
 1

Design Document for PIMS 
 

 
1. Overview  
After reviewing the Use Case analysis, following are the basic classes and actions that 
emerge out:- 
 
Classes: (Basic building blocks of PIMS) 
Sl no. Class Principle Responsibility 

1 Investment Manages computations regarding total investment. 
2 Portfolio Manages computations regarding a Portfolio. 
3 Security Manages computations related to a security. 
4 Transaction Manages computations and stores attributes related to a 

transaction. 
5 GUI Manages the Graphical User Interface. 
6 NetLoader Manages downloading current prices of shares from the 

Internet. 
7 Current Value 

System 
Manages current value of shares. 

8 Alerts Manages alerts. 
9 SecurityManager Manages user validation. 

10 DataRepository Manages all file operations. It is an interface between the 
main modules and the database (which in our case is 
done using file system.) 

 
Note: Other subsidiary classes may get added to the list in course of implementation for the 
purpose of load balancing and modularity. 
 
Actions: 
Sl. no. Action 

1 Create/Delete/Rename Portfolio/Security. 
2 Create/Delete/Edit Transactions. 
3 Calculate Net Worth of Investment/Portfolio/ Security. 
4 Calculate Rate of Investment of a security. 
5 Load Current Prices from the Internet. 
6 Check/Set/Delete Alerts. 
7 Validate User. 

 
Note: There are other minor actions that does not play major role in modeling. 
 
 
2. Inheritance Structure:  
There does not seem to be any inheritance structure because of the lack of commonality 
between the classes. In some places inheritance seems intuitive, for example in 



 2

specializing Security into BankSecurity and ShareSecurity and specializing Transaction 
into Buy and Sell. The figure below shows the inheritance structures. 

 
Fig 2.1: Possible Inheritance 

However these inheritance structures are not necessary. We can model them using an 
extra attribute securityType and transactionType in the classes Security and Transaction 
respectively.  
 
3. Aggregation:  
The logical structure of Investment suggests the following aggregation between the 
classes. 

 
Fig 3.1: Aggregation Structure 

 
 
4. Association:  
We figure out the association between classes in the process of modeling the principle 
actions. Finally after considering all the major actions the association + aggregation 



 3

structure is arrived at. Each action is considered below before giving the overall 
association between classes. 
4.1 Principle Action: Create/Delete/Rename Portfolio/Security. 

 

 
Fig 4.1.1: Association for action Create/Delete/Rename Portfolio/Security 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 4

 
 

4.2 Principle Action: Compute Net Worth of Investment/Portfolio/Security. 
 

 
Fig 4.2.1: Association for Action Compute Net Worth of Investment/Portfolio/ 

Security. 



 5

 
Fig 4.2.2: Interaction diagram for action Compute Net Worth of 

Investment/Portfolio/Security. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 6

 
4.3 Principle Action: Compute Rate of Investment of a security.  

Note: ROI for a portfolio or for the total investment does not seem logical hence is 
avoided (see SRS). 
 

 
Fig 4.3.1: Association for action Compute ROI. 

 



 7

Fig 4.3.2: Interaction diagram for action Compute ROI. 
 
 
 
 
 

4.4 Principle Action: Load Current Prices from the Internet. 
 

 
Fig 4.4.1: Association for action Load Current Prices from internet 

 
 
 
 
 



 8

4.5 Principle Action: Check/Set/Delete Alerts. 

 
Fig 4.5.1: Association for action Check/Set/Delete alerts. 

 
 

 
4.6 Principle Action: Validate User. 
 

 
Fig 4.6.1: Association for action Validate User 

 
 

Now we are in a position to start with the design specification as we have all the 
attributes and methods of all the classes. 



 9

 
5. Detail Design Specification:  
It consists of a list of main classes and their attributes and methods with proper 
comments. 
 

1. class GUI{ 
//attributes// 
CurrentValueSystem CVS; //Object of the class CurrentValue. 
Alerts AL; //Object of the class Alerts. 
Investment INV; //Object of the class Investment. 
DataRepository DR;//Object of the DataRepository class 
//methods// 
void createGUI(); //creates the Graphical Interface. 

} 
2. class Alerts{ 

//attributes// 
String alertList[N][2]; //list containing date and details of all the alerts. 
//method// 
String [] checkForAlerts(); //check and return all the pending alerts. 
boolean setNewAlerts(Date date, String details); //set a new alert as specified 
by the user. 
boolean deleteAlert(String Alert);//Deletes a specified alert 

} 
3. class NetLoader{ 

//method// 
void loadCurrentPrice(); //Downloads the page from the internet parses it and 
updates the database. 

} 
4. class CurrentValueSystem{ 

//attributes// 
NetLoader NL;//Net loader object used to call the loadCurrentPrice() method 
String sharePrices[N][2]; //list of current price of shares. 
//method// 
double priceOfShare(String security_name); //returns the current price of a 
security. 

} 
5. class SecurityManager{ 

//attributes// 
String username; //stores the user name of the investor. 
String Password; //stores the password of the user. 
//methods// 
boolean validateUser(String user_name, String password); //checks for the 
validity of the user. 
boolean changePassword(String oldPassword, String newPassword); // 
Changes the password of the authorized user 

} 
 



 10

6. class Investment{ 
//attributes// 
String PortfolioList[]; //llist of names of all the portfolios. 
//methods// 
double computeNetWorth(); //computes net worth of the investment. 
double computeNetWorth(String portfolio_name);//computes and returns 
the net worth of a specified portfolio 
double computeNetWorth(String portfolio_name, String security_name); 
//computes and returns the net worth of a specified security in a specified 
portfolio 
double computeROI(String portfolio_name, String security_name); 
//computes the ROI of a specified security in a specified portfolio 
boolean (create/delete/rename)Portfolio(String portfolio_name); //creates 
/deletes/renames a portfolio. 
boolean (create/delete/rename)Security(String portfolio_name, String 
security_name); // creates/deletes/renames a security. 
boolean (add/delete/edit)Transaction(String portfolio_name, String 
security_name, Transaction trans);// adds/deletes/edits a transaction 
 

} 
7. class Portfolio{ 

//attributes// 
String SecurityList[]; //list of securities in this particular portfolio. 
String PortfolioName;//Name of this portfolio 
//methods// 
double computeNetWorth(); //returns the net worth of this portfolio. 
double computeNetWorth(String security_name); //returns the net worth of 
a specified security 
double computeROI(String security_name); //computes the ROI of a 
specified security in this portfolio 
boolean (create/delete/rename)Security(String security_name); // 
creates/deletes/renames a security in this portfolio 
boolean (add/delete/edit)Transaction(String portfolio_name, String 
security_name, Transaction trans);// adds/deletes/edits a transaction of a 
specified security 

} 
 

8. class Security{ 
//attributes// 
Transaction transactionList[]; //list of transaction objects. 
boolean securityType; //stores the type of security, bank or share 
String SecurityName;//Name of this security 
String PortfolioName;//Name of the portfolio to which it belongs 
String CompanyName;//Name of the company if share type 
double RateOfInterest;//Rate of Interest if bank type 
//methods// 
double computeROI(); //computes the rate of returns of the security. 



 11

double computeNetWorth(); //computes the net worth of this security. 
boolean (add/delete/edit)Transaction(Transaction trans);//Adds/Deletes/ 
Edits a transaction of this  security 

} 
9. class Transaction{ 

//attributes// 
Date date; //stores the date of the transaction. 
String details; //stores details of the transaction. 
double TransactionAmount; //stores the amount of money exchanged. 
boolean Transtype; //stores the type of transaction buy/sell. 
int numShares; //stores the number of shares exchanged.. 
double CostOfShare;//stores the cost of share exchanged 

} 
 

10. class DataRepository{ 
//methods// 
//all these methods do file operations. 
boolean createPortfolio(); //creates a portfolio. 
boolean deletePortfolio(String portfolio_name); //deletes a portfolio. 
boolean renamePortfolio(String portfolio_name); //renames a portfolio. 
boolean createSecurity(String portfolio_name, String security_name); 
//creates a security. 
boolean deleteSecurity(String portfolio_name, String security_name); 
//deletes a security. 
boolean renameSecurity(String portfolio_name, String security_name); 
//renames a security. 
boolean setNewAlerts(String alertList[][]); //set a new alerts as specified by 
the user. 
boolean updateCurrentPrice(String currentValues[][]); //sets the new values 
of the securities. 
TransactionList readTransactions(String portfolio_name, String 
security_name); //reads the transactions and returns a list of transaction 
objects. 
boolean writeTransactions(TransactionList list, String portfolio_name, 
String security_name); //writes the transactions into a specified file. 

} 
 
Note: The Investment class has the list of portfolio names as the attribute and not the list of 
portfolio objects. This is done to put less pressure on the RAM, keeping all the objects of 
portfolios, securities and transactions live means that we have the whole database in RAM this 
might severely effect the efficiency. The portfolio object can be made on the run as and when it is 
needed. Similar thing has been done for portfolios. 


