
Parallel Querying of ROLAP Cubes in the Presence
of Hierarchies

Frank Dehne
Carleton University

Ottawa, Canada

frank@dehne.net

Todd Eavis
Concordia University

Montreal Canada

eavis@cs.concordia.ca

Andrew Rau-Chaplin
Dalhousie University

Halifax, Canada

arc@cs.dal.ca

ABSTRACT
Online Analytical Processing is a powerful framework for the
analysis of organizational data. OLAP is often supported
by a logical structure known as a data cube, a multidimen-
sional data model that offers an intuitive array-based per-
spective of the underlying data. Supporting efficient index-
ing facilities for multi-dimensional cube queries is an issue
of some complexity. In practice, the difficulty of the in-
dexing problem is exacerbated by the existence of attribute
hierarchies that sub-divide attributes into aggregation layers
of varying granularity. In this paper, we present a hierar-
chy and caching framework that supports the efficient and
transparent manipulation of attribute hierarchies within a
parallel ROLAP environment. Experimental results verify
that, when compared to the non-hierarchical case, very little
overhead is required to handle streams of arbitrary hierar-
chical queries.

Categories and Subject Descriptors
H.2.7.b [Database Management]: Data Warehouse and
Repository; H.2.2.a [Database Management]: Access Meth-
ods

General Terms
Algorithms Design Performance

Keywords
Hierarchies, Caching, Data Cubes, Aggregation, Indexing,
OLAP, Granularity, Materialization, Parallelization

1. INTRODUCTION
Online Analytical Processing (OLAP) has become an im-

portant component of contemporary Decision Support Sys-
tems (DSS). Central to OLAP is the data cube, a multidi-
mensional data model that presents an intuitive cube-like

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DOLAP’05, November 4–5, 2005, Bremen, Germany.
Copyright 2005 ACM 1-59593-162-7/05/0011 ...$5.00.

East

West

North

South

Aut
om

ot
iv
e

H
ou

se
ho

ld

2004

2005

East

West

North

South

2005
2004

XG
27

XY53

G
L7

5

R
T57

R
T91

H
J4

5

H
Y35

H
K46

U
J6

7

JW
30

N
H
22

Bra
ke

s

Eng
in
e

2004
2005

In
te

rio
r

App
lia

nc
es

Fur
ni
tu

re

East

West

North

South

(a)

Product

(b)

(c)

Figure 1: A hierarchical Product attribute broken
down from (a) category, to (b) type, to (c) product
number.

interface to both end users and DSS developers. In re-
cent years, the academic community has become increas-
ingly interested in the cube model and a number of efficient
cube generation algorithms have been presented in the lit-
erature[2, 16, 22].

For the most part, the focus of these algorithms has been
the generation of the cube data structure itself. Methods or
techniques for efficient access/querying have received rela-
tively little attention. When such methods have been pre-
sented, they typically assume the existence of non hierarchi-
cal attributes. In practice this is rarely the case. Figure 1
provides a simple example from the automotive industry.
Here, we have three feature attributes — Product, Loca-
tion, and Time — that can be viewed in terms of one or
more measure attributes. In this case, each cell in the cube
might be associated with an aggregated total for the measure
attribute Total Sales. Note how the hierarchical Product
dimension on the x-axis is broken down into increasingly
finer levels of aggregation.

While it is possible to represent each of these hierarchical
levels as a distinct feature attribute, doing so dramatically
increases the complexity of the underlying problem. Specif-
ically, the number of possible attributes or group-bys in a
d-dimensional data cube is exponential on the number of
dimensions. For example, a 10-dimensional cube would gen-

89

erate 2d = 1024 aggregated group-bys. By contrast, the
total number of group-bys in the presence of hierarchies is
given as

Qd

i=1(hi + 1) when constructed from a data cube
with d attributes, where dimension i has a hierarchy of size
h [20]. The same 10-dimensional data cube with three-level
hierarchies on each dimension would produce over one mil-
lion group-bys. Clearly this is infeasible when the original
input set may already contain terabytes of data.

An alternative approach to the generation and storage
of fully materialized hierarchical cubes is to produce data
cubes containing hierarchies represented only at the finest
level of granularity. Hierarchical roll up or drill down is
then done in real time during query resolution. In order for
this to be feasible, the cube architecture must support both
fast indexing and hierarchy-sensitive data structures. The
associated overhead should be largely transparent to the end
user.

In this paper we present a series of algorithms and data
structures for the efficient manipulation of attribute hierar-
chies in “real time”. The framework has been integrated into
the Sidera ROLAP Server, one component of the larger cgm-
Cube Project [3, 5] that is designed to support terabyte scale
data cubes. Our experimental results demonstrate that not
only are the storage requirements — both in memory and on
disk — quite modest but that real time processing overhead
is likely to be imperceptible to the end user.

The rest of the paper is organized as follows. In Section
2 we discuss related work. In Section 3 we introduce the
basic Sidera framework, while Section 4 describes the model
and data structures for hierarchical attribute representation.
Section 5 discusses the algorithms used by the Sidera par-
allel query engine. Section 6 presents our experiments and
Section 7 the concluding remarks.

2. RELATED WORK
The data cube model was formally introduced in [9]. In

the succeeding years, a series of algorithms for the efficient
computation of the data cube were presented. Most were
based in some way upon the cube lattice presented in [11]
that identified the relationships between group-bys sharing
common attributes. Various top down [1] and bottom up

[2, 16] algorithms were developed, each exploiting some un-
derlying sorting or hashing mechanism. Academic research
has generally favored the relational or ROLAP approach, in
which group-bys are stored in conventional table format. In
[22], an array-based algorithm was presented. Though very
efficient for dense, low dimensionality/cardinality data, this
multi-dimensional or MOLAP model may be less scalable in
large, sparse problem spaces.

Indexing the materialized cube has received less atten-
tion, despite its obvious effect upon performance. In [18], a
number of conventional techniques including B-tree key con-
catenation and bit-mapped indexes are reviewed. Efficiency
issues for high dimensional range queries are presented. True
multi-dimensional index mechanisms offer greater potential.
While dozens of such methods exist in the literature [7], the
r-tree has arguably been the most promising [10]. OLAP-
oriented r-tree usage is discussed in [17], with r-tree packing
strategies presented in [12]. The related issue of caching for
multi-dimensional OLAP queries was discussed in [6], but
only in the context of MOLAP structures. The Dynamat
System [13] provides a ROLAP-oriented model for dynamic
view management and the caching of aggregation queries.

In terms of attribute hierarchies, published methods are
even less common. Storage estimates for fully materialized
hierarchies are presented in [20]. Perhaps the most interest-
ing hierarchy-aware work is found in [21], where the authors
propose a non-relational tree-based cube structure that elim-
inates prefix and suffix redundancies to create a cube data
structure that is both compressed and searchable along at-
tribute hierarchies. It is not clear, however, how amenable
this structure is to complex range queries (as opposed to
point queries) or the parallelization and external memory
requirements of enterprise-scale data warehouses.

Parallelization for higher performance has also tended to
focus upon cube generation [14, 15]. To our knowledge,
the only true comprehensive parallel OLAP systems are de-
scribed in [8, 4]. The first deals with the MOLAP framework
while the second is ROLAP based.

3. PRELIMINARY MATERIAL
The data cube is a multi-dimensional model that supports

an intuitive representation of core organizational data. For
a d-dimensional space, {A1, A2, . . . , Ad} we have O(2d) at-
tribute combinations or group-bys. Each of these k-attribute
subsets, k ⊆ d, represents a unique aggregation of one or
more feature attributes. We refer to the number of unique
values in each of the d dimensions as the attribute cardinal-
ity Ci, 1 ≤ i ≤ d. The complete cube space is equivalent to
the cardinality product

Qd

i=0 Ci. Large cardinality products
are associated with sparse cube spaces.

While the cube can be described as a logical data model,
it often forms a physical model as well, in that group-bys
are often pre-computed so as to improve real time query
performance. If the data is physically stored as a multi-
dimensional array, we have a MOLAP design. MOLAP
provides implicit indexing but performance sometimes de-
teriorates as the space — and the associated cube array
— becomes more sparse (high dimensioanlity/high cardi-
nality). Relational OLAP stores group-bys as distinct tables
and scales well since only those records that actually exist
are materialized and stored. However, it requires explicit
multi-dimensional indexing in order to be used effectively.

3.1 Parallel ROLAP Architecture
Contemporary data warehouses have grown enormously

in size, with the largest now pushing into the multi-terabyte
range. For these massive data sets, multi-CPU systems of-
fer great potential. The Sidera server was designed from
the ground up as a high performance ROLAP indexing and
query engine. The cube generation algorithms, which are
part of the larger cgmCube system, are fully parallelized
and are load balanced and communication efficient on both
shared disk and shard nothing cluster architectures. Meth-
ods for both full cube (all 2d views) and partial cube (< 2d)
materialization are supported.

Explicit multi-dimensional indexing is provided by a forest
of parallelized r-trees. The r-tree indexes are packed using a
Hilbert space filling curve so that arbitrary k-attribute range
queries more closely map to the physical ordering of records
on disk. The Hilbert-ordered records are striped across each
of the p disks of the parallel machine where each striped
partition forms a partial r-tree index.

Queries are distributed to each of the p nodes in parallel,
allowing each of the processing nodes to participate equally
in the resolution of every query. Load balancing errors due

90

Disk

Local ROLAP
Server

Instance

Disk

Parallel Service Layer

Local ROLAP
Server

Instance

Disk

Service APIService API

Frontend

End User End User

User API
SQL/MDX

User API
SQL/MDX

Query Distribution
Result Collection

Disk

Local ROLAP
Server

Instance

Disk

Disk

Server
Backend

External Interface
Query Reception
Interpretation

Data Format Translation
User Sessions
Meta data

Figure 2: The Parallel Rolap Server architecture.

to set partitioning are typically less than 2%. In effect, each
node serves as an independent ROLAP server, requiring no
direct knowledge of peer processing nodes. Figure 2 provides
a simple illustration of the hardware/software architecture
for the Sidera query engine and the cgmCube system. Note
that a Parallel Service API provides functionality (sorting,
aggregation, communication, etc.) that allows local servers
to operate independently.

3.2 Answering Queries
Before presenting the algorithms for hierarchical query

resolution, we briefly discuss the core mechanisms for the
original query engine. Algorithm 1 provides a high level
description of Sidera’s query resolution logic. The query in-
terface is designed to be transparent, so that the user need
not be aware of physical storage properties. We refer to this
model as the virtual data cube. Queries are passed to each
node so that a partial result can be computed. Because par-
tial data cubes are often constructed in practice, the system
may need to identify surrogates since the user-specified view
may not physically exist. Differing sort orders may also need
to be addressed. Queries are transformed appropriately and
partial results are obtained. A highly optimized Parallel
Sample Sort [19] forms the basis of the aggregation, merg-
ing, and ordering operations. Figure 3 provides a graphical
illustration of the Sidera resolution model. Note how the end
result exactly matches the user query, regardless of internal
data characteristics.

4. ATTRIBUTE HIERARCHIES
In practice, a dimension will often contain a hierarchy

that represents a set of unique aggregation granularities on
a given attribute. A hierarchy is constructed on top of a
base attribute A(1), which can be interpreted as the finest
level of granularity on that dimension. With our earlier

Algorithm 1 Outline of Distributed Partial RCUBE Query
Resolution

Require: A set S′ of indexed group-bys, striped evenly
across p processors P1, . . . Pp, and a multi-dimensional
query Q.

Ensure: Query result deposited on front-end or distributed
across the p processors.

1: Pass query Q to each of the p processors.
2: if the attributes in Q match those of disk view T then
3: select T as the resolution target

4: else
5: Locate surrogate group-bys T containing a superset of

the attributes in Q. Select the one with smallest size
as the resolution target.

6: end if
7: Transform Q into Q′ as per attribute ordering of T

8: Add wildcard values for the peripheral attributes.
9: In parallel, each processor Pj retrieves records Rj

matching Q′ for its local data and reorders the values
of Rj to match the order of Q. Pj also removes the
redundant values for the peripheral attributes of T .

10: Perform a Parallel Sample Sort of R1 ∪ R2 ∪ . . . ∪ Rp

with respect to the attribute ordering of Q. While per-
forming the sort, aggregate duplicate records introduced
by the peripheral attributes of T .

11: if the query result is to be deposited on the front-end
then

12: collect result via a MPI AllGather (p node transfer).
13: end if

CDAB

ACBE

ACBDE

Surrogate Pool

Intermediate
Superset
on ABCD

Final Result:
ABC

A = 10/20
B = 1/6
C = 15/50

Initial User
Query on the

View ABC Query
Engine

C = 15/50
D = min/max
A = 10/20
B = 1/6

Resolve Transformed
Query on Surrogate

Identify
Cheapest
Surrogate

Sort and
Aggregate

Permute Partial Result

Figure 3: Basic query resolution, including surro-
gate exploitation.

91

example in Figure 1, the base attribute would be Product
Number. The secondary attribute A(2) would be Product
Type, while the tertiary attribute A(3) would be Product
Category. Collectively, we refer to hierarchy levels above
the base as sub-attributes. For a hierarchical attribute A,
information captured by the attribute A(i) can always be
obtained from A(j) when i > j ≥ 1. This understanding is
fundamental to the model presented in the remainder of this
paper, in that data is stored only for the base attribute. As
we will see, queries on other sub-attributes are mapped to
this granularity level.

We now describe the notion of hierarchy linearity. First,
note that A(i) is considered a direct descendant of A(j) if A(i)

is the child of A(j) in the hierarchy. A hierarchy is linear
if for all direct descendants A(j) of A(i) there are |A(j)| + 1
values, x1 < x2 . . . < x|A(j)|

in the range 1 . . . |A(i)| such

that

A(j)[k] =

xk+1X
l=xk

A(i)[l]

where the array index notation [] indicates a specific value
within a given hierarchy level. Informally, we can say that
if a hierarchy is linear, there is a contiguous range of values
R(j) on A(j) that may be aggregated into a contiguous range
R(i) on A(i). As a concrete example, the Time hierarchy is
linear in that a contiguous range of day values — say, 15 to
41 — can always be aggregated into a contiguous range of
month values — in this case 1 to 2.

4.1 Preparing Hierarchies for High
Performance ROLAP

The Time hierarchy is what we refer to as an implicit hi-
erarchy, one whose linearity is self-evident. The linearity of
other attributes is not always immediately obvious. With an
alphanumeric Product Number, for example, it is not even
clear how a Product Number such as “BY26T7999” com-
pares to one like “GT45J7586” (in terms of < or > opera-
tions). The process of mapping ranges of Product Category
or Product Type sub-attribute values to a corresponding
range of Product Number values is therefore not clearly de-
fined.

Note that we cannot simply make a linear pass through
the native data set and assign identifiers to records simply
based upon the order in which they appear. Hierarchical at-
tributes mapped in this manner would be non-linear since an
arbitrary mapping at the level of the base attribute would
lead to non-contiguous ranges of non-base attributes. In-
stead, we enforce linearity by building mapping tables that
are ordered by dimensions A(k)×A(k−1) . . . A(1). Figure 4 il-
lustrates the mechanism for a three-level Product hierarchy
— Product Number (base), Product Type (secondary), and
Product Category (tertiary). The mapping table consists of
a set of n records, with n equivalent to the cardinality C

of the primary attribute A(1) (i.e., Product Number). That
is, for each product number, we create a record contain-
ing the Product Number and the corresponding Type and
Category. A k-dimensional sort — with primary attribute
Category, secondary attribute Type, and tertiary attribute
Number — is performed on the n records. Upon comple-
tion, we associate the distinct values of each column with
consecutive integer IDs.

Automotive

Household

Interior

Engine

Brakes

Furniture

Appliances

XY53
XG27

GL75
RT57
RT91

HJ45
HY35

UJ67
HK46

JW30
NH22

Category ID Type ID Product ID

1

2

1

2

3

4

5

1
2

3
4
5

6
7

8
9

10
11

Figure 4: The mapping model, illustrated with a
simple three level Product hierarchy.

4.2 hMap: A ROLAP Hierarchy Data
Structure

The mapping mechanism creates a linear hierarchy on a
multi-level OLAP dimension. In order to be used by the
query engine, the model must be translated into an efficient
in-memory data structure. In particular, the data structure
must support the following range translations: (i) mapping
from a base level attribute value Ai(1) to the corresponding
sub-attribute Ai(j), j > 1; (ii) mapping from a sub-attribute
Ai(j) to the corresponding range on the base attribute Ai(1).

The translation is accomplished with the multi-dimensional
hMap data structure illustrated in Figure 5. Each core at-
tribute Ai in the d-dimensional problem space is associated
with hAi −1 hierarchy maps, where h is the number of hier-
archy levels for attribute Ai. No hierarchy map is associated
with the base level of any hierarchy; these mappings are ob-
tained indirectly. For a given level Ai(j), j > 1, the associ-
ated map is made up of the maximum value from the range
on Ai(1) corresponding to the current value of Ai(j). We use
Figure 4 as an example. Type 2 (Engine) corresponds to the
base level (Product ID) range 3 7→ 5. The second cell of the
Type map therefor contains the value 5.

Because of the significance of hierarchy mapping within
the query resolution model, hMap access time is of primary
importance. In this regard, we note that the worst case
query time is bounded as O(log |ld(Ai)|), where |ld(Ai)| is the
cardinality of the destination level of the hierarchy on Ai.
To see why this is the case, consider the following. To map
from a sub-attribute Ai(j) to the corresponding range on the
base attribute Ai(1), we simply index directly into the hMap
using the value of Ai(j) as the map index t. The contents
of the associated cell represents the maximum range value,
while map[t − 1] + 1 is the minimum value. This operation
can be performed in O(1) time.

By contrast, to map from a base level attribute value ε

on Ai(1) to the corresponding sub-attribute Ai(j), j > 1,
we must find the index position t, such that map[t] >=
ε AND map[t − 1] < ε. Because the values of the map
are sorted in ascending order, the query effectively reduces
to a binary search on the destination map. The size of this
map is |ld(Ai)|. We therefore have a bound of O(log |ld(Ai)|).
Note as well that a mapping between arbitrary levels in the

92

attribute 1 (Product #)

level 1 (Type)

attribute 2 (gender)

level 2 (Category)

2

5

7

11

9

7

11

Figure 5: The hMap data structure, again using the
Product hierarchy as an example.

hMap can be represented as an O(1) mapping to the base
level, followed by a mapping to any non-base level.

A second consideration for the hMap is its memory re-
quirements since we would like to save the bulk of these
resources for buffering and query caching. Note that while
we could guarantee O(1) for all operations on the hMap by
including a base level map, the cardinality of the base level
can be quite large. There might, for example, be a million
or more Products. By eliminating the base, the collective
size of a d-attribute hMap using non-base levels exclusively
is just:

dX
i=1

hAiX
j=2

|lj(Ai)|

where hAi is the number of levels in the hierarchy for
attribute Ai and |lj(Ai)| is the cardinality of level j for the
hierarchy on attribute Ai. In practice, this would likely
be no more than a few dozen kilobytes for large data cube
problems.

4.3 Caching Hierarchical ROLAP Queries
While parallel indexing facilities provide effective disk-

to-memory transfer characteristics, optimal query response
time relies to a great extent on an effective caching frame-
work. Given the sizable memory capacity of the parallel
ROLAP server, it is expected that a significant proportion
of user queries will be answered in whole or in part from a
hot cache.

Sidera provides a natively multi-dimensional, hierarchy-
aware caching model. Specifically, resolved partial queries
are cached on each node. For a new k-attribute range query,
with ranges R1, R2,Rk, the cache mechanism must de-
termine if, for each attribute Ai, the range Ri of the user
query is a subset of the range on Ai of the cached query.
If, for all k attributes, subset ranges are found, the cached
query is used in place of a disk retrieval. At present, the

View Manager

Hierarchy
Manager

Multi-dimensional
Caching

Query Transformation

Hilbert
R-tree Indexing

Query Resolution

Parallel
Service

API

I/O Subsystem

Figure 6: A block diagram of the module stack on
each of the local processing nodes.

Cache Manager does not process partial matches. That is,
it does not answer queries partly from the cache and partly
from disk. This, however, is the subject of ongoing research.

With respect to hierarchies, metadata is maintained by
the Cache Manager and is used in conjunction with the
hMap to perform translations between hierarchy levels. For
a k-attribute user query, an arbitrary number of attributes
can be re-mapped simultaneously. Note that queries are
cached in their preliminary state — that is, they are cached
in their base attribute form before final transformations have
been applied. This permits hierarchies to be mapped to
arbitrary levels — caching at levels above the base would
prevent the cache from answering queries at finer levels of
granularity.

It is important to note that the cache forms the basis of
the core Five Form query model. Specifically, all OLAP
servers should be able to support at least five basic OLAP-
specific queries: roll-up, drill-down, slice, dice, and pivot.
The query engine transparently manipulates the cache con-
tents to further refine previous user queries. A drill down,
for example, is produced merely by translating hierarchy
levels within the current cache.

4.4 The Software Model
Taken collectively, the software architecture on each pro-

cessing node forms a clean, modular design. Figure 6 illus-
trates how the hierarchy and caching components fit into the
larger design. In the current context, the primary modules
are the Hierarchy Manager, the Cache Manager, and the
View Manager. The first two have already been discussed.
The View Manager maintains meta data about the format
and sort orders of views physically stored on disk. It is used
when queries cannot be resolved from the Cache.

5. THE ALGORITHMS AND
IMPLEMENTATION

The initial query engine, described in Section 3.2, was
designed for simple, non-hierarchical attributes. With the
addition of the hierarchy maps and caching framework, the
algorithms had to be extended to accommodate more com-
plex queries. Algorithm 2 describes the new algorithm for
querying multi-dimensional data in the presence of hierar-
chies. Before processing, the query is transformed, taking
into account hierarchical specifications. An initial result is

93

obtained either from the cache or, if necessary, from disk.
If obtained from the cache, the prepareCachedQuery func-
tion is used to re-order the cached attributes in the query
buffer to match the order of the user query. Additional,
non-specified attributes are dropped. If disk access is re-
quired, the initial data is retrieved via the r-tree indexes
and is added to the cache. Query-specific post processing is
then performed.

Algorithm 2 Query resolution in the presence of hierarchies

Require: A set M of user-defined query parameters, a hi-
erarchy manager hM, a cache Manager cM, and a view
manager vM.

Ensure: Fully resolved and concatenated query result.
1: load user query uQ with parameter set M

2: transformQuery(uQ, hM, vM)
3: cached query cQ = cM.checkForMatch (uQ)
4: if cQ.cachedQuery != NULL then
5: temp buffer = prepareCachedQuery (cQ, uQ)
6: else {otherwise, go to disk to answer the query}
7: initial results I = processQuery (uQ)
8: add the initial results to the cache cM

9: end if
{do OLAP post processing}

10: result R = postProcessing(uQ, hM, I)
11: if results required on front end then
12: collect R with MPI Allgather
13: end if

5.1 Query Transformation
Algorithm 2 utilizes a function called transformQuery

to convert the user query into a hierarchy-aware form that
can be utilized by the query engine. This algorithm is de-
scribed in Algorithm 3. The primary function is to create
new range and hierarchy arrays. The range array provides
the new high/low values for each of the Ai attributes in
the user query. These are specified in terms of the base
attribute. The hierarchy array will continue to reflect the
hierarchy level requested by the user but will be updated
with wildcards to indicate full range matching on peripheral
attributes.

5.2 Post Processing
Once the initial result set has been constructed in Al-

gorithm 2, post processing must be performed in order to
produce the final result. This process is described in Algo-
rithm 4. Note that the post processing routines are com-
pletely oblivious to the source of the initial result (cache or
disk).

The translateHierarchyValues() function is used to
map base level values in the initial result set into their appro-
priate counterpart at the destination level of the hierarchy
(as defined by the user query). The system uses the Hier-
archy Manager, hMap, and hierarchy array (constructed in
Algorithm 3 for this purpose). A Parallel Sample Sort is per-
formed to order records as per the user request and to per-
mit efficient merging and aggregation. Note that the sorting
subsystem is heavily optimized to minimize the movement
of multi-value records. If surrogates or hierarchies have been
specified, some form of additional aggregation will also be
required. At this point, the result is ready for its return to
the user.

Algorithm 3 Query Transformation Algorithm

Require: A user-defined query uQ containing dimension
set M , a hierarchy manager hM , and a view manager
vM .

Ensure: Optimized query format.
1: actual view aV iew = qM.getDiskName(uQ), where

aV iew contains dimension set T , M ⊆ T .
2: create new attribute range array newR of size |T |.
3: create new hierarchy range array newH of size |T |.

{populate newR and newH}
4: for each attribute i in aV iew do
5: if uQuery contains aV iew[i] then
6: low = range minimum for aV iew[i] in uQ

7: high = range maximum for aV iew[i] in uQ

8: l = hierarchy level for aV iew[i] in uQ

9: if l! = the base level then
10: newR.low = hM.getBaseLow(aview[i], l, low)
11: newR.high = hM.getBaseHigh(aV iew[i], l, high)
12: end if
13: else
14: set high/low wildcards
15: end if
16: end for
17: update the uQ with newR, newH , and aV iew.

Algorithm 4 ROLAP Post Processing Algorithm

Require: query uQ, initial result I , hierarchy mgr hM

Ensure: final result R

1: user-specfied view uV iew = uQ.getUserV iew()
2: actual view aV iew = uQ.getV iew()
3: if uQuery contains hierarchies then
4: translateHierarchyValues(uQ, hM, I)
5: end if
6: do parallel sample sort

{permute intermediate results as per user request}
7: if surrogate used or hierarchy required (or both) then
8: R = orderAndAggregate(I);
9: else

10: R = arrangeSortedRecords(I);
11: end if
12: return R;

94

6. EXPERIMENTAL RESULTS
In this section, we provide experimental results that assess

the ability of the query engine to efficiently support queries
in the presence of hierarchies. We use synthetic data pro-
duced with our own data generator. Values are randomly
generated and uniformly distributed. We note that while
real data sets and/or skew patterns are important for other
query evaluations, our objective here is to specifically assess
the effect of hierarchy inclusion. As a result, synthetic data
sets are sufficient.

We use a 10-dimensional fact table, with cardinalities ar-
bitrarily chosen in the range 2–1000. The primary fact table
used to compute the data cube consists of 1,000,000 records
and, in turn, the materialized cube contains 1024 views and
approximately 120 million records.

All tests are conducted with the Sidera engine running on
a 16-node Linux cluster. Each node contains 1 GB of main
memory and and a pair of 1.8 Ghz Intel processors. Disks
are standard 40 GB drives and the nodes are connected by
a 100 Mb Fast Ethernet switch.

6.1 Evaluation of Hierarchy Overhead
Hierarchies are managed in the system without any addi-

tional space or storage requirements. The only overhead is
the run-time performance penalty associated with the map-
ping of queries to/from the base attribute. It is therefore
important to evaluate the performance of queries associated
exclusively with the base attribute versus those which are
free to access arbitrary hierarchy levels.

Because individual millisecond-scale queries cannot be ac-
curately timed, we use the standard approach of timing
queries in batch mode. In our case, an automated query
generator constructs batches of 1000 range queries, in which
high/low ranges are randomly generated for each of k at-
tributes, randomly selected from the d-dimensional space,
k ⊆ d. Sort orders are also randomly determined. We
note that this form of query generation actually overesti-
mates query response time since users typically query low-
dimensional views that can be easily visualized.

Figure 7 provides the test results. Here, we present the
total response time for hierarchical versus non-hierarchical
queries. (Results for 100,000 and 10 million records are
also shown.) By non-hierarchical, we mean queries that
have been restricted to the base attribute. The hierarchical
queries have values selected from a randomly chosen hierar-
chy level. Hierarchies are defined on j attributes, 0 ≤ j ≤ k.
Five batches are generated and the average run-time is com-
puted for each plotted point.

The graph demonstrates the modest degree of overhead
that hierarchical transformation produces. In fact, at each
of the three cube sizes, the total overhead averages less than
12%. Given that the parallel query engine processes approx-
imately 100 queries per second for the 1 million record fact
table, this added cost is likely to be negligible for the user.

6.2 Multi-dimensional Caching
In practice, OLAP queries tend to be iterative in nature.

Users often define an initial exploratory query and then
gradually refine the scope of the original query to obtain the
desired result. Drill down, roll up, slice and dice, and pivot
form the basis of such cube traversals. In the absence of a
multidimensional, hierarchy-aware caching framework, the
cost of Five Form processing is likely to grow significantly.

Figure 7: Comparison of hierarchical versus non-
hierarchical queries for three cube sizes.

Figure 8: Comparison of cache hit rates for three
buffer counts and batches of 1000 queries.

On average the caching design reduces query resolution
time by 10-20% (for 1000 query batches) on the current sys-
tem, depending upon the workload of the operating system
and the sizes of its own disk caches. Iterative, hierarchy-
based queries, in particular, are drawn exclusively from cache-
managed memory. Even for isolated range queries, however,
the cache framework is extremely effective. In Figure 8,
we see the effect of caching on the cube generated from the
1M-record fact table. Again, batches of 1000 queries and the
average of five runs are used. This time, however, the query
generator randomly generates simple range queries only; it-
erative queries are not used. The objective is to determine
the cache hit rate even if the canonical queries are absent.

For batches of 1000 queries, the graph shows the average
hit rate as the number of available buffers increases from
100 to 1000. Specifically, the rate moves from 265 per 1000
queries to 355. Interestingly, a doubling of the buffer count
from 500 to 1000 does relatively little as the 500-buffer model
is able to achieve an average hit rate of 340. Again, we note
that in practice the actual hit rate will be far higher than
this since virtually 100% of the canonical OLAP query forms
will be resolved directly from previously cached results.

7. CONCLUSIONS
The data cube has become an important theme in OLAP-

based academic research. While a number of efficient algo-

95

rithms for data cube generation have been presented in the
literature, practical querying facilities have received less at-
tention. Of particular importance is the ability to provide
core OLAP query functionality on top of hierarchical fea-
ture attributes. In this paper, we present algorithms and
data structures for hierarchical attributes that have been
integrated into cgmCube’s parallel data warehousing archi-
tecture. The methods do not require additional storage,
instead relying on efficient mapping and transformation ser-
vices that can be cost-effectively applied at run-time. In ad-
dition, a hierarchy-aware, multi-dimensional caching frame-
work provides direct support for fundamental OLAP query
types. Experiment results demonstrate the effectiveness of
both mechanisms for arbitrarily generated query streams.

8. REFERENCES
[1] S. Agarwal, R. Agrawal, P. Deshpande, A. Gupta,

J. Naughton, R. Ramakrishnan, and S. Sarawagi. On
the computation of multidimensional aggregates.
Proceedings of the 22nd International VLDB

Conference, pages 506–521, 1996.

[2] K. Beyer and R. Ramakrishnan. Bottom-up
computation of sparse and iceberg cubes. Proceedings

of the 1999 ACM SIGMOD Conference, pages
359–370, 1999.

[3] Y. Chen, F. Dehne, T. Eavis, and A. Rau-Chaplin.
Building large ROLAP data cubes in parallel.
International Database Engineering and Applications

Symposium, pages 367–377, 2004.

[4] F. Dehne, T. Eavis, S. Hambrusch, and
A. Rau-Chaplin. Parallelizing the datacube.
International Conference on Database Theory, 2001.

[5] F. Dehne, T. Eavis, and A. Rau-Chaplin. The
cgmCUBE project: Optimizing parallel data cube
generation for ROLAP. Journal of Parallel and

Distributed Databases, 2005. To appear.

[6] P. M. Deshpande, K. Ramasamy, A. Shukla, and J. F.
Naughton. Caching multidimensional queries using
chunks. SIGMOD ’98: Proceedings of the 1998 ACM

SIGMOD international conference on Management of

data, pages 259–270, 1998.

[7] V. Gaede and O. Gunther. Multidimensional access
methods. ACM Computing Surveys, 30(2):170–231,
1998.

[8] S. Goil and A. Choudhary. High performance
multidimensional analysis of large datasets.
Proceedings of the First ACM International Workshop

on Data Warehousing and OLAP, pages 34–39, 1998.

[9] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh.
Data cube: A relational aggregation operator
generalizing group-by, cross-tab, and sub-totals.
Proceeding of the 12th International Conference On

Data Engineering, pages 152–159, 1996.

[10] A. Guttman. R-trees: A dynamic index structure for
spatial searching. Proceedings of the 1984 ACM

SIGMOD Conference, pages 47–57, 1984.

[11] V. Harinarayan, A. Rajaraman, and J. Ullman.
Implementing data cubes. Proceedings of the 1996

ACM SIGMOD Conference, pages 205–216, 1996.

[12] I. Kamel and C. Faloutsos. On packing r-trees.
Proceedings of the Second International Conference on

Information and Knowledge Management, pages
490–499, 1993.

[13] Y. Kotidis and N. Roussopoulos. A case for dynamic
view management. ACM Transactions on Database

Systems, (4), 2001.

[14] S. Muto and M. Kitsuregawa. A dynamic load
balancing strategy for parallel datacube computation.
ACM 2nd Annual Workshop on Data Warehousing

and OLAP, pages 67–72, 1999.

[15] R. Ng, A. Wagner, and Y. Yin. Iceberg-cube
computation with PC clusters. Proceedings of 2001

ACM SIGMOD Conference on Management of Data,
pages 25–36, 2001.

[16] K. Ross and D. Srivastava. Fast computation of sparse
data cubes. Proceedings of the 23rd VLDB Conference,
pages 116–125, 1997.

[17] N. Roussopoulos, Y. Kotidis, and M. Roussopolis.
Cubetree: Organization of the bulk incremental
updates on the data cube. Proceedings of the 1997

ACM SIGMOD Conference, pages 89–99, 1997.

[18] S. Sarawagi. Indexing OLAP data. Data Engineering

Bulletin, 20(1):36–43, 1997.

[19] H. Shi and J. Schaeffer. Parallel sorting by regular
sampling. Journal of Parallel and Distributed

Computing, 14:361–372, 1990.

[20] A. Shukla, P. Deshpande, J. Naughton, and
K. Ramasamy. Storage estimation for
multidimensional aggregates in the presence of
hierarchies. Proceedings of the 22nd VLDB

Conference, pages 522–531, 1996.

[21] Y. Sismanis, A. Deligiannakis, Y. Kotidis, and
N. Roussopoulos. Hierarchical dwarfs for the rollup
cube. DOLAP 03: Proceedings of the 6th ACM

international workshop on Data warehousing and

OLAP, pages 17–24, 2003.

[22] Y. Zhao, P. Deshpande, and J. Naughton. An
array-based algorithm for simultaneous
multi-dimensional aggregates. Proceedings of the 1997

ACM SIGMOD Conference, pages 159–170, 1997.

96

