
 1

Unit Test Document for PIMS

1. Introduction
In this document, we give the test plan and test results for unit testing of some of the key
modules of the Personal Investment Management System (PIMS).

2.Unit Testing Methodology

2.1 Selection of units: We selected only the most important functional and critical classes
for formal unit testing. In the test environment we used, a unit for unit testing is a class.
Here we illustrate the testing methodology by discussing only two classes.

2.2 Test Scripts: As we used Junit for unit testing. The test scripts were java programs
and each test case corresponded to a method in these java programs.

2.3 Fixing of Defects: The programmer fixed the defects found. Unit testing was
successfully complete only if the script executed without any defects.

2.4 Test Script Enhancement: As testing proceeded, some new test cases were added.
This was done by adding new test methods to the testing program.

3. The Testing Tool: Junit
We used Junit as the tool for unit testing. It is open source software which can be used to
test Java modules. It can be freely downloaded from the website www.junit.org
The general way to test the module (usually a ‘class’) by Junit: We create a class
extending TestCase(a predefined class of Junit), and write the following methods:

(a) setUp(): In this we instantiate various objects needed to perform the testing.
(b) tearDown(): In this we deallocate all or some of the memory which was used

up by objects created in setUp() method. This is called at the end of all tests.
(c) suite(): This method is used to create a test suite, which specifies as to which

tests will be performed.
(d) Various methods of the name testXXX(): These methods contain the actual

code for testing. In any such method, we do whatever operations we want to
do, and then call the method assertTrue()/assertFalse(), with a boolean as the
argument, which specifies as to what condition we wish to hold true/false,
for being convinced that the tested method performs correctly.

4. Tests Performed
We unit tested the methods of following two classes: (a) Alerts, and (b) Investment

(a) Testing methods of class Alerts:

Operation performed Condition tested Actual result
Nil Number of alerts should be Test passed.

 2

zero
Create a new alert, with a
particular date and
particular description.

Retrieve the first alert. Its
date and description should
match with the date and
description with which we
created the alert.

Test passed.

Delete the first alert. Number of alerts should be
zero.

Test passed.

Create two new alerts, one
with a past date and other
with a future date.

Number of alerts should be
two.

Test passed.

Retrieve for pending alerts. Number of alerts returned
should be one.

Test passed.

Delete alert number 0
twice.

Number of alerts should be
zero.

Test passed.

(b) Testing the methods of class Investment for correct manipulation of portfolios and
securities

Operation performed Condition tested Actual result
Create a portfolio with
name PF1

Check that there exists a
portfolio with name PF1

Test Passed.

Create a bank type security
bankTest in PF1

Check that there exists a
security bankTest in
portfolio PF1.

Test Passed

Add three transactions,
with any attribtues.

Retrieve all the
transactions, and check that
a particular transaction had
the same details as you
entered.

Test Passed

Delete security bankTest. Check that there is no
security with name
bankTest in portfolio PF1

Test Passed

Add a security shareTest in
PF1

Check that shareTest exists
in PF1

Test Passed

Rename shareTest to
shareTestNew.

Check that shareTest does
not exist in PF1 and
shareTestNew exists in PF1.

Test Passed

Delete shareTestNew Check that shareTest New
does not exist in PF1.

Test Passed

Rename PF1 to PF2. Check that portfolio PF1
does not exist and PF2
exists.

Test Passed

 3

Delete PF2 Check that PF2 does not
exist.

Test Passed

Operation performed Condition tested Actual result
Create portfolio PF1 Check that PF1 exists Test Passed
Create security bankTest in
PF1 with rate of interest =
1%.

Check that bankTest exists
in PF1

Test Passed

- Check that roi of bankTest
is 1%

Test Passed

Add three transactions. Find out the networth of
this bank security and
compare with correct value.

Test Passed

Delete bankTest Check that bankTest does
not exist.

Test Passed

Add security shareTest Check that shareTest does
not exist.

Test Passed

Add five transactions. Find networth and compare
with correct value.

Test Passed

- Find roi and compare with
correct value.

Test Failed. A bug in roi
computation found and
fixed. Then test passed.

Delete shareTest. Check that shareTest does
not exist in PF1.

Test Passed

Delete PF1 Check that PF1 does not
exist.

Test Passed

5. Results:
When the script written (which is in fact a Java file) and compiled and run, it gives us
the number of tests actually executed, and also in how many of them expected results
were obtained, in how many expected results were not obtained, and how many tests
could not go to completion.

For first test suite (testing for Alert.java):
 6 tests: success: 6, failure: 0, error: 0
For second test suite (first test suite for Investment.java)
 9 tests: success: 9, failure: 0, error: 0
For third suite (second test suite for Investment.java)
 10 tests: success:9, failure: 1, error:0
The failure was due to a bug in the ROI calculation; the bug was fixed.

