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ABSTRACT
Over the past ten to fifteen years, data warehouse platforms
have grown enormously, both in terms of their importance
and their sheer size. Traditionally, such systems have been
based upon a dimensional model known as the Star Schema
that consists of a central fact table and a series of related
dimension tables. Given the enormous size of the fact table,
virtually all current systems augment the primary fact table
with a small number of focused summary tables. Previous
research has addressed the issue of the selection or identifi-
cation of the most cost-effective summaries. However, the
problem of efficiently computing a given view subset has re-
ceived far less attention. In this paper, we present a suite of
greedy algorithms for the construction of these view subsets.
Experimental results demonstrate cost savings of between
20% and 70% relative to the naive alternatives, depending
upon the degree of materialization required.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query Pro-

cessing, Relational Databases

General Terms
Algorithms, Design, Performance

Keywords
OLAP, data cube, partial materialization

1. INTRODUCTION
In recent years, the size and significance of data ware-

housing (DW) platforms has grown enormously. Central to
the data warehousing architecture is a denormalized logical
model known as the Star Schema (the normalized version is
known as the Snowflake Schema). A Star Schema consists
of a single, very large fact table housing the measurement
records associated with a given organizational process. Dur-
ing query processing, this fact table is joined to one or more
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dimension tables, each consisting of a relatively small num-
ber of records that define specific business entities (e.g., cus-
tomer, product, store). A full data warehouse may contain
multiple such Star Schema designs.

While the Star Schema forms the basis of the relational
data warehouse, it can be extremely expensive to query the
fact table directly, given that it often consists of tens of
millions of records or more. In practice, DW designers typi-
cally review previous usage patterns in order to identify the
most extensively queried summarization targets. They then
augment the basic Star Schema with compact pre-computed
summary tables that can be queried much more efficiently at
run-time. Because these views essentially consist of a sub-
set of the available dimensions, they can be joined with the
dimension tables in exactly the same manner as the larger
fact table; no new logic or SQL extensions are required.

Unfortunately, computing these subsets remains very ex-
pensive. While we can certainly construct an arbitrary sub-
set of k views using a series of k independent SQL GROUP

BY queries, doing so is enormously wasteful given the fact
that many summary views will share some of the same at-
tributes. Instead, we would prefer to utilize a single al-
gorithm that is able to exploit the natural concurrency or
overlap in related summary views.

In this paper, we present techniques that allow for the ef-
ficient computation of view subsets. Experiments show that
our methods are effective in environments with as many as
16 dimensions — near the upper limit for a single corporate
Star Schema — with an essentially linear increase in cost
as additional views are added. In addition, we justify our
approach with a simple density estimator . In fact, the esti-
mator allows us to show that full cube materialization, apart
from being immensely wasteful, is likely to be of no value
whatsoever in terms of producing tangible gains in query
performance.

The remainder of the paper is organized as follows. In
Section 2, we briefly review related work. Our density es-
timator is described in Section 3, while our previous work
in this area is reviewed in Section 4. The new methods are
then discussed in detail. Section 5 presents optimized algo-
rithms for subset construction, with Section 6 describing our
technique for working in higher dimensional spaces. Exper-
imental results are provided in Section 7, followed by final
conclusions in Section 8.

2. RELATED WORK
While it is possible to summarize a d dimensional fact ta-

ble in many different ways, a particularly important group



of summary or aggregate tables is the one that consists of the
O(2d) combinations of distinct dimension values. We gener-
ally refer to this set as the data cube [6]. A number of cube
construction algorithms have been presented [1, 11, 2, 16].
Pipesort [1], for example, employs a a top down technique
to organize views or “cuboids” into computational pipelines,
while the BUC algorithm [2] uses a recursive partitioning
mechanism to compute parent views from the more coarsely
aggregated children.

More recently, researchers have explored compact repre-
sentations of the aggregates found in all O(2d) views. QC-
trees identify equivalence classes that summarize related re-
cords at different granularity levels [9], while the Dwarf Cube
[15] achieves a similar result by reducing attribute redundan-
cies. However, in both cases the resulting tree structures are
quite complex and are not currently supported, or easily in-
tegrated into, existing DBMS systems. This point is echoed
in [10], where a more conventional table-based model called
CURE is proposed. Even here, however, the focus is again
on the full cube which, as we shall see in Section 3, may not
be the most appropriate target.

The notion of materializing a subset of the cube’s views
was first proposed by Harinarayan et al. [7]. They define
the cube lattice and manipulate it using a greedy algorithm
named BPUS that iteratively adds nodes to a set deemed
to provide greatest benefit . In [13], Shukla et al. point out
that BPUS effectively runs in O(n3) time. They provide a
new O(n lg n) method called PBS that dramatically reduces
execution cost. Kalnis et al. also use randomized search and
simulated annealing to achieve comparable results [8].

Note that the focus of the previous algorithms is to iden-
tify which set of views to materialize. Few papers address
the problem of how this possibly large set can be most ef-
ficiently constructed. In the original PipeSort paper [12], a
Steiner tree representation is suggested. However, this is un-
likely to scale as the tree requires billions of edges for cubes
of even eight or nine dimensions. It has also been suggested
that the BUC algorithm might be used to compute the views
beneath a specific lattice level. However, the specified adap-
tation is unable to support random subsets, nor does BUC
efficiently compute views in the lower portion of the lattice,
exactly the views that would comprise the bulk of a typical
subset.

In [3], Dehne et al. propose an algorithm specifically tar-
geted at arbitrary subset computation. This is a greedy
method similar in style to BPUS in that it iteratively se-
lects the most beneficial view, where the benefit is mea-
sured in terms of the view’s ability to reduce the global cost
of computation. However, while the algorithm does gener-
ate arbitrary subsets, it does so with a time complexity of
O(n3), n = 2d. As such, it is unlikely to be effective in ranges
beyond 5 or 6 dimensions, too limited to be viable in most
practical DW environments.

3. THE DENSITY THRESHOLD
As noted, a number of recent algorithms such as DWARF

and QC-trees have proposed compact representations of full
data cubes. While the associated data structures are in-
deed smaller than the fully materialized cube, particularly
in very high dimensional spaces, the question remains: Is
the full cube really the appropriate target? There are two
key observations in this respect. First, while a full data
cube materializes all 2d cuboids, there is an overwhelming
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Figure 1: A 4-d cube lattice

preference among end users to query low dimension views.
Such cuboids are more amenable to visualization and their
simpler content can be intuitively converted into decision
supporting knowledge.

The second point regards the usefulness of the high di-
mensional views themselves. Specifically, do they actually
contain information that is not easily obtained otherwise?
In this regard we note that data cube processing costs are
skewed heavily towards the upper portion of the cube lat-
tice, where the largest views are found. Figure 1 illustrates
the symmetrical structure of a simple four dimensional lat-
tice. Figure 2(a), on the other hand, depicts the relationship
between the number of views at a given level k of the graph

— represented as

�
d
k

�
— and the size of those views for

a fairly typical 10-dimensional data set with mixed cardi-
nality and one million records. Note that virtually all of
the weight (i.e., table size) is associated with views of five
to ten dimensions. At seven dimensions, for example, 12%
of the views represent 22% of the weight, while the three-
dimensional level has the same number of group-bys but less
than one percent of the total weight.

In Figure 2(b), we more closely examine the record distri-
bution (not just the file sizes) for the same problem instance.
The total number of records in the aforementioned data cube
is 642,197,905 — almost 650 times greater than the one mil-
lion records in the input set. More striking is the effect of
sparsity on the average record counts of views at each di-
mension. We can see that by six dimensions, the average
view contains almost 97% of all records in the original input
set, while at seven dimensions the ratio approaches 99.9%.
In other words, in the upper portion of the lattice almost no
aggregation takes place and the views are virtually identical
to one another.

Of course, an increase in data set size also has an effect on
record sparsity. One might imagine, then, that very large
data sets — the kind we might expect to see in production
environments — might produce dense views at much higher
levels in the lattice. To assess this issue, we have developed
a simple model that, for arbitrary fact tables, allows us to
approximate the density threshold , the point at which the
lattice becomes dramatically more sparse. We note that our
method is intended to provide a threshold approximation, as
the mixed cardinalities and inherent skew of specific data
sets produce density thresholds that may, in practice, strad-
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Figure 2: (a) View count and storage requirements.
(b) Record sparsity.

dle several levels in the lattice. Nevertheless, it provides a
very useful and informative picture of the degree of aggre-
gation in the views of the complete lattice.

The model is based upon the notion of the“average”cardi-
nality Cavg of the data cube. We use Cavg to then compute
the potential space of a “typical” view at level k (i.e., a view
with k attributes) of the lattice. By potential space, we are
referring to the enclosing space of the cube, equivalent in
value to the cardinality product

Qd
i=i Ci, for C1, C2, ...Cd.

Once this approximate potential space is defined, it can be
passed to a probabilistic size estimator to compute the ex-
pected row count of a specific view. Feller, for example,
shows that given a set of n elements, the expected number
x of distinct elements obtained when randomly making r se-
lections is n−n(1−1/n)r [4]. Alternatively, we can estimate
the size of a given group-by as follows:

Proposition 1. For an input set of size n, and a view

v with a potential space of size Sv, we may estimate the

number of records r in v by performing the summation

x =

SvX
i=0

1

(Sv − i)/Sv
=

SvX
i=0

Sv

(Sv − i)
,

terminating the summation when either i ≥ Sv or x ≥ n.

Though the proof of equivalence with Feller’s theorem is
straightforward, we reserve the details to the longer version
of this paper. With respect to the approximate potential
space, it is defined as follows.
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Figure 3: The density threshold for varying dimen-
sion counts and data set sizes.

Definition 1. For a d-dimensional data cube with at-

tribute cardinalities of C1, C2 . . . Cd, we define the approx-
imate potential space ak of a view v with k attributes

as 0� d

vuuti=dY
i=1

Ci

1Ak

Here, we approximate the “average value” within the car-
dinality set for the full space by taking the d-th root of Sd.
The k-th power of this approximated cardinality can then
be used to estimate the size of the potential space for any
view with k attributes. Now, for an approximated space
ak on a view v with k attributes, we may use our simple
estimation model to approximate the number of records r
in V as

Pak

i=0
1

(ak−i)/ak

. Note that the output of this sim-

ple analytical model is a function of all of the relevant data
cube parameters: d, k, C, and n. When applied to practical
data cube problems, it can be used to predict the density
threshold with impressive accuracy. For example, given the
parameters of the problem represented by Figure 2(b), the
model predicts a proportional size of 34% at 4 dimensions,
72% at 5 dimensions, and 95% at 6 dimensions, results that
are within 3% of the observed values.

As previously noted, however, the method’s real signif-
icance is that it permits us to assess the impact of data
set size and dimension count on the position of the density
threshold. Figure 3 provides an illustration of these inter-
relationships. Specifically, it depicts the density threshold
on data sets of 8, 10, 12, and 14 dimensions, ranging in
size from 100,000 to 100 million records. We note that for
the purposes of this evaluation, we have defined the density
threshold very conservatively so that a view is considered to
be sparse only when it contains at least 99% of the records
of the original fact table. Given this definition, the graph
illustrates two very important points. First, it confirms the
assertion that the density threshold does not increase with
an increase in dimension count. In other words, for a fact
table of a given size and dimensionality between 8–14, the
threshold remains constant. Second, for a given dimension
count, it takes a massive increase in input size to significantly
increase the threshold. In fact, an order of magnitude size
increase is required to move the threshold by a single level.

These results suggest that in DW/OLAP systems, the
most appropriate target is likely not a fully materialized data
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Figure 4: A PipeSort scheduling tree. Dashed lines
are sort edges, solid lines are scans.

cube at all. Rather, a far more appropriate target is a par-
tially materialized cube consisting of the base cuboid — the
d-dimensional group-by that serves as a parent for all views
— and some or all of the small, heavily summarized views
below the fifth or sixth level of the lattice. With respect to
the recently proposed tree-based structures, this observation
is quite significant. The Dwarf, for example, is particularly
effective at representing high dimensional spaces. However,
the vast majority of high dimension summary views, apart
from being rarely accessed in practice, are rendered largely
irrelevant by the base cuboid. In terms of the lower dimen-
sion views, the tree-based models require the query engine to
extract a small number of aggregate records from a massive
and complex data structure. In this case, direct access to a
focused set of small relational tables is an attractive alter-
native. More importantly, construction of these summary
tables requires no significant extensions to current DBMS
platforms. For this reason, we suggest that efficient par-
tial cube materialization should be viewed as a fundamental
OLAP problem.

4. OUR PREVIOUS MODEL
As previously noted, the methods in [3] provide the only

functional partial cube implementation of which we are aware.
Since our new methods also build upon a greedy approach,
we briefly review the details of our previous research below.

We refer to the original method as GreedyCube and note
that it is based upon the pipeline model of the PipeSort
[1]. There, the idea is to create a series of prefix ordered
pipelines, in which each pipeline shares a common sort order.
As such, it is possible to compute each view in the pipeline
with a single linear pass through the pipeline’s sorted head
node. The pipelines are organized in what is referred to as a
schedule tree, a graph that is ultimately composed of the 2d

views and a set of 2d−1 scan edges and sort edges. Figure 4
illustrates a PipeSort scheduling tree and its constituent pre-
fix pipelines.

Very simply, the basic GreedyCube technique works as
follows. First, a partial tree is created from the user-defined
view subset. This is an incremental, greedy approach that
uses a simple costing strategy to add views in a bottom-
up fashion to an initially empty tree. Specifically, the cost
model is used to determine the cost of constructing a given
view versus the savings it brings via its ability to compute
existing views more efficiently. We refer to this initial graph
as the essential tree. This tree is then augmented with non-

BCAD

CA BC AB

BCA

BCAD

CA BC AB

Figure 5: A partial cube in which the non-essential

node BCA has been integrated into the user selected
set.

essential views that have the potential to reduce the global
construction cost by virtue of their ability to efficiently com-
pute previously selected views (see Figure 5).This process
continues in a greedy fashion until it is no longer possible
to add any views that reduce the computational cost of the
cube. Structurally, the algorithm is formulated as a series of
three nested loops with time complexity O(2d)3). As noted
previously, the performance of this algorithm is only likely
to be acceptable for very low dimensional spaces.

5. A NEW QUADRATIC TIME VIEW CON-
STRUCTION METHOD

Though our objective is the computation of view subsets,
we will begin the discussion of our new work with a descrip-
tion of an algorithm that can be used for the computation
of the full cube. Recall that the PipeSort uses a combina-
tion of sorts and scans to reduce global construction costs.
Clearly, using a linear scan to compute a child from a parent
is preferred to the use of a much more expensive sort. Still,
some minimum number of sorts is actual required — since
each pipeline begins with a sort — so the question becomes:
How can we minimize this cost?

Let’s us begin with a lattice of d dimensions. At a given
level k (i.e., group-bys with k attributes), we have exactly�

d
k

�
views. For each of these j views, there are exactly

d− k possible parents at level k + 1. Assume that we divide
the set j into two subsets, Q and M , such that Q contains
the largest of the j views, and M the remainder. Now, if we
use the cheaper scan edges to connect parents at level k+1 to
children in Q, we will eventually be left with“required sorts”
for the views of M , the set of smallest children. For each
such view v in M , we are free to choose its smallest available
parent at level k + 1. Since, by definition, |v| ≤ |v′| for
v ∈ M, v′ ∈ Q, then |w| ≤ |w′| where w and w′ represent the
parents of minimum required size for v and v′ respectively.

Algorithm 1 presents a new greedy method based upon
this observation. We begin by identifying the largest “free”
(i.e., not yet selected) view v in the lattice. Our objective
is to build an entire pipeline beneath this point. We select
the parent w of v by identifying the smallest view w at the
preceding level (initially the fact table) that contains a su-
perset of the attributes of v. The view w becomes the “sort”
parent SP of v. Next, we recursively descend down through
the lattice (using a simple supporting function called Ex-

tendPipeline), selecting the largest child view amongst the
available candidates and adding it to the pipeline with a



“scan”. This process continues until no “free” children can
be found for the current tail node. We then execute the
next iteration of the main loop, selecting the next largest
view in the lattice and building another pipeline. The al-
gorithm terminates once all the nodes of the lattice L have
been added.

Algorithm 1 Recursive Tree Construction

Input: The full d-dimensional lattice L.
Output: An essential tree E.
1: Sort the views of L by estimated size.
2: repeat
3: Select the next largest “free” view v.
4: for all “free” views w at previous level that contain a

superset of the attributes of v do
5: SP = w, if w < current SP
6: Connect SP to v with a “sort” edge.
7: ExtendPipeline(v)
8: until all nodes have been added to E

With respect to the time complexity, we note that we
begin with a O(n lg n) sort of the n views of the lattice,
followed by a REPEAT loop in which we add a new pipeline.
For each of the O(n) views included during this progress, we
select its parent and children from O(d) total choices. Total
cost is therefore bounded as O(n lg n) + O(dn). We note
that since lg n = lg 2d = d, the bound can be re-written as
O((n ∗ d) + O(dn) = O(dn).

Of course, our objective in this paper is to produce schedul-
ing trees for partial cube problems. We note that the original
PipeSort algorithm cannot be directly utilized as it relies on
a bipartite graph matching phase that requires all views at
every level of the lattice to be generated. By contrast, a
unique feature of our new approach is that we can actually
modify the base algorithm to permit pipelines to“skip”levels
in the lattice. Specifically, we extend the processing model
to allow it to include all possible parents and children of v in
the view selection process. An arbitrarily-defined partial set
S can then be materialized. In terms of cost complexity, we
note that instead of O(d) potential parents and children for
each node v, we have O(n) such candidates. Consequently,
the run-time for the modified recursive partial cube algo-
rithm is O(n log n) + O(n2) = O(n2).

5.1 Adding Non Essential Views
Having generated the essential tree, we must now pro-

vide an efficient mechanism for adding non essential or non-
selected views so that (i) the global cost is further reduced
and (ii) we maintain the O(n2) upper bound of Algorithm 1.
To do this, we utilize a technique by which views can be
added directly to the tree, without the need to review all
candidate nodes before selecting a single“best view”. Specif-
ically, the new algorithm greedily adds candidate views as
soon as it determines that a new node has the potential to
produce any reduction in the global tree cost. In this re-
spect, the order of consideration is critical. Specifically, it
is possible to commit to an alteration to a pipeline — say
with the insertion of a scan edge — only to later find a much
smaller non-essential view that could have more cheaply sup-
ported the same child set. Figure 6 provides a simple exam-
ple.

In this respect, we note that the potential for error when
greedily adding non-essential views is actually most pro-
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Figure 6: (a) The original tree (b) ABCD is inserted
with a scan edge (c) A more cost effective solution;
i.e., the “inclusion” cost of ABCE is just 1000.

nounced when selecting views from the guiding graph in a
top down fashion. This is the case since (i) the unneces-
sary addition of larger views in the upper levels represents
a larger penalty relative to the global cost, and (ii) if views
are sorted and then evaluated by size, a bottom up traver-
sal ensures that all possible children of v have already been
added to the tree by the time v is considered for inclusion.
This is the case since a view u can only be a child of v if
size(u) ≤ size(v).

Algorithm 2 presents a new method for adding non es-
sential views. We take as input an essential tree E and a
potential set P = L−S. To begin, the views of P are sorted
by size, this time in ascending order. Once the sorted list is
created, we proceed by processing each candidate to deter-
mine possible parents and children in E. If a positive benefit
for the inclusion of v is calculated, we add v to E and move
on to the next view in the list. The algorithm terminates
when we have examined all views from P .

Algorithm 2 Addition of Non Essential Views

Input: An essential tree E and a potential set P .
Output: A complete scheduling tree.
1: Sort the views of P in ascending order by size.
2: for each view i in the sorted set P do
3: Select most cost effective parent in E
4: Select the child set that would provide greatest cost

savings if constructed from i
5: if net benefit > 0 then
6: add i to E as per the previous plan

With respect to cost, note that the algorithm consists of
a sorting phase, followed by a view inclusion phase. The
sort requires time O(n log n), where n is equivalent to the
number of views in P . In the inclusion phase, we simply
examine the O(n) parents and children for each of the O(n)
views in P . The result is an O(n log n) + O(n2) = O(n2)
bound.

Note that for a partial cube problem whose input is an
n-node graph, the run-time of an O(n2) solution will ex-
ceed that of an O(n3) solution if the dimension count for
the quadratic solution is increased by 50%. We can see that
this is the case by solving the following simple inequality:
(2dβ)2 ≥ (2d)3 = β ≥ 3/2, where β represents the multi-
plicative factor for the dimension count. So, for example, if
the O(n3) solution is practically feasible for 8 dimensions on



a given computing platform, this would imply that the new
O(n2) algorithm is viable in the range of 12 dimensions on
the same machine.

6. IMPROVING SCALABILITY
While the O(n2) complexity of the new model allows us

to comfortably work in 10–12 dimensional spaces, it is some-
times necessary to support even larger cube problems. To
do so, we have developed a heuristic pruning technique to
reduce the search space without compromising the quality of
the schedule trees. Recall that a candidate node is added to
the current spanning tree if and only if the cost of its phys-
ical creation is less than that of the savings it bring to the
generation of its potential children. In fact, we can actually
make a stricter statement, namely that a candidate node v
will not be added to the spanning tree R if it cannot improve
the construction cost of at least two child nodes already in R
(only one of which can share the parent’s sort order). While
the proof of this statement is relatively straightforward, and
consists of a case-by-case enumeration of the alternatives,
we will leave the details to the longer version of this paper.

In addition, we observe that as we move from the bot-
tom to the top of P , it becomes progressively more unlikely
that a candidate v will be able to reduce the global tree
cost. This is so because as we move upwards through P , we
incrementally increase the number of dimensions in v and
therefore its sparsity. Eventually, v will be almost identical
in size to its potential parent views. This is significant since
parent views consist of a superset of the attributes in v and
can thus also serve as parents for any of the potential chil-
dren of v. In other words, the value of v as a non-essential
addition declines as we move towards the top of G since it is
increasingly unlikely that it will be more cost effective than
any number of other candidates.

Algorithm 3 incorporates the previous observations into
an effective heuristic solution. Beginning at the base cuboid,
the method moves downwards through the lattice, selecting
potentially “useful” views and adding them to a minimal set

M that will be used to provide candidate nodes to our greedy
algorithm. The logic for inclusion is as follows. For a given
candidate node v in L, we will assume that its largest parent
is already in G. We do this since (i) we know that any parent
of v can also serve as a parent of the children of v, and (ii) the
largest parent would produce the maximum possible benefit
for v. Furthermore, we have also suggested that the inclusion
of v requires that v have at least two child nodes. Therefore,
for each candidate node v, we conservatively estimate the
cost of the inclusion of v versus the existing alternative (i.e.,
of computing its 2 or more children from the current parent
w). With scan cost = s and sort cost = S, we must have
newCost < oldCost or s(w) + s(v) + S(v) < s(w) + S(w) =
s(v) + S(v) < S(w). Figure 7 illustrates how the evaluation
is performed.

For the sake of flexibility, the algorithm is augmented with
a user-defined confidence factor β that determines how ag-
gressively to prune the lattice. A β value of one implies
the assumption that v will only have two children. With
increasing values of β, the algorithm becomes more conser-
vative in that it allows for the possibility that v may have
many children.

In terms of cost complexity, an examination of the logic
demonstrates that we make a linear pass through the lattice,
looking for views to prune. At each step, we check the O(d)

Algorithm 3 Pruning for High Dimensions

Input: A lattice L, and a confidence factor β.
Output: A minimized set M .
1: for all candidate nodes v in L do
2: From the O(d) potential parents in L, find the smallest

parent w of v
3: if scanCost(v) + (β ∗ sortCost(v)) ≤ β ∗ sortCost(w)

then
4: add v to M
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Figure 7: (a) The original tree. (b) A dense ABC
node offers great benefit (450 < 800). (c) In contrast,
a sparse ABC node increases the cost (845 > 800).

possible parents of v. Because we are pruning the complete
lattice, there are only O(d) possibilities (at the level above),
not O(n). Thus the upper bound is O(d ∗ n). Finally, we
note that the pruning algorithm is the only method to iterate
over the full lattice.

7. EXPERIMENTAL RESULTS
In this section, we present experimental results for the par-

tial cube algorithms discussed in the paper. All tests were
conducted on a 3.3 GHz CPU, with 2 GB of memory and
a standard 120 GB SATA drive. Unless otherwise stated,
the default input set consists of one million records, with
10 dimensions of varying cardinalities of 10–100000 (recall
that data set size actually has little effect upon the density
threshold). Point distribution is uniform since, in the con-
text of subset generation, the use of large cardinality ranges
provides far greater costing complexity than data skew. Fur-
ther, synthetic test sets allow us to establish and explore a
broader range of core parameters. We note that we have
also utilized real data sets, and observed similar results, but
have not included them here due to space constraints.

7.1 Quality of Full Cube Scheduling Trees
While the selection of an optimal set (full or partial) is

NP-hard, and as such a provably optimal subset cannot be
easily defined, we do of course have the original PipeSort al-
gorithm that has been shown to produce excellent trees for
the full cube. Figure 8(a) illustrates the quality/weight of
the “Recursive Pipeline” trees produced by our new meth-
ods relative to PipeSort trees, as well as to the cubic time
Greedy Cube algorithm described in [3]. Note that both of



the greedy partial cube algorithms produce trees that are
less than six percent larger than those of the PipeSort for
dimension counts between six and twelve (the cubic time
method is only charted up to 10 dimensions). In fact, the
new O(n2) recursive pipeline algorithm produced trees in six
to 12 dimensions that were less than 0.1% larger than those
generated via the PipeSort.

7.2 Run Time Performance on the Full Cube
Figure 8(b) depicts the run time for the PipeSort and

the two partial cube methods for the tests in the previous
section. Note that a logarithmic axis was necessary since
the run-time for the Greedy Cube algorithm grew extremely
quickly beyond eight dimensions. For example, at 10 dimen-
sions the run-time was just over 2800 seconds, with both
PipeSort and our new quadratic algorithm completing in
under 20 seconds. By extrapolation, we estimate the time
required at 14 dimensions to be roughly 14 months (O(n3))
versus 5 minutes (O(n2)).

7.3 Computing Partial Cubes
In this section, we compare the schedule trees produced by

the two partial cube algorithms on selected sets of views. In
the absence of a viable partial cube alternative, we establish
a baseline by first (i) building the full data cube and keeping
only the selected set, and (ii) calculating each of the selected
views by a separate sort of the raw data set. The baseline
is defined as the faster of the two.

We then randomly select subsets consisting of 10%, 25%,
and 50% of the views in the full space. Because of the run-
time of the cubic time method, we restrict ourselves to di-
mension counts in the range of six to nine. Figures 8 (c), (d),
and (e) present the results. We note the gradual decrease
of relative weight reduction as we move toward higher di-
mensions. This is to be expected since an increase in dimen-
sion count implies an increase in the sparsity of intermediate
views which, in turn, implies an increase in size relative to
the raw data set. As such, the relative cost savings will de-
cline slightly in higher dimensions. Nevertheless, savings of
between 20% and 60% are generated by the new algorithm,
with no discernible advantage for the more expensive O(n3)
method.

Note, however, that the use of randomly selected subsets
such as these tends to underestimate the cost savings for
an important class of partial cube problems. Specifically,
in high dimension spaces, users and administrators typically
select the majority of views from the lower portion of the
lattice since such views are more intuitive to visualize and
interpret. Figure 8(f) illustrates the relative cost reductions
when the selected views are limited to those containing three
attributes or less (the algorithm, of course, is free to add
larger, non-essential views). For the sake of clarity, we re-
strict the experiment to the new quadratic time algorithm.
Under these circumstances, the algorithm consistently re-
duces the weight of the schedule tree by 60% to 70% for
dimension counts up to 14.

7.4 Addition of Non-Essential Views
As previously noted, one of the most important cases for

partial cube execution is the selection of views in the lower
regions of the lattice. Figure 8(g) illustrates the effect of
adding non selected views when the selected set consists en-
tirely of views with three or less attributes. Notice that

for both methods the addition of non essential views re-
duces the cost of the essential spanning tree by an additional
30% to 50%. Moreover, these weight reductions are consis-
tently large from 6 to 14 dimensions. The conclusion to be
drawn here is that there is really no reason to ever choose
the Greedy Cube algorithm since, not only is it not viable
on problems of practical size, but it simply does not produce
better schedule trees on either the full or partial cube.

7.5 Pruning the Guiding Graph
Our objective in this section is to (a) determine how signif-

icantly the potential set can be pruned and (b) understand
the impact of adjusting the confidence factor. With respect
to the first issue, Figure 8(h) demonstrates that as we in-
crease the dimension count — assuming a confidence factor
of one — the percentage of views pruned increases steadily
from a low of 2% (one of 64 views) at six dimensions to a
high of 74% (48,496 of 65,536) at 16 dimensions. Not surpris-
ingly, the practical benefit is significant. At 16 dimensions,
for example, the pruned input size is just 1/4 the size of
the original guiding graph. With an O(n2) algorithm, this
translates into a factor of 16 performance improvement.

In terms of the second issue, Figure 8(i) presents results in
14 dimensions for confidence factors from one to three (and
views with three attributes or less). We note that as the
confidence factor increases, there is a huge drop off in the
number of views pruned, from 56% to 34% to almost zero
when the confidence factor is three. Clearly, a conservative
approach to pruning will have a significant impact upon run
time performance. More importantly, however, there is vir-
tually no impact upon the quality/size of the tree as we
become more conservative. As such, we can conclude that
aggressive pruning is a low-risk option for improving the
scalability of the partial cube algorithm.

8. CONCLUSION
In this paper, we have presented a suite of greedy methods

for the computation of partial cubes in practical DW/OLAP
spaces. While full cube computation has received greater at-
tention in the literature, it is the partial cube problem that
is actually far more relevant in large production environ-
ments. While greedy methods have been used in the past
— for both view identification and selection — their cubic
time cost complexity often makes them impractical for more
realistic settings. Using a series of observations regarding
the nature of data cube spaces, we have developed methods
that produce impressive scheduling trees in quadratic time.
With the addition of a simple pruning method, the algo-
rithms have been run effectively at up to 16 dimensions. In
addition, the proposed methods can be integrated into ex-
isting DBMS platforms with very little effort. In fact, it is
possible to run the current methods against a fact table and
then store the computed partial set directly into a standard
DBMS. As a result, we believe the new methods represent
the most practical approach currently available for the im-
portant problem of data cube subset generation.
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