Building a Scalable Spatial OLAP System’

Oliver Baltzer
FlagstoneRe
Suite 700, 2000 Barrington St
Halifax, Nova Scotia, Canada
obaltzer@flagstonere.com

ABSTRACT

We present a modular design of a spatial OLAP system.
Contrary to most previous work on spatial OLAP systems,
which combine existing OLAP systems and geographic in-
formation systems using a middleware layer, our system di-
rectly integrates OLAP and the processing of spatial data
and, thus, provides the full power of spatial OLAP with-
out performance penalty and allows a unified treatment of
spatial and non-spatial data.

Keywords
Spatial OLAP, Pipelined query evaluation, parallelism

1. INTRODUCTION

With an increasing number of applications that store spa-
tial and non-spatial data in data warehouses, the develop-
ment of efficient and scalable spatial OLAP systems, which
combine traditional OLAP capabilities with support for spa-
tial queries and for OLAP operations over spatial dimension
hierarchies, is increasing in importance.

Most previous work on the design and implementation of
spatial OLAP systems focused on the integration of existing
OLAP and GIS components into a single application using
specialized middleware software [2, 3]. While this middle-
ware approach is often cost effective and quick to implement,
the challenge with spatial OLAP queries using such systems
is that the OLAP component is not designed to handle spa-
tial attributes while the GIS component is not designed to
support OLAP operations at all. However, the implementa-
tion of complex OLAP operations over spatial dimensions re-
quires a constant flow of data between the two components,
and thus the middleware layer becomes a major bottleneck.

In this paper, we present a design for a spatial OLAP
system that integrates the processing of spatial dimensions
directly into the OLAP system. The result is a system that

*Research Supported the Natural Science and Engineering
Research Council of Canada.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC’13 March 18-22, 2013, Coimbra, Portugal.

Copyright 2013 ACM 978-1-4503-1656-9/13/03 ...$10.00.

Andrew Rau-Chaplin
Faculty of Computer Science
Dalhousie University
Halifax, Nova Scotia, Canada
arc@cs.dal.ca

13

Norbert Zeh
Faculty of Computer Science
Dalhousie University
Halifax, Nova Scotia, Canada
nzeh@cs.dal.ca

is efficient and scalable and at the same time provides the
full expressive power of OLAP over both spatial and cate-
gorical data dimensions. Our system decomposes each spa-
tial OLAP query into well delineated tasks (retrieval, join,
aggregation, etc.) and provides components, which we call
mini-engines, to carry out these tasks. The mini-engines in-
volved in evaluating the query exchange their data through
data streams and process data in parallel by leveraging mul-
tiprocessor and multicore systems.

2. PIPELINED EVALUATION OF SPATIAL
OLAP QUERIES

The pipeline approach for the evaluation of database queries
was initially proposed by Boral and DeWitt in 1980 [1]
and has been adopted in a number of database engines and
in traditional OLAP systems that have grown out of such
database management systems. The fundamental idea of
the pipeline model is to divide the evaluation of a complex
query into a number of simpler tasks, each an independent
component consuming a set of input data and producing
some set, of output data.

Our pipeline query evaluation model is derived from this
basic pipeline approach and can be applied to spatial and
non-spatial OLAP queries involving both spatial and cate-
gorical dimensions using a single integrated framework. In
our model, we refer to the components responsible for the
execution of tasks as mini-engines, to reflect that their role
is to act autonomously as part of a larger query evaluation
engine. Data is transferred between mini-engines using data
streams, and each mini-engine can pass its results on to the
next as soon as they become available. This stream-oriented
approach to data transfers allows an interleaving of the ex-
ecution of the individual mini-engines and the concurrent
execution on multiple processors or processor cores. It is
also often the case that a given query can be answered using
different combinations of mini-engines, which allows a query
optimizer to choose the combination that is most efficient
depending on characteristics of the data set.

For mini-engines to be interoperable, the interfaces be-
tween them have to be well defined. To define these inter-
faces, mini-engines that have a similar purpose (e.g., indexed
storage) but varying implementations (e.g., B-tree or hash
table) are grouped into a class for which the interfaces to
other classes of mini-engines are defined. These interface
definitions provide the rules by which mini-engines can be
combined to obtain evaluation engines for complex queries.

The abstraction of query evaluation tasks into mini-engines
allows for the encapsulation of their implementation. This

@—-{ Data SORT
Accessor

/
View

SELECT GROUP

Aggregate h;

ggreg:

SELECT GROUP

| RESULT

Aggregateh—t
I” SELECT H GROUP HAggregate}i

Figure 1: Query decomposed into mini-engines.

SELECT GROUP

.
.
.

IRERE
IRERE

allows the development of specialized mini-engines that are
particularly efficient for certain types of queries and can re-
place more general-purpose ones as long as they use the same
interface. More importantly, it allows new mini-engines to
be added to the system as necessary to efficiently answer
new types of queries. Thus, the system is easily extensible.

Our pipeline model defines 8 classes of elementary mini-
engines which are sufficient to evaluate a wide range of spa-
tial OLAP queries: DATA ACCESSOR, SELECT, FILTER,
GROUP, AGGREGATE, JOIN, SORT, and RESULT STACK.

To illustrate the mini-engine concept, consider the follow-
ing abstract standard OLAP query:

SELECT al, a2, a3, AGGREGATE(f)
FROM View
GROUP BY ROLLUP(al, a2, a3)

It retrieves all records from view View and performs aggre-
gation on the facts attribute f for each group of records w.r.t.
the attribute sets provided in the GROUP BY clause. In this
example the ROLLUP function generates the attribute sets
{al, a2, a3}, {al, a2}, {al}, and {}, each representing a sep-
arate group-by aggregation. The results from each group-by
aggregation are then merged into a combined result view.
Note, this query does not specify the data types of attribute
dimensions al, a2, and a3 or fact dimension f. In fact, in the
context of a spatial OLAP system the attribute dimensions
my be a combination of categorical and spatial dimensions
and the fact dimension may be a spatial measure.

An evaluation strategy for this query using the pipeline
model is shown in Figure 1. The data flow graph in this
figure shows the decomposition of the query evaluation into
smaller tasks carried out by different mini-engines, and the
flow of data between these mini-engines.

The first step in the evaluation of our example query is
the retrieval of all records from the input view using the
DATA ACCESSOR mini-engine. Generally, the DATA AC-
CESSOR mini-engine provides an abstraction of one or more
non-linear data structures that provide efficient access to the
records in the view matching a given query). In this ex-
ample, no such query @ is specific and all records are to be
retrieved from the view.

The records retrieved by the DATA ACCESSOR are passed
to the next mini-engine in the data flow graph, a SORT mini-
engine in this case. This mini-engine rearranges the input
records in a particular order. In this example, the records are
sorted according to the grouping set specified in the GROUP
BY clause. Since sorting is an expensive operation it is im-
portant to exploit the ordering of the input records, if any,
to simplify this sorting step. To facilitate this, the metadata
associated with each stream includes the sort order of the

14

records in the stream, i.e., the set of attributes by which the
records are guaranteed to be sorted.

In the next step, the SELECT mini-engine selects from the
incoming record stream only those record attributes that
are relevant for the further processing of the query. In the
first instance of the SELECT mini-engine for this example
query, the attributes al, a2, a3, and f are selected, and a
new record stream containing only these attributes is emit-
ted. A GROUP mini-engine is then used to obtain a grouping
of the records in the data stream, which corresponds to the
first most detailed level of aggregation groups. The grouped
records are then passed to an AGGREGATE mini-engine,
which performs the actual aggregation for each group.

Note that the ROLLUP statement generates a number of
grouping sets, each representing a different level of aggre-
gation, which makes it necessary to repeat this sequence of
SELECT, GROUP, and AGGREGATE mini-engines for each
aggregation level. Since the ROLLUP function constructs
grouping sets in such a way that each grouping set is a sub-
set of the previous grouping set, while the attributes remain
in the same order, it is possible to use the aggregated re-
sults from the previous grouping set as an input for the next
grouping set. This property is used to speed up the query,
and the output stream of each aggregation step is used both
as part of the output collected by a RESULT STACK mini-
engine and as input to the next level of aggregation.

The reference implementation of our pipeline model for
evaluating spatial OLAP queries demonstrates our model
can be realized in a fully functional system that exploits mul-
ticore parallelism to be fast and scalable. The implementa-
tion uses primarily Python as implementation language, but
also relies on C/C++ for some external libraries. We expect
a carefully tuned implementation in pure C/C++ to ex-
hibit significantly better performance. Even so, already our
Python prototype significantly outperformed PostgreSQL’s
spatial extension in our experiments.

Our experiments show that the reference implementation
can successfully utilize multiple processor cores during query
evaluation. The speed-up in query evaluation time grows
roughly linearly with the number of processors and with
efficiency above 85% for up to 8 processor cores.

In a direct comparison between our reference implemen-
tation and PostgreSQL with its spatial extension PostGIS,
we observe that our implementation outperforms a carefully
hand-tuned query implementation using PostgreSQL’s na-
tive PL/pgSQL language by a factor 3.1. In comparison to
an automatically optimized implementation using standard
SQL constructs to calculate only the lowest roll-up level, our
reference implementation is able to outperform PostgreSQL
by a factor of more than 6.

3. REFERENCES

[1] H. Boral and D. J. DeWitt. Design considerations for
data-flow database machines. In SIGMOD, 1980.

[2] E. Malinowski and E. Zimanyi. Implementing spatial
data warehouse hierarchies in object-relational DBMSs.
In Int. Conf. on Enterprise Info. Sys., volume 7, 2007.

[3] S. Rivest, Y. Bédard, M.-J. Proulx, M. Nadeau,
F. Hubert, and J. Pastor. SOLAP technology: Merging
business intelligence with geospatial technology for
interactive spatio-temporal exploration and analysis of
data. ISPRS Journal of Photogrammetry & Remote
Sensing, 60:17-33, 2005.

	MAIN MENU
	Help
	Search
	Search Results
	Print
	Author Index
	Keyword Index
	Table of Contents

