
 1

Architecture Design Document for Case Study 1 (Course Scheduling
System)

1. Overview
1.1. System Overview
The course scheduling system takes input from the Professors about their preferences,
about course offerings and class rooms from the department secretary, and then
proposes a suitable schedule for the courses.

1.2. System Context
The system context is defined clearly in the SRS. Basically, the department is the main
sink of the information. The main sources of information are the Professors (who
provide information about their time preferences and maximum enrollment,) and the
department secretary (which provides information about courses begin offered, time
slots, and available class rooms.)

1.3. Stakeholders of PIMS
The main stakeholders and their concerns are:

• Professors: Their main concern is that their highest priority should be satisfied.
This means that the algorithm for scheduling should be such that it can easily be
changed with a better algorithm later.

• Department secretary/Head: The schedule should be fair and should utilize the
resources well. (Again this means that the scheduling algorithm should be
upgradable.)

1.4. Scope of this Document
This document describes the proposed architecture for the course scheduling system.
For architecture, we consider only the component and connector view.

1.5. Definitions and Acronyms
As given in the SRS.

2. Architecture Design
As this is a batch processing-type system with inputs coming and output being
produced, the most natural style will be the pipe-and-filter style. We use this style for
the architecture of the system. The proposed architecture is shown below.

 2

This architecture has three filter components – one to process the information provided
in File 1, the other to process the information provided in File 2, and the third to produce
the schedule. As the information produced by the first component is also used in the
processing of information from File 2 as well as for scheduling, the connections are set
accordingly.

In this architecture, we do not require that the components be executed in parallel. For
ease of implementation, they may be executed in a sequential order, particularly since
the file processing modules are not likely to consume much time – the main processing
time will be needed by the third component and that remains the same in parallel or
serial execution. Any (synchronous or asynchronous) method can be used to support the
pipes.

3. Evaluating the Architecture

Let us evaluate this architecture with respect to some properties.

Criteria Evaluation of the proposed Architecture

Change in some file
format

 Good – change should impact only the filter
for that file.

Change in
scheduling
algorithm

Good – only the scheduling component needs
to be changed.

Adding new
constraints for
scheduling

Good – only the scheduling component needs
to be changed

Replacing files with
GUI

Poor – switching to a GUI interface will
require changing almost the complete
implementation with this architecture. The
scheduling component can still be used.

Process File 1 Process File 2 Schedule the
Courses

Errors in File1 Errors in file2 Course schedule

File1 File2

 3

Extension to web
based

Poor – This architecture does not support this
change; will require a complete rewrite of the
system.

Provision of
additional securities
(passwords, etc)

Average – The architecture is not designed
with security in mind. However, it is possible
to add a security component for verification
in the start.

So the architecture satisfies the current main criteria of being able to change the
scheduling algorithm. However, if the system is to be later enhanced to newer
technologies or approaches, then most likely the system built using this architecture will
not be reusable, and might have to be built afresh.

