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Software Architecture
● What is a Software Architecture?

● The description of the structure of a software system, which 
is composed of software elements, their externally visible 
properties and their relationships to each other.

● Software system design at the highest level.
● Closely related to Software Design – boundaries are very 

fuzzy.
● Iterative and incremental
● The is no one unique architecture for a given problem

● Why do we need it?



  

Understanding and Communication
● Software systems are too complex
● Abstraction of details
● Break a complex system into smaller, less complex 
sub-systems (Divide & Conquer)

● Individual sub-systems are better understood
● 50% of your time you deal with people who 
probably don't understand you.

“Buffalo buffalo Buffalo buffalo buffalo buffalo 
Buffalo buffalo.”



  

Understanding and Communication

“[Those] (Buffalo buffalo) [whom] (Buffalo 
buffalo) buffalo, buffalo (Buffalo buffalo).”



  

Reuse
● Identifying the individual parts of the system 
facilitates encapsulation

● Encapsulation facilitates reuse
● Many small problems have been solved before
● Sub-systems are designed and implemented for a specific 

purpose / task with generalized interfaces
● Generalized interfaces allow the reuse of the same sub-

system in a different complex system

● Software Product Lines
● The more reuse, the less money it costs, the safer 
your job



  

Construction and Evolution
● Individual sub-systems and well defined interfaces 
allow:
● Independent development of multiple sub-systems in 

parallel by different teams
● Independent testing of multiple sub-systems with much 

less test cases
● Replace one implementation of a sub-system with 

another implementation
● Easily estimate the impact of a change

● You won't get it right the first time → software 
evolves



  

Analysis
● Up-front analysis prevents undesired surprises:

● Design decisions
● Performance requirements
● Reliability
● Usability

● Does each sub-system satisfy its specific requirements? 
Under which conditions?
● Implementation restrictions
● Hardware
● Storage
● Interconnect
● Support



  

Software Architecture Models
● Various formal models / frameworks exist:

● 4+1
● RM-ODP
● SOMF
● IEEE 1471-2000 – ISO/IEC 42010-2007 (standards)

● Languages to describe the architecture:
● Acme
● Wright
● UML

● Pick and choose
● All have in common: Views



  



  

Architecture Views
● Description of the architecture from 
different perspectives (viewpoints)

● Facilitates communication:
● Business Owner
● Client
● Software Designer
● Developer
● System Builder

● Everyone has their own vocabulary



  

Architecture Views



  

Architecture Views
● Component & Connector View

● Very universal, easy to understand, high-level
● Module View

● Often the result of the software design
● Allocation

● Used by integrators and system engineers



  

Component & Connector View
● Graph-like diagram of the parts of a system 
and their relationships
● Parts = Components
● Relationships = Connectors



  

Component & Connector View



  

Components

● Units of computation or data storage
● Distinct names – Choose them wisely!
● Components have types, the C&C view shows 
specific instances

● Interfaces (ports) to communicate with other 
components

● Describe components independent of the 
system



  

Component Types



  

Connectors
● Connect components that interact with each other
● Distinct names – Choose them wisely!
● All communication between components is done 
through connectors – not only remote.

● Mechanisms:
● Function call
● RPC
● Broker-based

● Provided and implemented by middleware
● Beware: Easily slips into the component implementation!



  

Connectors
● Middleware connects components

● Hardware (CPU instructions)
● OS infrastructure (pipes, shared-memory)
● Domain specific middleware (CORBA, HTTP, etc.)

● Different communication patterns and protocols
● Point-to-point
● Broadcast
● Multicast
● HTTP / REST
● CORBA (IIOP), SOAP
● AMQP

● Use different notation for different types of connectors



  

Connectors



  

Example: Todo List



  

Architecture Styles
● Design Patterns for Software Architectures
● Best practices to solve common problems
● Architecture is a combination of many
● Module View (Software Design):

● Decomposition
● Uses
● Generalization
● Layered



  

Pipe & Filter
● Producer-consumer pattern
● Good encapsulation
● Asynchronous processing at 
each component

● Pipe connector responsible 
for synchronization

● Parallel processing 
(Map/Reduce)

● Document processing, signal 
processing, ETL



  

Shared-data
● Data repository + data accessors
● Communication through data repository
● Data repository responsible for data 

consistency and synchronization
● Add / remove components easily
● Passive / active data repositories
● Database applications, Web 

applications



  

Client-Server
● Client requests a response 
● Response is generated by an 
action executed by the server

● Client waits for response
● Server itself might be a client
● Often stateless
● Client initiated
● Lightweight clients
● WWW, HTTP, REST



  

Publish-Subscribe
● Producers publish 
messages on a shared 
medium (e.g. message bus)

● Consumers subscribe to 
certain types of messages

● Brokers may connect 
independent bus systems

● Scalable, transaction 
safe, easily extensible

● IRC, ESB, AMQP



  

Peer-to-Peer
● Like client-server, but every component is 
both client and server

● Intermediate 
components can act as 
proxies and/or caches

● Distribution of load
● Highly scalable for 
specific applications

● ICP, CDNs, BitTorrent, 
Gnutella, etc. 



  

EOF
● Tuesday, February 12, 2013:

● Architecture Integrity: Why you should listen to 
the architect?

● Architecture Analysis: What can you learn from 
an architecture?

● Architecture Documentation: How to communicate 
an architecture?
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