
Parallel ROLAP Data Cube Construction On

Shared-Nothing Multiprocessors ∗

Ying Chen † Frank Dehne ‡ Todd Eavis § Andrew Rau-Chaplin ¶

Abstract

The pre-computation of data cubes is critical to improving the response time of On-
Line Analytical Processing (OLAP) systems and can be instrumental in accelerating
data mining tasks in large data warehouses. In order to meet the need for improved
performance created by growing data sizes, parallel solutions for generating the data
cube are becoming increasingly important. This paper presents a parallel method for
generating data cubes on a shared-nothing multiprocessor. Since no (expensive) shared
disk is required, our method can be used on low cost Beowulf style clusters consisting
of standard PCs with local disks connected via a data switch. Our approach uses a
ROLAP representation of the data cube where views are stored as relational tables.
This allows for tight integration with current relational database technology.

We have implemented our parallel shared-nothing data cube generation method and
evaluated it on a PC cluster, exploring relative speedup, local vs. global schedule trees,
data skew, cardinality of dimensions, data dimensionality, and balance tradeoffs. For
an input data set of 2,000,000 rows (72 Megabytes), our parallel data cube generation
method achieves close to optimal speedup; generating a full data cube of ≈227 million
rows (5.6 Gigabytes) on a 16 processors cluster in under 6 minutes. For an input data
set of 10,000,000 rows (360 Megabytes), our parallel method, running on a 16 processor
PC cluster, created a data cube consisting of ≈846 million rows (21.7 Gigabytes) in
under 47 minutes.

1 Introduction

The pre-computation of the different views (group-bys) of a data cube, i.e. the forming
of aggregates for every combination of GROUP-BY attributes, is critical to improving the
response time of On-Line Analytical Processing (OLAP) queries in decision support systems
[10] and can be instrumental in accelerating data mining tasks in large data warehouses
[11]. For a given raw data set, R, with n records and d attributes (dimensions), a view is
constructed by an aggregation of R along a subset of attributes. This results in 2d different
possible views. Figure 1a shows the different possible view identifiers for 4 dimensions “A”,
“B”, “C”, and “D”. An edge between two view identifiers indicates that one of the respective
views can be computed from the other by aggregation along one dimension. The resulting

∗Research partially supported by the Natural Sciences and Engineering Research Council of Canada.
†Faculty of Computer Science, Dalhousie University, Halifax, Canada B3H 1W5, ychen@cs.dal.ca.
‡School of Computer Science, Carleton University, Ottawa, Canada K1S 5B6, frank@dehne.net,

http://www.dehne.net.
§Faculty of Computer Science, Dalhousie University, Halifax, Canada B3H 1W5, eavis@cs.dal.ca.
¶Faculty of Computer Science, Dalhousie University, Halifax, Canada B3H 1W5, arc@cs.dal.ca,

http://www.cs.dal.ca/∼arc.

1

graph is called the lattice. As proposed in [10], the pre-computation of the entire data cube
(the set of all 2d views) allows for the fast execution of subsequent OLAP queries.

There are two basic data cube representations: ROLAP representations where views are
represented as relational tables and MOLAP representations where views are represented as
multi-dimensional arrays. Many methods have been proposed for generating the data cube
on sequential [2, 12, 19, 20, 24, 25] and parallel systems [3, 4, 7, 8, 15, 16, 18]. The size of
the data cube is potentially very large. In order to meet the need for improved performance
created by growing data sizes in OLAP applications, parallel solutions for generating the
data cube have become increasingly important. The current parallel approaches can be
grouped into two broad categories: (1) work partitioning [3, 4, 15, 16, 18] and (2) data
partitioning [7, 8].

Work partitioning methods assign different view computations to different processors.
Consider, for example, the lattice for a four dimensional data cube as shown in Figure 1a.
From the raw data set “ABCD”, 15 views need to be computed. Given a parallel computer
with p processors, work partitioning schemes partition the set of views into p groups and
assign the computation of the views in each group to a different processor. The main
challenges for these methods are load balancing and scalability, which are addressed in
different ways by the different techniques studied in [3, 4, 15, 18, 16]. One distinguishing
feature of work partitioning methods is that all processors need simultaneous access to the
entire raw data set. This access is usually provided through the use of a shared disk system
(available e.g. for SunFire 6800 and IBM SP systems).

Data partitioning methods partition the raw data set into p subsets and store each
subset locally on one processor. All views are computed on every processor but only with
respect to the subset of data available at each processor. A subsequent “merge” procedure is
required to agglomerate data across processors. The advantage of data partitioning methods
is that they do not require all processors to have access to the entire raw data set. Each
processor only requires a local copy of a portion of the raw data which can, e.g., be stored
on its local disk. This makes such methods feasible for shared-nothing parallel machines
like the popular, low cost, Beowulf style clusters consisting of standard PCs connected via
a data switch and without any (expensive) shared disk array; see Figure 2a. The main
problem with data partitioning methods is that the “merge”, which has to be performed for
every view of the data cube, has the potential to create massive data movements between
processors with serious consequences for performance and scalability of the entire system.
A data partitioning method for MOLAP representations has been presented in [7, 8]. This
method is based on a space partitioning of the multi-diminsional array and a spatial “merge”
between different sub-cubes of the MOLAP cube. The spatial “merge” operation can be
reduced to a parallel prefix which is a well studied operation for parallel computers.

In this paper, we study data partitioning methods for the ROLAP case where the raw
data set is given as a d-dimensional relation (table of d-tuples) and all views are to be
created as relational tables as well. The principal advantage of ROLAP is that it allows
for tight integration with current relational database technology. Another advantage of
ROLAP is that it requires only linear space and is therefore particularly suitable for the
construction of very large data cubes. Our algorithm is, to our knowledge, the first parallel
ROLAP data cube construction method for shared-nothing multiprocessors. Our method
has the additional advantage that it can be extended to the partial cube case where not all
views but only a subset of views, selected by the user, are to be created. This case occurs
frequently in practice because the user often knows that some views will not be required
for on-line analytical processing (OLAP) queries on a given data set.

2

We have implemented our parallel data cube generation method and extensively eval-
uated it on a shared-nothing PC cluster. Our experiments have explored the following six
performance issues: relative speedup, local vs. global schedule trees, data skew, cardinality
of dimensions, data dimensionality, and balance tradeoffs. For a raw data set R of size n =
2,000,000 rows (72 Megabytes) our parallel ROLAP data cube generation method achieved
close to optimal speedup; generating a full data cube of ≈227 million rows (5.6 Gigabytes)
in under 6 minutes on 16 processors. For an input data set of n = 10,000,000 rows (360
Megabytes), our parallel method created the corresponding data cube consisting of ≈846
million rows (21.7 Gigabytes) in under 47 minutes.

The remainder of this paper is organized as follows. In Section 2 we present our parallel
ROLAP data cube algorithm for shared-nothing multiprocessors. Section 3 shows how our
method can be extended to the partial cube case where not all views but only a subset of
selected views are to be created. Section 4 discusses our implementation and presents the
performance results achieved by our method. Section 5 concludes the paper.

ABCD

ABC ABD ACD BCD

AB AC AD BC BD CD

A B C D

all

ABCD

ABC ABD ACD BCD

AB AC AD BC BD CD

A B C D

all

ABCD

BCD

AB CD

all

ABC

AC BC

A C

(a) (b) (c)

Figure 1: (a) Lattice for 4 dimensions “A”, “B”, “C”, and “D”. (b) Schedule tree for a
full data cube (e.g. Pipesort). Bold edges represent “scan” operations and regular edges
represent “sort” operations. (c) Schedule tree for a partial data cube. Selected views are
marked by circles.

mem

di
sk

proc

NIC

mem

di
sk

proc

NIC

mem

di
sk

proc

NIC

mem

di
sk

proc

NIC

���

���

���

���

P
0 1

P p-1P

network or switch

Disk for
P0 1

Disk for
P p-1

Disk for
P

...

...

...
.........

INPUT

OUTPUT

ABCD (raw data set, R)

ABC

ABD

ACD

D
...

(a) (b)

Figure 2: (a) A shared-nothing multiprocessor. (b) Input and output data distribution.

3

2 A Parallel Data Cube Algorithm For Shared-Nothing Mul-
tiprocessors

We consider a shared-nothing parallel machine consisting of p processors P0, P1 ... Pp−1,
each with its own local memory and local disk, connected via a network or switch; see
Figure 2a. There is no shared memory or shared disk available. Systems of this type include
the popular, low cost, Beowulf style clusters consisting of standard PCs connected via a
switch (http://www.beowulf.org/). As input, we assume a raw data set, R, with n records
and d dimensions D0, D1 ... Dd−1 distributed evenly over the p disks; see Figure 2b. The
basic communication operation used by our data cube algorithm is the h-relation (method
MPI ALL TO ALL v in MPI). Our method uses two basic local disk operations, applied by
each processor to its local disk: (1) linear scan and (2) external memory sort [22]. For a
processor Pj with local memory size m and a local disk with block transfer size B, a linear
scan through a file of size n stored on its disk requires O(n

B) block transfers between disk
and memory while an external memory sort of that file requires O(n

B logm
B

n
B) block transfers

[22]. We will present our method for a shared-nothing multiprocessor with one local disk
per processor Pj . However, it is easy to generalize our methods for machines with multiple
local disks per processor by applying the linear scan and external memory sort methods for
a single processor with multiple local disks presented in [23].

Without loss of generality, let |D0| ≥ |D1| ≥ ... ≥ |Dd−1|, where |Di| is the cardinality
for dimension Di, 0 ≤ i ≤ d−1 (i.e. the number of distinct values for dimension Di). Let S
be the set of all 2d view identifiers. Each view identifier consists of a subset of {D0, D1 ...
Dd−1}, ordered by the cardinalities of the selected dimensions (in decreasing order). The
goal is to create a data cube DC containing the views in S. We assume that, when our
algorithm terminates, every view is distributed evenly across the p disks; see Figure 2b. It
is important to note that, for the subsequent use of the views by OLAP queries, each view
needs to be evenly distributed in order to achieve maximum I/O bandwidth for subsequent
parallel disk accesses.

2.1 Algorithm Outline

Our parallel algorithm uses as a building block a standard sequential top-down data cube
method such as Pipesort [20]. Such methods have in common that they consist of a two
phase approach. In the first phase, a schedule tree T is constructed which is a subgraph of
the lattice and contains as nodes the identifiers of all views to be constructed. Recall that
view v is a parent of a view v′ if v can be created from v′. The schedule tree T identifies a
sequence in which the views are to be constructed in the second phase. The main difference
between the various top-down data cube methods is the schedule tree T that they build. For
example, Pipesort starts with the lattice and assigns to every view identifier an estimate of
the size of the respective view [6, 21]. It then computes the cost of the aggregate operation
associated with each edge of the lattice. The schedule tree T is then built by scanning the
lattice level by level, starting at the raw data set, and computing for each two subsequent
levels of nodes, and the edges between them, a minimum cost bi-partite matching.

Let Si ⊂ S be the subset of view identifiers in S that start with Di, and let DCi be
the data cube for Si. We call DCi the Di-partition of the data cube DC. Furthermore, we
refer to the view consisting of all dimensions contained in views of Si as the Di-root; see
Figure 3.

The following describes the global structure of our parallel data cube algorithm for

4

ABCD

BCACAB

BCDACDABC

ALL

DCBA

AD CDBD

ABD

A-Partition

B-Partition

C-Partition

D-Partition

A-root

B-root

C-root

D-root

Figure 3: Partitions of a data cube for d = 4. Dimensions are labelled “A”, “B”, “C”, “D”,

shared-nothing multiprocessors. The algorithm consists of three main phases: data parti-
tioning, computation of local Di-partitions, and merge of local Di-partitions. Subsequent
sections will discuss each phase in more detail.

Procedure 1 Parallel–Shared–Nothing–Data–Cube
/* Input: Raw data set R (n d-dimensional records) distributed arbitrarily over the p processors,
n/p records per processor; Output: Data cube, DC, distributed over the p processors. Each
views is evenly distributed over the p processors’ disks. */

FOR i=0 TO d-1
(1) /* Data Partitioning */

(a) Each processor Pj (j = 0, . . . p − 1) computes locally the Di-root for its subset of
data. (Essentially a sequential sort followed by a sequential scan.) Let Di-root|j
denote the Di-root created by processor Pj .

(b) /* Sort ∪j=0,...p−1Di-root|j by Di, . . . Dd−1 */
Adaptive–Sample–Sort(Di-root|0, . . . , Di-root|p−1; Di, . . . , Dd−1; γ = 1%)

(c) Each processor Pj (j = 0, . . . p−1) computes locally the Di-root for its subset of data
received in the previous step. Let Di-root||j denote the Di-root created by processor
Pj .

(2) /* Computation Of Local Di-Partitions */
(a) Processor P0 locally computes, by applying the first phase of a sequential top-down

data cube method, the schedule tree Ti for building the Di-partition with respect to
Di-root||0.

(b) Processor P0 broadcasts Ti to P1 ... Pp−1.
(c) Each processor Pj (j = 0, . . . p−1) computes locally the Di-partition with respect to

Di-root||j by applying the second phase of a sequential top-down data cube method
to the schedule tree Ti received in the previous step.

(3) /* Merge Of Local Di-Partitions */
Merge–Partitions(Di)

The following Sections 2.2, 2.3 and 2.4 discuss in detail the three phases of Procedure 1.

5

2.2 Data Partitioning

Good data partitioning is a key factor in obtaining a good load balance and, consequently,
good performance. Some researchers partition data on one or several dimensions [17, 9].
In order to achieve sufficient parallelism, they assume that the product of the cardinalities
of these dimensions is much larger than the number of processors [9]. The advantage of
their method is that they do not need to merge views. For examples, if we partition on A,
then ABC and AC need not to be merged, or if we partition on A and B, then ABC and
ABD need not to be merged. However, in practice, this assumption is often not true. The
cardinality of some dimensions may be small, such as gender, months and intervals for a
numeric attribute. The number of processors in a cluster may be large, especially for clusters
of workstations. Therefore, those methods are often not scalable. Our method avoids these
problems by partitioning on all dimensions and then applying a merge procedure. As our
experiments show, the cost for the additional merge is more than compensated for by better
overall performance and scalability.

To partition data, we use parallel sample sort [14]. As discussed in [14], one global data
movement via one single h-relation is often sufficient to obtain sorted and well balanced
data. The subsequent “global shift” operation, which needs another h-relation, is not
always necessary. In our implementation of parallel sample sort we measure the imbalance
of the sizes of the local data sets after the first h-relation and perform a second “global
shift” h-relation only if necessary. Let y0, . . . , yp−1 be the sizes of the sets Y0, . . . , Yp−1

created on processors P0, . . . , Pp−1, respectively, after the first h-relation. We calculate the
relative imbalance I(y0, . . . , yp−1) = max{(ymax − yavg)/yavg, (yavg − ymin)/yavg}, where
ymax, ymin, and yavg are the maximum, minimum and average of y0, . . . , yp−1, respectively.
If I(y0, . . . , yp−1) > γ for some threshold value γ, we apply a subsequent “global shift”
operation. In our implementation we use a threshold value of γ = 1%. As discussed in [14],
the imbalance after the first h-relation is less if there are no duplicate keys. However, in
most data, there are many duplicate values. Therefore, in Step 1a of Procedure 1, we first
compute locally on each processor Pj (j = 0, . . . p − 1) the Di-root for its subset of data.
This eliminates all duplicate keys Di . . . Dd−1 for the sort in the subsequent Step 1b.

We refer to our sample sort implementation as Adaptive–Sample–Sort. Since there are
so many “folk” versions of parallel sample sort in the literature, we briefly review the exact
sequence of steps implemented in our system.

Procedure 2 Adaptive–Sample–Sort(X0, . . . , Xp−1; Di1 , . . . , Dik ; γ)
Input: Sets X0, . . . , Xp−1 stored on processors P0, . . . , Pp−1, respectively.
Output: Sets X0, . . . , Xp−1 globally sorted by dimensions Di1 , . . . , Dik .
(1) Each processor Pj (j = 0, . . . p− 1) locally sorts Xj by Di1 , . . . , Dik and selects a set of p

local pivots consisting of the elements with rank 0, (n/p2), . . . ((p−1)n/p2). Each processor
Pj then sends its local pivots to processor P0.

(2) Processor P0 sorts the p2 local pivots received in the previous step. Processor P0 then selects
a set of p− 1 global pivots consisting of the elements with rank (p + bp/2c), (2p + bp/2c)
. . . ((p− 1)p + bp/2c) and broadcasts the p global pivots to all other processors.

(3) Using the p−1 global pivots received in the previous step, each processor Pj (j = 0, . . . p−1)
locally partitions Xj (sorted by Di1 , . . . , Dik from Step 1) into p − 1 subsequences X0

j . . .

Xp−1
j .

(4) Using one global h-relation, every processor Pj , j = 0. . . p−1, sends each Xk
j , k = 0. . . p−1,

to processor Pk.

6

(5) Each processor Pj , j = 0, . . . p− 1, receiving p sorted sequences Xj
k, k = 0. . . p− 1, in the

previous step, locally merges those sequences into a single sorted sequence Yj and sends the
size yj of Yj to processor P0.

(6) IF I(y0, . . . , yp−1) > γ, as determined by processor P0 THEN all processors P0, . . . , Pp−1

balance the sizes of Y0, . . . , Yp−1 via a “global shift”, implemented by one h-relation opera-
tion.

Following the above global sort, each processor Pj (j = 0, . . . p− 1) applies in Step 1c of
Procedure 1 a sequential scan to its data set in order to compute the Di-root (Di-root||j)
for its local data.

2.3 Computation Of Local Di-Partitions

In this section, we discuss Step 2 of Procedure 1. The goal of this step is to compute
on each processor Pj the Di-partition with respect to Di-root||j . For this, we apply on
each processor a sequential top-down data cube construction method. Such methods, like
Pipesort, typically consist of two phases. In the first phase, a schedule tree Ti is constructed.
The nodes of Ti are the view identifiers of the Di-partition and an edge (u, v) from parent
u to child v indicates that v is created from u. Each edge (u, v) is labelled “scan” or “sort”.
If v is a prefix of u, then v can be created via a linear scan of u. If v is only a subset of u
(but not a prefix), then the computation of v requires a re-sort of u. Sequential top-down
cube construction methods like Pipesort attempt to build a schedule tree Ti that minimizes
the work required for cube construction.

For shared-nothing parallel data cube construction, a problem that arises is that each
processor Pj has a different data set, namely Di-root||j , and that the schedule trees can
be different for these different sets. Indeed, the computation of the schedule tree is usually
very much data driven. Pipesort and most other methods make statistical estimates of the
view sizes, based on the data available, and schedule tree construction is based on those
view sizes. In our case, we could allow each processor Pj to build its own local schedule tree
for its local data set Di-root||j and build its Di-partition accordingly. However, different
local schedule trees for different processors imply that views of the Di-partition created
on different processors may be in different sort orders. This creates a problem during the
subsequent merge phase in Step 3 of Procedure 1. When views of the same partition but
for different subsets of data (i.e. on different processors) need to be merged, they need to
have the same sort order or one of them has to be re-sorted. That re-sort creates a large
amount of additional computation. Another possibility is to let one processor, say P0, build
the schedule tree for its data set Di-root||0, broadcast that schedule tree, referred to as the
global schedule tree, and then let all processors use the same global schedule tree for their
local cube construction. The advantage of this method is that we do not need to change the
sort order of views during the merge. A potential disadvantage is that the sequential, local,
top-down data cube methods (e.g. Pipesort) may not be using the “optimal” schedule tree
for their data set. Recall that, the schedule trees generated by Pipesort and other top-down
sequential methods are based on size estimates. As discussed in Section 4.2, our experiments
indicate that, among the above two approaches, the latter method is far superior. For the
data sets that we tested, the additional work on some processors because of non-optimal
global schedule trees was much less than the overhead created through the need to re-sort
views during the merge in Step 3. Therefore, Steps 2a, 2b and 2c of Procedure 1 implement
the latter global schedule tree method.

7

2.4 Merge Of Local Di-Partitions

At the end of Step 2 of Procedure 1, each processor Pj has computed the Di-partition for
its local data set. For a view v of the Di-partition, let vj be the view created by processor
Pj . In Step 3 of Procedure 1 we need to merge, for each view v in the Di-partition, the
p different views vj created on the p different processors Pj . This merge is performed in
Procedure Merge–Partitions(Di) which will be discussed in the remainder of this section.

Consider Procedure 1 for i = 0 and the A-partition shown in Figure 3. In Step 1 of
Procedure 1, the A-roots are globally sorted by ABCD. Then, in Step 2, each processor Pj

computes locally the A-partition for its data set. Consider the views ABCDj , ABCj , ABj ,
and Aj computed in Step 2. All these views are in the same sort order as the global sort
order created in Step 1 because they are a prefix of ABCD. We shall refer to these views as
the prefix views. The other views, ABDj , ACj , ACDj and ADj , are not a prefix of ABCD
and are therefore in a sort order that is different from the global sort order. We shall refer
to them as the non-prefix views.

Consider a prefix view v and the problem of merging v0, . . . , vp−1 stored on processors
P0, . . . , Pp−1. For example, consider the view v = AB in Figure 3 and the problem of
merging AB0, . . . , ABp−1. The goal is to obtain a global AB sort order for AB0∪ AB1 . . . ∪
ABp−1 and then agglomerate those items that have the same values for dimensions A and
B. Since AB is a prefix of the global sort order, ABCD, the first part is already done and
the only items that, potentially, need to be agglomerated are the last item of vj and the
first item if vj+1 for each 0 ≤ j < p− 1. Therefore, in Procedure Merge–Partitions(Di), for
each prefix view v every processor Pj+1 simply sends the first item of vj+1 to processor Pj

which compares it with the last item of vj . Nothing else needs to be done in order to merge
all vj . Figure 4 illustrates the case of a prefix view v as “Case 1”.

Case 1 Case 2 Case 3

���

���

�����
�����
�����
�����
�����

���

������������������������������������

P
j

P
j+1

P
j+2

v
j

v
j+1

v
j+2

v
j

v
j+1

v
j+2

v
j

v
j+1

v
j+2

Figure 4: Illustration of cases in Procedure Merge–Partitions

We now study the case of merging the views v0, . . . , vp−1 stored on processors P0, . . . ,
Pp−1 for a non-prefix view v. For example, consider the view v = AC in Figure 3 and
the problem of merging AC0, . . . , ACp−1. Again, the goal is to obtain a global AC sort
order for AC0∪ AC1 . . . ∪ ACp−1 and then agglomerate those items that have the same
values for dimensions A and C. However, AC is not a prefix of ABCD and, therefore, the
different vj can have considerable overlap with respect to AC order. Figure 4 illustrates
the case of a non-prefix view v as “Case 2” and “Case 3”. The rectangles represent the
vj with respect to AC order. The shaded areas represent the overlap which, in contrast to

8

Case 1 (prefix view), can now be considerably more than just one element. In Procedure
Merge–Partitions(Di), for each non-prefix view v every processor Pj sends its last element
to every other other processor. Each processor Pk then determines its overlap with each
Pj and sends that overlap to Pj . For each processor Pj let v′j be the view vj plus all the
overlap received by processor Pj . We distinguish two cases which are both illustrated in
Figure 4. “Case 2”: IF I(|v′0|, |v′1|, . . . |v′p−1|) ≤ γ for a non-prefix view v THEN each Pj

locally sorts v′j and agglomerates the items with same values for dimensions in v. “Case 3”:
IF I(|v′0|, |v′0|, . . . |v′0|) > γ for a non-prefix view v THEN the vj are merged by a global sort.
The distinguishing criterion between Cases 2 and 3 is the balance between the v′j . If the
imbalance is smaller than γ (Case 2) then we proceed similar to Case 1. If the imbalance
is larger than γ (Case 3) then we need to completely re-balance via a global sort. In fact,
for Case 3 we do not wish to even route the overlap between processors. We rather re-sort
immediately. Hence, in order to determine whether Case 2 or Case 3 applies, each processor
Pk first determines the size of its overlap with each Pj and sends only the information about
the size of that overlap to Pj .

The following is an outline of Procedure Merge–Partitions(Di).

Procedure 3 Merge–Partitions(Di)
(1) For each view v ∈ DCi, each processor Pj broadcasts the last item of vj to every other

processor Pk and receives back the seizes of all overlaps.
(2) For each view v ∈ DCi, every processor Pj determines |v′j | and sends all of its |v′j | values to

processor P0.
(3) Processor P0 determines for each view v ∈ DCi whether it is a “Case 1”, “Case 2”, or “Case

3”.
(4) Every processor Pj+1 sends for each “Case 1” view v ∈ DCi the first item of vj+1 to

processor Pj , and Pj compares/agglomerates that item with the last item of vj .
(4) Every processor Pk sends for each “Case 2” view v ∈ DCi its overlap with every vj to the

respective processor Pj . Every processor Pj merges/agglomerates all received overlaps with
vj .

(5) All remaining “Case 3” views v ∈ DCi are merged via global sort, using Procedure 2 with
γ = 3%.

In the following, we discuss a small extension of Procedure Merge–Partitions(Di). Note
that, all data sets are stored in secondary memory. For Step 2, a straight forward imple-
mentation would imply that the entire disk needs to be scanned on each processor in order
to determine the |v′j | values. However, we do actually only require a 1/p % accuracy for
the |v′j | values in order to obtain a 1 % accuracy for the imbalance I which is sufficient for
distinguishing between cases 2 and 3. Hence, it is sufficient to use a sample of only 100 p
equal spaced sample elements of the locally sorted vj instead of the entire vj . Such a sample
can be build during the local computation of vj in Step 2c of Procedure 1. Note that, while
Pj writes vj to its local disk, the size of vj is not yet known and hence, the size of the sample
and the distance between sample elements is not yet known. This problem can be solved
as follows. A sample array A[1..a] of size a = 100p is allocated in main memory. While
the first a elements of vj are written to disk, each of them is also copied into A. While
the second a elements of vj are written to disk, every second is written into every second
location of A, overwriting the previous element stored at that location. While the third
and fourth groups of a elements of vj are written to disk, every fourth is written into every
second location of A, and so on. When the entire view vj is written to disk, an appropriate
sample will be available in array A to determine the |v′j | values with sufficient accuracy.

9

3 Partial Data Cube Construction On Shared-Nothing Mul-
tiprocessors

Our method has the advantage that it is easily extended to the case where not the entire data
cube but only a subset of selected views are to be computed. This case occurs frequently
in practice because the user often knows that some views will not be required for the
subsequent OLAP queries that are executed on the data cube. For example, for a raw data
set with 20 dimensions, it may be clear from the application that the OLAP queries will
only require views with at most 5 dimensions. Therefore, it would be wasteful to create all
220 views when most of them are never used.

For the purpose of computing a partial data cube, we redefine S. Instead of being the
set of all 2d view identifiers (as defined in Section 2.1), we define S to be the view identifiers
of the subset of selected views. The definitions of Si, DCi, etc. are then all with respect to
the new set S of selected views. The algorithm in Section 2 remains completely unchanged
except for the construction of the schedule tree Ti in Step 2a of Procedure 1. Instead
of using the first phase of an arbitrary sequential top-down data cube method, we apply
the sequential schedule tree construction method for partial cubes that we have recently
presented in [5]. For a set S of selected views, our algorithm in [5] can create a schedule
tree that is either a subtree of the tree that would be generated by Pipesort for the entire
cube, or it can create a schedule tree directly from the lattice. An example of a schedule
tree for a partial cube is shown in Figure 1c. Note that, for optimal performance, some
“intermediate” views need to be constructed in addition to the selected views.

4 Performance Evaluation

We have implemented our parallel shared-nothing data cube generation method using C++
and the MPI communication library. This implementation evolved from the code base for
a fast sequential Pipesort [3] and the sequential Partial cube method described in [5]. Most
of the required sequential graph algorithms, as well as data structures like hash tables and
graph representations, were drawn from the LEDA library [13].

Our experimental platform consisted of a 16 node Beowulf cluster with 1.8 GHz Intel
Xeon processors, 512 MB RAM per node and two 40 GB 7200 RPM IDE disk drives per
node. Every node was running Linux Redhat 7.2 with gcc 2.95.3 and MPI/LAM 6.5.6.
as part of a ROCKS cluster distribution. All nodes were interconnected via an Intel 100
Megabyte Ethernet switch. Note that on this machine communication speed is extremely
slow in comparison to computation speed. We will shortly be replacing our 100 Megabyte
interconnect with a 1 Gigabyte Ethernet interconnect and expect that this will further
improve the relative speedup results obtainable on this machine.

In the following experiments all sequential times were measured as wall clock times in
seconds. All parallel times were measured as the wall clock time between the start of the
first process and the termination of the last process. We will refer to the latter as parallel
wall clock time. All times include the time taken to read the input from files and write
the output into files. Furthermore, all wall clock times were measured with no other user
except us on the Beowulf cluster.

In our experimentation we generated a large number of synthetic data sets which varied
in terms of the following parameters: n - number of records, d - number of dimensions,
|D0|, |D1| . . . |Dd−1| - cardinality in each dimension, and α0, α1 . . . αd−1 - skew in each di-

10

mension.
Our experiments explored the following six performance issues:

1. Relative Speedup: We investigated the effect of increasing the number of processors
on the time required to solve data cube generation problems and measured the relative
speedup, i.e. the ratio between observed sequential time and observed parallel time.
Sequential times for computing full cubes and partial cubes were measured on a single
processor of our parallel machine using our sequential implementations of Pipesort [3]
and Partial cube [5], respectively.

2. Local vs. global schedule trees: We compared the effect on parallel wall clock
time of using local vs. global schedule trees.

3. Data skew: We investigated the effect on parallel wall clock time of data sets with
varying skewed distributions. We used the standard ZIPF [26] distribution with α = 0
(no skew) to α = 3 (high skew) and explored the relationship between data skew and
the amount of data that must be communicated.

4. Cardinality of dimensions: We investigated the effect of varying dimension cardi-
nalities on parallel wall clock time for both skewed and non-skewed data sets.

5. Data dimensionality: We investigated the effect of varying dimensionality, and
therefore the effects of relative density or sparsity, on parallel wall clock time.

6. Balance Tradeoffs: Lastly, we investigated the effect of varying the balance thresh-
old parameter γ. As γ is decreased we improve the balance in the distribution of views
across processors, but at the cost of more data movement.

4.1 Relative Speedup

Speedup experiments are at the heart of the experimental evaluation of our parallel shared-
nothing data cube generation method. They consist of incrementally increasing the num-
ber of processors available to our data cube generation software to determine the parallel
speedup obtained. Figure 5 shows for full cube construction the parallel wall clock time
observed for data sets of varying sizes as a function of the number of processors used,
and the corresponding relative speedup. We observe that for an input size n = 2,000,000
rows (72 Megabytes) our method achieves close to optimal speedup; generating a full data
cube of ≈227 million rows (5.6 Gigabytes) in just under 6 minutes on 16 processors. The
speedup for smaller problems is lower as there is insufficient local computation over which
to amortize the cost of communications. On the other hand, our method works well on very
large data sets. For example, on an input data set of 10,000,000 rows (360 Megabytes), our
parallel method created the corresponding data cube consisting of ≈846 million rows (21.7
Gigabytes), on 16 processors, in under 47 minutes.

Note that our speedup results could be further improved by overlapping communication
and local computation. Our current implementation does not overlap the local computation
of Di-Partitions with the global communication involved in merging Di−1-Partitions. Doing
so would mask between 40% and 60% of the communication overhead and further improve
the speedup results.

Figure 6 shows for partial cube construction the parallel wall clock time observed for a
range of different percentages of selected views as a function of the number of processors,

11

and the corresponding relative speedup. We observe that when 50% or more of the views
are selected, the speedup obtained decreases somewhat in comparison to the full cube case.
However, for as little as 25% selected views, the speedup obtained is still more than half of
optimal. Only when the number of views selected gets very small, approaching d, speedup
falls off rapidly as the local work within partitions is little more than the computation of
the root view. In such cases, when there are only a handful of selected views, creating each
view from an independent sort of the original data set may be preferable.

4.2 Local vs. global schedule trees

As described in Section 2.3, for shared-nothing parallel data cube construction it is possible
for each processor to use either a local or a global schedule tree. Local schedule trees
are built by each processor Pj relative to their own data set Di-root||j , whereas a global
schedule tree is built by a single processor, say P0, relative to its data set Di-root||0, and
then broadcast to all other processors.

The use of local schedule trees might appear at first preferable, since they are optimized
relative to a processor’s own data set. However, they have one serious drawback. When
views of the same partition but for different subsets of data (i.e. on different processors)
need to be merged, they need to have the same sort order or one of them has to be re-
sorted. That re-sort creates a large amount of additional computation. As can be seen in
Figure 7, our experiments indicate that local schedule trees offer superior performance in
practice. For the data sets that we tested, the additional work on some processors because
of non-optimal schedule trees was significantly less than the overhead created through the
need to re-sort views during the Merge–Partitions() procedure.

4.3 Data skew

Data sets with skewed distributions can pose an interesting challenge to parallel data cube
generation methods. As skew increases, data reduction tends also to increase, particularly
in top-down generation methods [20, 1]. Data reduction is typically positive, as it reduces
the total amount of work to be performed. However, if data reduction is large and unevenly
spread across the processors it may unbalance the computation and cause the amount of
data that has to be communicated to rise sharply.

To explore this issue we generated data sets using the standard ZIPF [26] distribution
in each dimension with α = 0 (no skew) to α = 3 (high skew). Figure 8a shows the impact
of skew on parallel wall clock time. Figure 8b shows, for the same data sets, how skew
affects the overall size of the data that must be communicated in performing the Merge–
Partitions() procedure. We observe that, in general, as skew is increased parallel time
decreases due to data reduction and decreased local computation. For α = 1 there is a
sharp rise in the amount of data to be communicated, which offsets some gains from the
reduced local computation. However for α > 1 the data reduction is so significant that only
very little data needs to be communicated and parallel time drops significantly.

4.4 Cardinality of dimensions

The cardinality of the dimensions in a data set can affect the performance of our method.
As cardinalities increase so does the sparsity of the data set and this may adversely effect
parallel time especially given that top-down methods [20, 1] are designed primarily for dense
data cubes. Curves A, B and C of Figure 9a clearly illustrate this effect. The sparser data

12

sets require somewhat more time, although, as can be seen in Figure 9b, this has little effect
on the relative speedup achieved.

A close examination of the details of our algorithm suggests that a potentially difficult
input data set for our method would be one in which the leading dimension has high skew
and large cardinality, while the remaining dimensions have low skew. In such cases, the
global sort used to create the D0-root may do little to reduce the amount of communication
required in building the views in DC0. Curve D in Figure 9 shows the results measured for
such a case. We observe that whereas such situations do reduce the speedup obtained, the
reduction is relatively small. Even for this difficult data set, the speedup obtained by our
method is still close to half of the optimal speedup.

4.5 Data dimensionality

Figure 10 shows parallel wall clock time in seconds as a function of the dimensionality of the
raw data set. Note that, the number of views that must be computed grows exponentially
with respect to the dimensionality of the data set. In Figure 10, we observe that the parallel
running time grows essentially linearly with respect to the output size.

4.6 Balance tradeoffs

One important feature of our shared-nothing data cube generation algorithm is that it
balances each view in the generated data cube over the processors within a balance threshold
γ. The more balanced each view is across the processors (i.e. the smaller γ) the more
balanced any subsequent parallel computation on each view will be. However, the cost of
selecting a small γ is that it may cause more data movement and therefore increase the
time required for data cube generation.

Figure 11 shows parallel wall clock time in seconds as a function of the number of
processors for a range of different balance thresholds, as well as the corresponding speedup
curves. We observe that while reducing the balance threshold γ increases the parallel time,
the effect is small. A γ of 3% appears to be a good threshold in practice. However, individual
applications may want to tune this parameter according to their needs and the performance
characteristics of their parallel machines.

5 Conclusion

In this paper, we study parallel data partitioning methods for ROLAP data cubes that
can be executed on shared-nothing multiprocessors. The principal advantage of ROLAP is
that it allows for tight integration with current relational database technology. We have
implemented our parallel data cube method and evaluated it on a PC cluster, exploring
relative speedup, local vs. global schedule trees, data skew, cardinality of dimensions, data
dimensionality, and balance tradeoffs. We obtained promising speedup results for a wide
range of input data sets. We are currently exploring the integration of our method with
commercial parallel database systems.

13

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 2 4 6 8 10 12 14 16

P
ar

al
le

l W
al

l C
lo

ck
 T

im
e

in
 S

ec
on

ds

Processors

n=1,000,000
n=2,000,000

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

R
el

at
iv

e
S

pe
ed

up

Processors

Linear Speedup
n=1,000,000
n=2,000,000

Figure 5: (a) Parallel wall clock time in seconds as a function of the number of processors
for data of size n = 1,000,000 rows and n = 2,000,000 rows and (b) corresponding speedup.
(Fixed parameters: Dimensions d = 8. Cardinalities |Di| = 256, 128, 64, 32, 16, 8, 6, 6.
Skew α = 0. Percentage of views selected k = 100%.)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 2 4 6 8 10 12 14 16

P
ar

al
le

l W
al

l C
lo

ck
 T

im
e

in
 S

ec
on

ds

Processors

25% Selected
50% Selected
75% Selected

100% Selected

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

R
el

at
iv

e
S

pe
ed

up

Processors

Linear Speedup
25% Selected
50% Selected
75% Selected
100% Selected

Figure 6: (a) Parallel wall clock time in seconds as a function of the number of processors
for a range of different percentages of selected views and (b) corresponding speedup. (Fixed
parameters: Data size n = 2,000,000 rows. Dimensions d = 8. Cardinalities |Di| = 256,
128, 64, 32, 16, 8, 6, 6. Skew α = 0.)

References

[1] S. Agarwal, R. Agarwal, P.M. Deshpande, A. Gupta, J.F. Naughton, R. Ramakrishnan,
and S. Srawagi. On the computation of multi-dimensional aggregates. In Proc. 22nd
VLDB Conf., pages 506–521, 1996.

[2] K. Beyer and R. Ramakrishnan. Bottom-up computation of sparse and iceberg cubes.
In ACM SIGMOD Conference on Management of Data, pages 359–370, 1999.

[3] F. Dehne, T. Eavis, S. Hambrusch, and A. Rau-Chaplin. Parallelizing the data cube.
Distributed and Parallel Databases, 11(2):181–201, 2002.

14

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

0 2 4 6 8 10 12 14 16

P
ar

al
le

l W
al

l C
lo

ck
 T

im
e

in
 S

ec
on

ds

Processors

Global Schedule Tree
Local Schedule Tree

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

R
el

at
iv

e
S

pe
ed

up

Processors

Linear Speedup
Global Schedule Tree
Local Schedule Tree

Figure 7: (a) Parallel wall clock time in seconds as a function of the number of processors for
local and global schedule tree methods and (b) corresponding speedup. (Fixed parameters:
Data size n = 1,000,000 rows. Dimensions d = 8. Cardinalities |Di| = 256, 128, 64, 32, 16,
8, 6, 6. Skew α = 0. Percentage of views selected k = 100%.)

[4] F. Dehne, T. Eavis, and Andrew Rau-Chaplin. A cluster architecture for parallel data
warehousing. In Proc IEEE International Conference on Cluster Computing and the
Grid (CCGrid 2001), Brisbane, Australia, 2001.

[5] Frank Dehne, Todd Eavis, and Andrew Rau-Chaplin. Computing partial data cubes.
Technical report, http://www.cs.dal.ca/˜arc/publications/2-30/paper.pdf.

[6] P. Flajolet and G.N. Martin. Probablistic counting algorithms for database applica-
tions. Journal of Computer and System Sciences, 31(2):182–209, 1985.

[7] S. Goil and A. Choudhary. High performance OLAP and data mining on parallel
computers. Journal of Data Mining and Knowledge Discovery, 1(4):391–417, 1997.

[8] S. Goil and A. Choudhary. A parallel scalable infrastructure for OLAP and data mining.
In Proc. International Data Engineering and Applications Symposium (IDEAS’99),
Montreal, 1999.

[9] Sanjay Goil and Alok N. Choudhary. High performance multidimensional analysis of
large datasets. In International Workshop on Data Warehousing and OLAP, pages
34–39, 1998.

[10] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, and M. Venkatrao.
Data Cube: A relational aggregation operator generalizing group-by, cross-tab, and
sub-totals. J. Data Mining and Knowledge Discovery, 1(1):29–53, 1997.

[11] Jiawei Han, Yongjian Fu, Wei Wang, Jenny Chiang, Wan Gong, Krzysztof Koperski,
Deyi Li, Yijun Lu, Amynmohamed Rajan, Nebojsa Stefanovic, Betty Xia, and Os-
mar R. Zaiane. DBMiner: A system for mining knowledge in large relational databases.
In Proc. 1996 Int’l Conf. on Data Mining and Knowledge Discovery (KDD’96), pages
250–255, Portland, Oregon, 1996.

[12] V. Harinarayan, A. Rajaraman, and J.D. Ullman. Implementing data cubes efficiently.
ACM SIGMOD Record, 25(2):205–216, 1996.

15

0

50

100

150

200

250

300

0 0.5 1 1.5 2 2.5 3

P
ar

al
le

l W
al

l C
lo

ck
 T

im
e

in
 S

ec
on

ds

Skew

Time

0

200

400

600

800

1000

1200

1400

1600

0 0.5 1 1.5 2 2.5 3

D
at

a
C

om
m

un
ic

at
ed

 in
 M

eg
ab

yt
es

Skew

Bytes

Figure 8: (a) Parallel wall clock time in seconds as a function of the skew for α = 0, 1, 2, 3,
and (b) and the size of corresponding data movements. (Fixed parameters: Data size n
= 1,000,000 rows. Dimensions d = 8. Cardinalities |Di| = 256, 128, 64, 32, 16, 8, 6, 6.
Percentage of views selected k = 100%. Number of processors p = 16).

[13] Max Planck Institute. LEDA. http://www.mpi-sb.mpg.de/LEDA/.

[14] Xiaobo Li, Paul Lu, Jonathan Schaeffer, John Shillington, Pok Sze Wong, and Hanmao
Shi. On the versatility of parallel sorting by regular sampling. Parallel Computing,
19(10):1079–1103, 1993.

[15] H. Lu, X. Huang, and Z. Li. Computing data cubes using massively parallel processors.
In Proc. 7th Parallel Computing Workshop (PCW’97), Canberra, Australia, 1997.

[16] Seigo Muto and Masaru Kitsuregawa. A dynamic load balancing strategy for parallel
datacube computation. In ACM Second International Workshop on Data Warehousing
and OLAP (DOLAP 1999), pages 67–72, 1999.

[17] Seigo Muto and Masaru Kitsuregawa. A dynamic load balancing strategy for parallel
datacube computation. In Proceedings of the second ACM international workshop on
Data warehousing and OLAP, pages 67–72. ACM Press, 1999.

[18] R.T. Ng, A. Wagner, and Y. Yin. Iceberg-cube computation with pc clusters. In ACM
SIGMOD Conference on Management of Data, pages 25–36, 2001.

[19] K.A. Ross and D. Srivastava. Fast computation of sparse datacubes. In Proc. 23rd
VLDB Conference, pages 116–125, 1997.

[20] S. Sarawagi, R. Agrawal, and A. Gupta. On computing the data cube. Technical report
rj10026, IBM Almaden Research Center, San Jose, CA, 1996.

[21] A. Shukla, P. Deshpende, J.F. Naughton, and K. Ramasamy. Storage estimation for
mutlidimensional aggregates in the presence of hierarchies. In Proc. 22nd VLDB Con-
ference, pages 522–531, 1996.

[22] J. S. Vitter. External memory algorithms and data structures: Dealing with massive
data. ACM Computing Surveys, 33(2):209–271, 2001.

16

0

500

1000

1500

2000

2500

3000

0 2 4 6 8 10 12 14 16

P
ar

al
le

l W
al

l C
lo

ck
 T

im
e

in
 S

ec
on

ds

Processors

(A)
(B)
(C)
(D)

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

R
el

at
iv

e
S

pe
ed

up

Processors

Linear Speedup
(A)
(B)
(C)
(D)

Figure 9: (a) Parallel wall clock time in seconds as a function of the number of processors for
data sets with different cardinality mixes, and (b) corresponding relative speedup. (Fixed
parameters: Data size n = 1,000,000 rows. Dimensions d = 8. Cardinalities and skews
(A)|Di| = 256, 256, 256, 256, 256, 256, 256, 256. Skew α = 0. (B)|Di| = 256, 128, 64, 32,
16, 8, 6, 6. Skew α = 0. (C)|Di| = 16, 16, 16, 16, 16, 16, 16, 16. Skew α = 0. (D)|Di| =
256, 128, 64, 32, 16, 8, 6, 6. Skew α0 = 3 and αi>0 = 0.)

[23] J. S. Vitter and E. A. M. Shriver. Algorithms for parallel memory I: Two-level mem-
ories. Algorithmica, 12(2-3):110–147, 1994.

[24] J.X. Yu and H. Lu. Multi-cube computation. In Proc. 7th International Symposium
on Database Systems for Advanced Applications, pages 126–133, Hong Kong, 2001.

[25] Y. Zhao, P.M. Deshpande, and J.F.Naughton. An array-based algorithm for simul-
taneous multidimensional aggregates. In Proc. ACM SIGMOD Conf., pages 159–170,
1997.

[26] G.K. Zipf. Human Behavior and The Principle of Least Effort. Addison-Wesley, 1949.

17

0

500

1000

1500

2000

2500

6 6.5 7 7.5 8 8.5 9 9.5 10

P
ar

al
le

l W
al

l C
lo

ck
 T

im
e

in
 S

ec
on

ds

Dimensions

data

Figure 10: Parallel wall clock time in seconds as a function of the the number of dimensions.
(Fixed parameters: Data size n = 1,000,000 rows. Cardinalities |Di| = 256 in all dimensions.
Percentage of views selected k = 100%. Number of processors p = 16.)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

0 2 4 6 8 10 12 14 16

P
ar

al
le

l W
al

l C
lo

ck
 T

im
e

in
 S

ec
on

ds

Processors

3% threshold
5% threshold
7% threshold

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

R
el

at
iv

e
S

pe
ed

up

Processors

Linear Speedup
3% threshold
5% threshold
7% threshold

Figure 11: (a) Parallel wall clock time in seconds as a function of the number of processors for
a range of different balance thresholds γ and (b) corresponding speedup. (Fixed parameters:
Data size n = 1,000,000 rows. Dimensions d = 8. Cardinalities |Di| = 256, 128, 64, 32, 16,
8, 6, 6. Skew α = 0. Balance threshold γ = 3%, 5%, and 7%.)

18

