
the original list is copied. These duplicates are not removed nor randomized any further
because many application areas encounter a similar number of ties.
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RDFAs

Sizes

2PEs 4PEs 8PEs 16PEs 32PEs 64PEs
100,000 | 1.015 1.044 1.032 1.198 1.154 -
200,000 | 1.012 1.008 1.031 1.044 1.190 -
400,000 | 1.002 1.018 1.006 1.043 1.162 -
800,000 | 1.000 1.001 1.007 1.009 1.075 1.202

1,000,000 1.001 1.003 1.022 1.028 1.089
2,000,000 - : - 1.005 1.024 1.033
4,000,000 - : : - 1.011 1.036
8,000,000 - - : ~1.009 1.012

Table 6: RDFAs for IMOX data, BBN TC2000

The RDFAs are presented in Table 6. There is considerably more variation in the RD-
FAs with the IMOX data than with the random data. With 64 processors and 800,000 data
items, a worst case RDFA of 1.202 was observed. Although these numbers are considerably
higher than the uniformly distributed data value case, one should keep in mind that this
worst case is still within 20.2% of optimum, a respectable result.

The larger RDFAs for the IMOX data set are due to the effect of a nonuniform data
value distribution on pivot selection, and the duplicates present in the data. The pivots
selected from the regular sample are heuristic estimates of where to partition the locally
sorted data blocks of each processor in order to evenly balance the work of the parallel
merge. As heuristics, the pivots are subject to error. In the case of uniformly distributed
data values, an error in pivot selection increases the RDFA a fixed amount no matter the
location of the pivot in the distribution. In the case of the IMOX’s nonuniformly distributed
data values, an error in pivot selection may increase the RDFA a great deal if the pivot falls
within the peak of the bellcurve.

Despite the adverse effects of the data distribution and the presence of duplicates,
the performance of the regular sampling heuristic remains strong, further illustrating the
versatility of the algorithm.

5 Conclusions

In the field of parallel processing, there are a diverse range of machine architectures. Nat-
urally, the qualitative differences between architectures are exploited to achieve maximum
performance. Special architectures demand specialized algorithms, but an efficient algorithm
for one class of machine may be inadequate for another class. Consequently, there are a va-
riety of innovative parallel sorting algorithms already in the literature. PSRS is yet another
addition to this literature, with its share of weaknesses and strengths.

[ts main weakness is the sequential bottleneck of Phase 2, which grows worse as the
number of processors increases. Although some solutions have been presented, the lack of
experience with PSRS on large configurations of processors makes it impossible to properly
assess the problem and its solutions. Clearly, there is a tradeoff between the nature of Phase
2 and Phase 4. Undersampling decreases the size of Phase 2, but results in significantly
poorer load balancing in Phase 4. Oversampling increases the size of Phase 2, but improves
load balancing in Phase 4. More research is required.
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PSRS has significant strengths:

1. Load Balancing: The regular sampling heuristic of PSRS is remarkably effective, as
shown by both theoretical and empirical analysis. Tight bounds on load balancing are
derived and experiments show load balancing to be close to optimal in practice.

2. Duplicates: Duplicate keys degrade the performance of load balancing heuristics that
inspect the data to estimate the distribution of values. Many parallel sorting algorithms
are affected by duplicates, but few researchers address the issue formally. PSRS is
relatively insensitive to the presence of duplicates. Specifically, it is proven that the
bounds on load balancing change linearly as the number of duplicates increases.

3. Granularity: Like all parallel algorithms, having a problem that offers sufficient gran-
ularity is mandatory for high performance. PSRS does not achieve good speedups for
small problems. Given n keys and p processors, % of the work per processor represents
the maximum possible granularity. PSRS’ approach to the division of work between
processors and its effective load balancing allows for the maximum possible granular-
ity. Each processor sorts exactly % keys in Phase 1 and, given the near-optimal load
balancing, each processor merges approximately % keys in Phase 4.

A different approach is the divide-and-conquer paradigm of some parallel sorting al-
gorithms, as inspired by the recursively divisible geometric hypercube architecture.
Basically, the original array of keys is recursively subdivided and then recreated in
sorted order. Notably, the granularity of work decreases during the subdivision and
some processors are idle various at times, introducing a bottleneck.

The structure of PSRS, and other similar algorithms ([12, 7], for example), is charac-
terized by a high degree of asynchronous computation and low data movement.

Of the many advantages of the algorithm, perhaps the most important is its suitability
for a diverse collection of MIMD architecture classes. The same implementation of the
algorithm, modulo the calls to a machine’s parallel programming constructs, will achieve
good performance on different memory configurations (shared and distributed) and different
communications interconnections (LAN, hypercube). While it may not be the best algorithm
for any particular architecture, PSRS is a good algorithm for a large class of existing MIMD
machines. It is easy to understand and it has excellent theoretical and empirical properties.
Given its strengths, PSRS can also be expected to perform well on future MIMD machines.
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