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Abstract—Monte Carlo simulations employed for the analy-
sis of portfolios of catastrophic risk can benefit from platforms
that process large volumes of data by exploiting parallelism.
To achieve this an algorithm for the analysis of aggregate
risk is proposed and implemented using the MapReduce
model on the Apache Hadoop framework. An evaluation of
the performance of the algorithm indicates that the Hadoop
MapReduce model offers a feasible platform for processing
large data. An aggregate simulation of 100,000 trials with 1000
catastrophic events per trial on a typical exposure set and
contract structure is performed on multiple worker nodes in
about 6 minutes. The result indicates the scope and feasibility
of MapReduce for tackling the data problem in the analysis of
aggregate risk.
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I. INTRODUCTION

In the domain of large-scale computational analysis of
risk, large amounts of data are rapidly processed and mil-
lions of simulations are quickly performed (for example, [1],
[2], [3] ). This can be achieved by efficient data management
and exploitation of parallelism within simulations. There-
fore, the domain inherently opens avenues to exploit the syn-
ergy that can be achieved by bringing together state-of-the-
art techniques in data management and high-performance
computing. There is limited research on aggregate analysis
of risks [5], [6], [7] using high-performance computing.
Therefore, the research reported in this paper is motivated
towards exploring a means to facilitate high-performance
data processing and management for aggregate analysis of
risk; in this context the MapReduce model [4], [8], [9] is
used for achieving high-performance aggregate analysis of
risks.

The aggregate analysis of risk is a Monte Carlo simulation
performed on a portfolio of risks that an insurer or reinsurer
holds. A portfolio can cover risks related to catastrophic
events such as earthquakes or floods, and may comprise tens
of thousands of contracts. The contracts generally follow
an ‘eXcess of Loss’ (XL) [10], [11] structure providing
coverage for single event occurrences or multiple event
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occurrences, or a combination of both single and multiple
event occurrences. Each trial in the analysis simulation
represents a view of the occurrence of catastrophic events
and the order in which they occur within a contractual year
and how they will interact with complex treaty terms to pro-
duce an aggregated loss. A pre-simulated Year Event Table
(YET) containing between several thousand and millions of
alternative views of a single contractual year is used as input.
The output of aggregate analysis is a Year Loss Table (YLT).
From a YLT, an insurer or a reinsurer can derive important
portfolio risk metrics such as the Probable Maximum Loss
(PML) [12], [13] and the Tail Value at Risk (TVAR) [14],
[15] which are used for both internal risk management and
reporting to regulators and rating agencies.

In this paper, a MapReduce analysis of portfolios of catas-
trophic risk is proposed and implemented using the Hadoop
[16], [17], [18] platform. The algorithm must rapidly con-
sume large amounts of data in the form of the YET and
Event Loss Tables (ELT). Therefore, the challenge of or-
ganising input data efficiently and of applying parallelism
within the algorithm are considered. The MapReduce model
lends itself well towards solving embarrassingly parallel
problems such as the aggregate analysis of risk, and is hence
chosen to implement the algorithm. The algorithm employs
two MapReduce rounds to perform both the numerical
computations as well as to manage data efficiently. The
algorithm is implemented on the Apache Hadoop platform.
The preliminary results obtained from the experiments of
the analysis indicate that the MapReduce model can be
used to scale the analysis over multiple nodes of a cluster,
and parallelism can be exploited in the analysis for faster
numerical computations and data management.

The remainder of this paper is organised as follows. Sec-
tion II considers the MapReduce algorithm for the analysis
of aggregate risk. Section III presents the implementation of
the MapReduce algorithm on the Apache Hadoop Platform
and the preliminary results obtained experimental studies.
Section IV concludes this paper by considering future work.



II. MAPREDUCE ALGORITHM FOR ANALYSIS OF
AGGREGATE RISK

MapReduce is a programming model developed by
Google for processing large amount of data on large clusters.
A map and a reduce function are adopted in this model
to execute a problem that can be decomposed into sub-
problems with no dependencies; therefore the model is most
attractive for embarrassingly parallel problems. This model
is scalable across large number of computing resources.
In addition to the computations, the fault tolerance of the
execution, for example, handling machine failures are taken
care by MapReduce. An open-source software framework
that supports the MapReduce model, Apache Hadoop [16],
[17], [18], is used in the research reported in this paper.

The MapReduce model lends itself well towards solving
embarrassingly parallel problems, and therefore, the analysis
of aggregate risk is explored on MapReduce. In the analysis
of aggregate risks, the Programs contained in the Portfolio
are independent of each other, the Layers contained in a
Program are independent of each other and further the
Trials in the Year Event Table are independent of each
other. This indicates that the problem of analysing aggregate
risks requires a large number of computations which can be
performed on independent parallel problems.

Another reason of choice for the MapReduce model is
that it can handle large data processing for the analysis of
aggregate risks. For example, consider a Year Event Table
comprising one million simulations, which is approximately
30 GB. So for a Portfolio comprising 2 Programs, each with
10 Layers, then the approximate volume of data that needs
to be processed is 600GB.

Further MapReduce implementations such as Hadoop
provide dynamic job scheduling based on the availability of
cluster resources and distributed file system fault tolerance.

There are three inputs to the algorithm for the analysis
of aggregate risk, namely the Y ET , PF , and a pool of
ELTs. The Y ET is the Year Event Table which is the
representation of a pre-simulated occurrence of Events E
in the form of trials T . Each Trial captures the sequence of
the occurrences of Events for a year using time-stamps in the
form of event time-stamp pairs. The PF is a portfolio that
represents a group of Programs, P , which in turn represents
a set of Layers, L that covers a set of ELTs using financial
terms. The ELT is the Event Loss Table which represents
the losses that correspond to an event based on an exposure
(one event can appear over different ELTs with different
losses).

The intermediary output of the algorithm are the Layer
Loss Table LLT consisting Trial-Loss pairs. The final output
of the algorithm is Y LT , which is the Year Loss Table that
contains the losses covered by a portfolio.

Algorithm 1 shows the map-reduce analysis of aggregate
risk. The aim of this algorithm is similar to the sequential

algorithm in which the algorithm scans through the Portfolio,
PF ; firstly through the Programs, P , and then through the
Layers, L. The first round of MapReduce jobs, denoted as
MapReduce1 are launched for all the Layers. The Map
function (refer Algorithm 2) scans through all the Event
Loss Tables ELTs covered by the Layers L to compute
the losses l′E in parallel for every Event in the ELT. The
computations of loss lT at the Layer level are performed
in parallel by the Reduce function (refer Algorithm 3). The
output of MapReduce1 is a Layer Loss Table LLT .

Input : Y ET , ELT pool, PF
Output: Y LT

1 forall the Programs of P do
2 forall the Layers L in P do
3 LLT ←MapReduce1(L, Y ET )
4 end
5 end
6 Y LT ←MapReduce2(LLTs)
Algorithm 1: Pseudo-code for Parallel Analysis of Ag-
gregate Risk

The second round of MapReduce jobs, denoted as
MapReduce2 are launched for aggregating all the LLTs
in each Program to a Y LT .

The master node of the cluster of nodes solving a problem
partitions the input data to intermediate files effectively
splitting the problem into sub-problems. The sub-problems
are distributed to the worker nodes by the master node, often
referred to as the ‘Map’ step performed by the Mapper. The
map function executed by the Mapper receives as input a
< key, value > pair to generate a set of < intermediate
key, intermediate value > pairs. The results of the de-
composed sub-problems are then combined by the Reducer
referred to as the ‘Reduce’ step. The Reduce function
executed by each Reducer merges the < intermediate
key, intermediate value > pairs to generate a final output.
The Reduce function receives all the values corresponding
to the same intermediate key.

Algorithm 2 and Algorithm 3 show how parallelism is
achieved by using the Map and Reduce functions in a
first round at the Layer level. Algorithm 2 shows the Map
function whose inputs are a set of T,E from the Y ET , and
the output is a Trial-Loss pair < T, l′E > which corresponds
to an Event. To estimate the loss, it is necessary to scan
through every Event Loss Table ELT covered by a Layer L
(line no. 1-5). The loss, lE associated with an Event, E in
the ELT is fetched from memory in line no. 2. Contractual
financial terms to the benefit of the Layer are applied to the
losses (line no. 3) to aggregate the losses as l′E (line no. 4).
The loss for every Event in a Trial is emitted as < T, l′E >.

Algorithm 3 shows the Reduce function in the first
MapReduce round. The inputs are the Trial T and the set of



losses (l′E) corresponding to that Trial, represented as L′
E ,

and the output is a Trial-Loss pair < T, lT >. For every loss
value l′E in the set of losses L′

E , the Occurence Financial
Terms, namely Occurrence Retention and the Occurrence
Limit, are applied to l′E (line no. 2) and summed up as
lT (line no. 3). The Aggregate Financial Terms, namely
Aggregate Retention and Aggregate Limit are applied to lT
(line no. 5). The aggregated loss for a Trial, lT is emitted
as < T, lT > to populate the Layer Loss Table.

Algorithm 4 and Algorithm 5 show how parallelism is
achieved by using the Map and Reduce functions in a second
round for aggregating all Layer Loss Tables to produce the
Y LT . Algorithm 4 shows the Map function whose inputs
are a set of Layer Loss Tables LLTs, and the output is a
Trial-Loss pair < T, lT > which corresponds to the Layer-
wise loss for Trial T .

Algorithm 5 shows the Reduce function whose inputs are
a set of losses corresponding to a Trial in all Layers LT ,
and the output is a Trial-Loss pair < T, l′T > which is an
entry to populate the final output, the Year Loss Table Y LT .
The function sums up all trial losses lT across all Layers to
produce a portfolio-wise aggregate loss l′T .

Input : < T , E >
Output: < T , l′E >

1 for each ELT covered by L do
2 Lookup E in the ELT and find corresponding loss,

lE
3 Apply Financial Terms to lE
4 l′E ← l′E + lE
5 end
6 Emit(T , l′E)
Algorithm 2: Pseudo-code for Map function in
MapReduce1 of the Analysis of Aggregate Risk

Input : T , L′
E

Output: < T , lT >

1 for each l′E in L′
E do

2 Apply Occurrence Financial Terms to l′E
3 lT ← lT + l′E
4 end
5 Apply Aggregate Financial Terms to lT
6 Emit(T , lT )
Algorithm 3: Pseudo-code for Reduce Function in
MapReduce1 of the Analysis of Aggregate Risk

III. IMPLEMENTATION AND EXPERIMENTS ON THE
HADOOP PLATFORM

The experimental platform for implementing the MapRe-
duce algorithm is a heterogeneous cluster comprising (a) a

Input : LLTs
Output: < T , lT >

1 for each T in LLT do
2 Emit(< T, lT >)
3 end
Algorithm 4: Pseudo-code for Map function in
MapReduce2 of the Analysis of Aggregate Risk

Input : < T,LT >
Output: < T , l′T >

1 for each lT in LT do
2 l′T ← l′T + lT
3 end
4 Emit(< T, l′T >)
Algorithm 5: Pseudo-code for Reduce function in
MapReduce2 of the Analysis of Aggregate Risk

master node which is an IBM blade of two XEON 2.67GHz
processors comprising six cores, memory of 20 GB per
processor and a hard drive of 500GB with an additional
7TB RAID array, and (b) six worker nodes each with an
Opteron Dual Core 2216 2.4GHz processor comprising four
cores, memory of 4GB RAM and a hard drive of 150GB
(b). The interconnected via Infiniband.

Apache Hadoop, an open-source software framework is
used for implementing the MapReduce analysis of aggregate
risk. Other available frameworks [19], [20] require the
use of additional interfaces, commercial or web-based, for
deploying an application and were therefore not chosen.

The Hadoop framework works in the following way for
a MapReduce round. First of all the data files from the
Hadoop Distributed File System (HDFS) is loaded using
the InputFormat interface. HDFS provides a function-
ality called distributed cache for distributing small data
files which are shared by the nodes of the cluster. The
distributed cache provides local access to the shared data.
The InputFormat interface specifies the input the Mapper
and splits the input data as required by the Mapper. The
Mapper interface receives the partitioned data and emits
intermediate key-value pairs. The Partitioner interface
receives the intermediate key-value pairs and controls the
partitioning of these keys for the Reducer interface. Then
the Reducer interface receives the partitioned intermediate
key-value pairs and generates the final output of this MapRe-
duce round. The output is received by the OutputFormat
interface and provides it back to HDFS.

The input data for MapReduce ARA which are the Year
Event Table Y ET , the pool of Event Loss Table ELT and
the Portfolio PF specification are stored on HDFS. The
master node executes Algorithm 1 to generate the Year Loss
Table Y LT which is again stored on the HDFS. The two



(a) First MapReduce round (b) Second MapReduce round

Figure 1: MapReduce rounds in the Hadoop implementation

MapReduce rounds are illustrated in Figure 1.
In the first MapReduce round the InputFormat in-

terface splits the Y ET based on the number of Mappers
specified for the MapReduce round. The Mappers are con-
figured such that they also receive the ELTs covered by
one Layer which are contained in the distributed cache.
The Mapper applies secondary uncertainty and Financial
Terms to the losses. In this implementation combining the
ELTs is considered for achieving fast lookup. A typical
ELT would contain entries for an Event ID and related loss
information. When the ELTs are combined they contain an
Event ID and the loss information related to all the individual
ELTs. This reduces the number of lookups for retrieving
loss information related to an Event when the Events in
a Trial contained in the Y ET are scanned through by the
Mapper. The Mapper emits a trial-Event Loss pair which is
collected by the Partitioner. The Partitioner delivers the trial-
Event Loss pairs to the Reducers; one Reducer gets all the
trial-Event Loss pairs related to a specific trial. The Reducer
applies the Occurrence Financial and Aggregate Financial
Terms to the losses emitted to it by the Mapper. Then the
OutputFormat writes the output of the first MapReduce
round as Layer Loss Tables LLT to the HDFS.

In the second MapReduce round the InputFormat
receives all the LLTs from HDFS. The InputFormat
interface splits the set of LLTs and distributes them to the

Mappers. The Mapper interface emits Layer-wise Trial-
Loss pairs. The Partitioner receives all the Trial-
Loss pairs and partitions them based on the Trial for each
Reducer. The Reducer interface uses the partitioned Trial-
Loss pairs and combines them to Portfolio-wise Trial-Loss
pairs. Then the OutputFormat writes the output of the
second MapReduce round as a Year Loss Table Y LT to the
HDFS.

A. Results

Experiments were performed for one Portfolio comprising
one Program and one Layer and sixteen Event Loss Tables.
The Year Event Table has 100,000 Trials, with each Trial
comprising 1000 Events. The experiments are performed for
up to 12 workers as there are 12 cores available on the cluster
employed for the experiments.

Figure 2 shows two bar graphs for the total time taken
in seconds for the MapReduce rounds when the workers are
varied between 1 and 12; Figure 2a for the first MapReduce
round and Figure 2b for the second MapReduce round. In
the first MapReduce round the best timing performance is
achieved on 12 Mappers and 12 Reducers taking a total
of 370 seconds, with 280 seconds for the Mapper and 90
seconds for the Reducer. Over 85% efficiency is achieved
in each case using multiple worker nodes compared to 1
worker. This round is most efficient on 3 workers achiev-



(a) First MapReduce round

(b) Second MapReduce round

Figure 2: Number of workers vs total time taken in seconds
for the MapReduce rounds in the Hadoop implementation

ing an efficiency of 97% and the performance deteriorates
beyond the use of four workers on the cluster employed. In
the second MapReduce round the best timing performance
is achieved again on 12 Mapper and 12 Reducers taking
a total of 13.9 seconds, with 7.2 seconds for the Mapper
and 6.7 seconds for the Reducer. Using 2 workers has the
best efficiency of 74%; the efficiency deteriorates beyond
this. The second MapReduce round has performed poorly
compared to the first round as there are large I/O and
initialisation overheads on the workers.

Figure 3 shows two bar graphs in which the time for
the first MapReduce round is profiled. For the Mapper the
time taken into account is (a) for applying Financial Terms,
(b) for local I/O operations, and (c) for data delivery from
the HDFS to the InputFormat, from the InputFormat to the
Mapper, and from the Mapper to the Partitioner. For the
Reducer the time taken into account is (a) for applying
Occurrence and Aggregate Financial Terms, (b) for local
I/O operations, and (c) for data delivery from the Partitioner
to the Reducer, from the Reducer to the OutputFormat and
from the OuputFormat to HDFS. For both the Mappers and
the Reducers it is observed that over half the total time is

(a) No. of Mappers vs Time time taken for (a) applying Financial Terms, (b)
local I/O operation by each Mapper, and (c) data delivery

(b) No. of Reducers vs Time time taken for (a) applying Occurrence and
Aggregate Financial Terms, (b) local I/O operation by each Reducer, and (c)
data delivery

Figure 3: Profiled time for the first MapReduce round in the
Hadoop implementation

taken for local I/O operations. In the case of the Mapper
the mathematical computations take only 1/4th the total
time, and the total time taken for data delivery from the
HDFS to the InputFormat, and from the InputFormat to the
Mapper and from the Mapper to the Partitioner is only 1/4th

the total time. In the case of the Reducer the mathematical
computations take 1/3rd the total time, whereas the total
time taken for data delivery from the Partitioner to the
Reducer, from the Reducer to the OutputFormat, and from
the OutputFormat to HDFS is nearly 1/6th the total time.
This indicates that the local I/O operations on the cluster
employed is expensive though the performance of Hadoop
is exploited for both the numerical computations and for
large data processing and delivery.

Figure 4 shows a bar graph for the time taken in seconds
for the second MapReduce round on 12 workers when the
number of Layers are varied from 1 to 5000. There is a
steady increase in the time taken for data processing and
delivery by the Mapper and the Reducer, and it seems that
the time step starts to fall which will result in the flattening
of the trend.



Figure 4: Number of Layers vs the total time in seconds for
the second MapReduce round

The results indicate that there is scope for achieving high
efficiency and speedup for numerical computations and large
data processing and delivery within the Hadoop system.
However, it is apparent that the large overhead for local I/O
operations on the workers are restraining better performance.
This large overhead is a resultant of the bottleneck in the
connectivity between the worker nodes and the latency in
processing data from local drives. Therefore, efforts need to
be made towards reducing the I/O overhead to exploit the
full benefit of the Hadoop MapReduce model.

IV. CONCLUSION

This paper has presented how the MapReduce model can
meet the requirements of rapidly consuming large volumes
of data for the analysis of portfolios of catastrophic risk. The
challenge of handling large data and applying parallelism are
handled by the Map and Reduce functions. An algorithm for
the analysis of aggregate risk is proposed to incorporate the
MapReduce model and implemented on the Apache Hadoop
platform. The experimental results show the feasibility of
MapReduce for parallel numerical computations and data
management in the analysis.

Future work will be directed towards optimising the im-
plementation for reducing the local I/O overheads to achieve
better speedup. Efforts will be made towards incorporating
additional financial filters, such as secondary uncertainty for
in-depth analysis of aggregate risk.
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