

CSCI 3130
Software

Architectures
1/3

February 5, 2013

Software Architecture
● What is a Software Architecture?

● The description of the structure of a software system, which
is composed of software elements, their externally visible
properties and their relationships to each other.

● Software system design at the highest level.
● Closely related to Software Design – boundaries are very

fuzzy.
● Iterative and incremental
● The is no one unique architecture for a given problem

● Why do we need it?

Understanding and Communication
● Software systems are too complex
● Abstraction of details
● Break a complex system into smaller, less complex
sub-systems (Divide & Conquer)

● Individual sub-systems are better understood
● 50% of your time you deal with people who
probably don't understand you.

“Buffalo buffalo Buffalo buffalo buffalo buffalo
Buffalo buffalo.”

Understanding and Communication

“[Those] (Buffalo buffalo) [whom] (Buffalo
buffalo) buffalo, buffalo (Buffalo buffalo).”

Reuse
● Identifying the individual parts of the system
facilitates encapsulation

● Encapsulation facilitates reuse
● Many small problems have been solved before
● Sub-systems are designed and implemented for a specific

purpose / task with generalized interfaces
● Generalized interfaces allow the reuse of the same sub-

system in a different complex system

● Software Product Lines
● The more reuse, the less money it costs, the safer
your job

Construction and Evolution
● Individual sub-systems and well defined interfaces
allow:
● Independent development of multiple sub-systems in

parallel by different teams
● Independent testing of multiple sub-systems with much

less test cases
● Replace one implementation of a sub-system with

another implementation
● Easily estimate the impact of a change

● You won't get it right the first time → software
evolves

Analysis
● Up-front analysis prevents undesired surprises:

● Design decisions
● Performance requirements
● Reliability
● Usability

● Does each sub-system satisfy its specific requirements?
Under which conditions?
● Implementation restrictions
● Hardware
● Storage
● Interconnect
● Support

Software Architecture Models
● Various formal models / frameworks exist:

● 4+1
● RM-ODP
● SOMF
● IEEE 1471-2000 – ISO/IEC 42010-2007 (standards)

● Languages to describe the architecture:
● Acme
● Wright
● UML

● Pick and choose
● All have in common: Views

Architecture Views
● Description of the architecture from
different perspectives (viewpoints)

● Facilitates communication:
● Business Owner
● Client
● Software Designer
● Developer
● System Builder

● Everyone has their own vocabulary

Architecture Views

Architecture Views
● Component & Connector View

● Very universal, easy to understand, high-level
● Module View

● Often the result of the software design
● Allocation

● Used by integrators and system engineers

Component & Connector View
● Graph-like diagram of the parts of a system
and their relationships
● Parts = Components
● Relationships = Connectors

Component & Connector View

Components

● Units of computation or data storage
● Distinct names – Choose them wisely!
● Components have types, the C&C view shows
specific instances

● Interfaces (ports) to communicate with other
components

● Describe components independent of the
system

Component Types

Connectors
● Connect components that interact with each other
● Distinct names – Choose them wisely!
● All communication between components is done
through connectors – not only remote.

● Mechanisms:
● Function call
● RPC
● Broker-based

● Provided and implemented by middleware
● Beware: Easily slips into the component implementation!

Connectors
● Middleware connects components

● Hardware (CPU instructions)
● OS infrastructure (pipes, shared-memory)
● Domain specific middleware (CORBA, HTTP, etc.)

● Different communication patterns and protocols
● Point-to-point
● Broadcast
● Multicast
● HTTP / REST
● CORBA (IIOP), SOAP
● AMQP

● Use different notation for different types of connectors

Connectors

Example: Todo List

Architecture Styles
● Design Patterns for Software Architectures
● Best practices to solve common problems
● Architecture is a combination of many
● Module View (Software Design):

● Decomposition
● Uses
● Generalization
● Layered

Pipe & Filter
● Producer-consumer pattern
● Good encapsulation
● Asynchronous processing at
each component

● Pipe connector responsible
for synchronization

● Parallel processing
(Map/Reduce)

● Document processing, signal
processing, ETL

Shared-data
● Data repository + data accessors
● Communication through data repository
● Data repository responsible for data

consistency and synchronization
● Add / remove components easily
● Passive / active data repositories
● Database applications, Web

applications

Client-Server
● Client requests a response
● Response is generated by an
action executed by the server

● Client waits for response
● Server itself might be a client
● Often stateless
● Client initiated
● Lightweight clients
● WWW, HTTP, REST

Publish-Subscribe
● Producers publish
messages on a shared
medium (e.g. message bus)

● Consumers subscribe to
certain types of messages

● Brokers may connect
independent bus systems

● Scalable, transaction
safe, easily extensible

● IRC, ESB, AMQP

Peer-to-Peer
● Like client-server, but every component is
both client and server

● Intermediate
components can act as
proxies and/or caches

● Distribution of load
● Highly scalable for
specific applications

● ICP, CDNs, BitTorrent,
Gnutella, etc.

EOF
● Tuesday, February 12, 2013:

● Architecture Integrity: Why you should listen to
the architect?

● Architecture Analysis: What can you learn from
an architecture?

● Architecture Documentation: How to communicate
an architecture?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

