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Abstract 
Inferring phylogenetic relationships between sequences is a difficult and interesting 
problem. Assuming that there is enough phylogenetic signal in biological sequence to 
resolve every tree bifurcation, the resulting tree is a representation of the vertical descent 
history of a gene. A popular method to evaluate a candidate phylogenetic tree uses the 
likelihood of the data, given an empirical model of character substitution. The 
computational cost of search for the maximum-likelihood tree is, however, very large. In 
this paper, we present an algorithm for protein phylogeny using a maximum likelihood 
framework. A key design goal, which differentiates our method from others, is that it 
determines a range (confidence set) of statistically equivalent trees, instead of only a 
single solution. We also present a number of sequential algorithmic enhancements and 
both sequential and parallel performance results. 
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Introduction 
Proteins are genetically encoded polymeric molecules from linear chains of amino 

acids. Proteins adopt biologically active 3D structures through a process called protein 
folding. These structures offer the chemical environment to perform specific biological 
functions. Although genetics only indirectly encode 3D information, proteins have precise 
structures which are tuned through the evolution of their sequences. Over time, the 
sequence of a protein is perturbed by point mutations, insertions and deletion events. In 
general, phylogeny is the sequence of events involved in the development of the evolution 
of a gene, a species or a taxonomic group of organisms (Felsenstein, 2004). Molecular 
phylogeny reconstruction typically uses point mutations as a signal to infer the 
evolutionary history of homologous sequences. These reconstructed histories are 
represented by phylogenetic trees. Assuming that a gene has propagated via vertical 
descent (i.e. from a parent to subsequent generations), a phylogeny inferred from 
sequences can be extrapolated to the evolution of their respective host species.  

While a protein structure remains constant, all aligned residues in one column of a 
multiple sequence alignment (a site) are assumed to be in positional homology. This 
assumption allows the evolution of a site to be modeled as a distance-dependent Markov 
process of substitution (Felsenstein, 1981). Given this model, the tree topology which 
maximizes the likelihood of an alignment is known as the maximum likelihood (ML) tree.  

In terms of graph theory, a rooted phylogenetic tree is a binary tree. Each node 
represents a sequence while each edge, referred herein as branch length, represents the 
evolutionary distance between two sequences. This distance is measured in expected 
substitution per site. The main challenge in protein phylogeny is to traverse the search 
space to find the topology of the maximum likelihood tree. The search space for a tree 
with n terminal sequences is large, approximately equal to the term nT defined in Equation 
1 (Felsenstein, 2004). 
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For very small numbers of sequences, it is possible to exhaustively search the solution 
space. However, this solution becomes intractable for datasets with 15 or more sequences. 
For the general case, it is thought that the problem of maximum likelihood phylogeny is 
NP-hard (Felsenstein, 2004). Global methods to traverse this search space have already 
been implemented, specifically for protein phylogeny in PROML (Felsenstein, 2002) and 
PAML (Yang, 1997).  A selection of clever heuristics have been devised including 
Likelihood-Neighbor joining hybrid algorithms (Ota, 2001; Ota, 2000), Nearest 
Neighbors Interchange (Guindon, 2003) or the structural EM algorithm (Friedman, 2002).  
Although the performance of these heuristics is drastically better than global 
rearrangement search methods, their accuracy and robustness are affected (Vinh le, 2004). 
Another class of methods, Tree-Puzzle (Schmidt, 2002) are quartet based methods of 
reconstruction which are also popular in protein phylogeny. 

In this paper, we present an algorithm with emphasis on a systematic tree traversal for 
protein phylogeny that is suitable for a parallel implementation.  Our interest is in a 
practical algorithm that permits the solution of large protein phylogeny problems. This 
being the case, we explore both parallel and sequential efficiency enhancements. The 
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challenge is that the sequential enhancements often make the computation less regular, 
and therefore may reduce total time, yet still have a negative effect on speedup. 

Basic Parallel Method 
Parallel computation has been successfully applied to DNA phylogeny in packages 

such as Parallel DNAml (Ceron, 1998), and a parallel implementation of fastDNAml 
(Olsen, 1994). Parallel protein phylogeny can also be performed using the quartet 
puzzling method (Strimmer, 1996) implemented in TREE-PUZZLE (Schmidt, 2002).  In 
this section, we describe our basic parallel approach for protein phylogeny using a 
maximum likelihood framework. A key design goal, which differentiates our method 
from others, is that we are interested in determining a range (confidence set) of 
statistically equivalent trees, instead of only the best solution. The membership of the 
confidence set can be defined by a selection of ad hoc criterion or using confidence 
interval approximations. It is unclear as to what constitutes the real confidence intervals, 
so the confidence sets should be regarded as approximation at this point.  The statistical 
properties of using confidence intervals approximation as a means to determine the 
memberships of candidate tree topologies is beyond the scope of this paper but is 
described in Pepke et al.. 

Because we are ultimately interested in approximating confidence intervals in tree 
space, our basic algorithm attempts to explore a broad sample of topologies through the 
enumeration of all possible Subtree Pruning Regrafting (SPR) operations (Felsenstein, 
2004) for each tree in the solution pool. At each iteration, the SPR enumeration is 
performed on all trees newly added to the solution pool. The likelihood of each of these 
enumerated trees is optimized with respect to branch lengths. All returned trees are 
compared to the current best tree using a specified statistical test. The computation 
terminates when both the reference tree is unchanged and the evaluation of the trees 
corresponding to all SPR enumerations in the solution pool have been completed (i.e. no 
new trees are returned from an iteration). As a practical matter it may also be terminated 
when a user specified maximum number of iterations, M, has been reached. 

Our basic parallel method, as executed by the “Master” processor, is sketched in 
Algorithm 1; while Algorithm 2 outlines the task of the “Worker” processors. The key 
issues driving the design of these algorithms were as follows: 1) How to minimize 
communication overhead, 2) How to evenly distribute workload across the processors, 3) 
How to avoid re-evaluating trees which have been traversed in previous iterations, and 
lastly 4) How to efficiently perform branch length optimization, which is the most 
computationally intensive component of the method. In the remainder of this section we 
will discuss Issues 1 and 2, while Issues 3 and 4 are discussed in the following sections. 

Our general approach to minimizing communication is to perform some redundant 
computations. Whenever possible, Algorithm 1 avoids communicating sets of trees by 
communicating singleton trees and allowing the worker processors to reconstruct the sets 
at the cost of some redundant computation. For example, the Master processor 
communicates single trees from the current pool at Line 9 forcing the redundant 
computation of unique SPR descendants by the Workers (Lines 6-11) but saving on 
significant communication. The one place where communication is not spared is in the 
repeated communication of the reference tree, Tr, by the Master (Line 7). Maintaining this 
global information as to the best tree found globally to date allows the Workers to prune 
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their local pools, LP, and reduces both local computational costs (Lines 13-17) and 
communication costs (Line  21). 
 
Algorithm 1 covSEARCH Master 
Input:  A – the sequence alignment. M – the maximum number of iterations. FF – a filter function to 

determine trees in the confidence set. MLtolerance – a Maximum likelihood tuning parameter. 
Output: P - The set of most likely trees. 
 
1:     From the alignment A, load an initial pool of trees, P0,  or generate one using neighbour joining.  
2:  Tr  ← T ∈  P with highest ML value 
3:  Perform FF on P removing any trees which are sufficiently unlikely compared to Tr. 
4:  P1 ← P0. i  ← 2. done ← FALSE. 
5: WHILE NOT done 
6:   Pi  ← ∅ . 
7:  Broadcast reference tree Tr to all workers. 
8:  FOR ALL  T ∈  Pi-1 
9:   Broadcast T to all workers. 
10:   \* Workers perform their local computation and return resulting trees to the master*\  
11:   FROM EACH worker 
12:    Receive result set of trees J and set Pi  ← Pi  ∪  J 
13:    IF there is a tree T ∈  Pi with a higher ML value than Tr  THEN 
14:    Tr ← T. 
15:   Perform FF on Pi removing trees which are sufficiently unlikely compared to Tr. 
16:  P  ← P  ∪  Pi   
17:  IF  Pi is empty or i > M THEN 
18:   done ← TRUE 
19:   Perform FF on P removing trees which are sufficiently unlikely compared to Tr. 
20:  ELSE 
21:   i  ← i + 1 
22: Return P, the final pool of trees, and, Tr,  the most likely tree found. 
 
Algorithm 2 covSEARCH Worker j 
 
1:     WHILE true DO 
2:   Receive a tree T from Master Processor. 
3:  If  T is a new reference tree THEN 
4:   Tr ← T ∈  Pi-1 
5:   ELSE     /* T is a tree from the pool*/ 
6:    LP ← all distinct SPR permutations of T 
7:   FOR ALL T ∈  LP 
8:    IF T ∈  TreeCache THEN 
9:     LP ← LP – {T} 
10:    ELSE add T to TreeCache  
11:    Remove from LP all but every jth tree 
12:    FOR ALL T ∈  LP 
13:    Compute Maximum Likelihood of T using existing branch lengths 
14:     IF ML(T) + MLtolerance >= ML(Tr) THEN 
15:     Optimize the Branch Lengths of T 
16:     Recomputed the Maximum Likelihood of T 
17:    ELSE LP ← LP – {T} 
18:    IF there exists a T ∈  LP such that ML(T) > ML(Tr ) THEN 
19:    Tr ← T 
20:   Perform FF on LP removing trees which are sufficiently unlikely compared to Tr. 
21:   Send trees in LP back to the Master Processor. 
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Avoiding Redundant Search 
As the computation progresses, the probability of re-evaluating a tree which was 

traversed in a previous iteration increases. Especially when the search is about to 
converge, this duplication of the computation unnecessarily extends the tree search. To 
implement the Tree Cache used in Lines 8-10 of Algorithm 2, we have applied a string-
based method for recording tree topologies. This method allows us to maintain a compact 
history of the search which is then used to avoid redundant tree evaluation.  

The first challenge was to define an algorithm that generates a unique string 
representation for each topologically distinct tree. This task is performed by re-rooting 
each tree to the parent of an arbitrary terminal node: the sequence whose label is the first 
in the alphabetical order of all sequence labels. It thus generates a NEWICK string 
representation with the property that unique tree topologies result in unique string 
representations. The branch length values are then stripped to preserve only the 
topological information. An example of a string representation follows: 

 
(A,((B,Z),C)) 

 
The Tree Cache itself was implemented as a PATRICIA tree (Morrison, 1968). In this 

compact Trie based data structure there is node for each common suffix in the stored 
strings. A Patricia Tree compacts this by merging single child nodes with their parents, 
and usually stores the strings in binary form. A new node in the tree is created when a 
difference in the string is encountered. Each internal node contains the character of the 
string that is different. Therefore, concatenating from a path from the root to an external 
node gives a string that is stored in the tree. For n keys stored in the tree, there are n 
external nodes. For keys of length k, insertion requires O(log(n+k)) time assuming the 
keys are evenly distributed, while lookup requires O(k) time. All string-based 
representations of phylogenetic trees with the same number of taxa are of the same 
length. Since only the differences in the strings need to be stored, this saves considerably 
on memory space. An obvious alternative approach would be a hash based scheme; 
however in practice we obtained better performance using the PATRICIA tree. 

As the topological search expands from the current maximum likelihood tree, the 
candidate trees are one step of SPR away from the pool of the previous generation. 
Consequently, a fraction of the candidate in a given iteration will be overlapping with the 
candidate trees of the previous iteration(s). In fact, it appears that most trees that are 
generated through an enumerative SPR search strategy are overlapping with previously 
traversed topologies. Because the definition of confidence intervals requires a thorough 
traversal of the search space, this effect is marked for broad-search for which the 
membership to the solution pool is determined using a statistical criterion. Assuming that 
each candidate tree takes approximately the same amount of time to optimize its branch 
length using the maximum likelihood criterion, and that the time to look up a string in a 
PATRICIA is much smaller than optimizing an entire tree, the relative speedup of 
maintaining a history will be roughly proportional to the ratio of unique trees to total 
topology generated (Table 1). Note that an important feature of our Tree Cache is that it is 
global, that is to say the cache maintained on each processor is identical and records all 
trees visited previously by any processor. This is a second advantage of performing 
redundant SPR operations in Line 6 of Algorithm 2. 
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Pfam set 
Unique 

topologies1 
[ml/SH]2 

Total 
topologies3 

[ml/SH] 

Duplication  
[ml/SH] 

Number of 
solution in final 
pool (SH test) 

Cytochrom_B_C4 215/22,980 340/95,490 1.6/4.1 584 
Cytochrom_B_N5 79/1671 114/7326 1.4/4.4 63 

MAP6  
clade 1 (7 seqs.) 
Clade 2  (6 seqs.) 

1243/- 
97/821 
43/105 

1614/- 
172/9366 
110/2738 

1.3/- 
1.8/11.4 
2.6/26.1 

>6000 
113 
52 

Table 1: Overlap caused by the enumerative SPR tree search strategy.  

Efficient Computation of Branch Lengths 
The likelihood of substitution is derived from matrices of probabilities of character 

substitution. Typical substitution matrices are developed using empirical data and 
different derivation methods. For amino acid data, the most commonly used matrices are 
PAM (Dayhoff, 1978), JTT (Jones, 1992) and WAG (Whelan, 2001). These matrices 
contain instant rate of substitution. From these instant rate matrices, it is possible to 
compute distance dependent matrices of probabilities of substitution. To optimize the 
branch lengths, the distance dependent probability matrices have to be continuously 
computed. For an evolutionary distance t, and given an instant rate matrix Q, the matrix 
of probability of substitution P is computed according to Equation 2.  

 ( ) QtP t e=  [2] 
The likelihood of observing a substitution from state i to j can thus be expressed as a 

function of t as Pij(t). The calculation of P is computationally costly.  One method to 
compute the P-matrix proceeds through finding the Q matrix eigenvectors and 
corresponding eigenvalues by a divide-and-conquer approach.  This algorithm requires on 
the order of O(203) floating point calculations. As a first step, Pi!j values can be 
approximated by interpolation using Chebyshev polynomials. It has been shown that 
Chebyshev polynomials can significantly decrease the time to calculate P without 
noticeable error in likelihood values (Pupko, 2002).   

In this paper our key approach to efficiently performing branch length optimizations 
is to cache the most commonly occurring values of P(t). Likelihoods are computed using 
matrices of probability of substitution P(t). As the number of internal nodes grows large, 
generating these matrices becomes a significant computational bottleneck. For a given 
model of substitution, there is a single P-matrix for each evolutionary distance t. 
Although the variable t is a continuous variable, no attempts are made to optimize this 
parameter beyond the precision threshold of 10E-5, some 90,000,000 matrices are 
necessary to cover the reasonable range to t from 0.00001 to 900. Since each matrix is 
1600 bytes, 144 Gb of RAM would be required to store all possible P-matrices. This is 
                                                 
1 Number of unique tree topology traversed during the calculation. 
2 ml: tree search with solution pool limited to one tree. sh : tree search with solution pool membership 
determined by the SH test. 
3 Number of tree topology generated through SPR enumeration. 
4 Pfam::Cytochrom_B_C seed alignment : 9 sequences X 79 sites, 84% average sequence identity. 
5 Pfam::Cytochrom_B_N seed alignment: 8 sequences X  190 sites (edited), 69% average sequence identity. 
6 Pfam::MAP seed alignment : 13 sequences X 87 sites, 51% average sequence identity 
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more memory than is typically available; however it turns out that it is not necessary to 
store all 90,000,000 P-matrices.   

 In general, the distribution of branch lengths is not uniform over the 0.00001 to 900 
range. Caching only the most commonly used matrices appears thus to be appropriate. 
However, there is no reason to believe that there is a universal distribution of value t.  The 
collection of cached matrices should thus be determined as the calculation progresses. 
Each input alignment will result in different tree topologies and associated branch 
lengths. The cache should therefore keep track of which branch lengths are being used 
most often, and save the corresponding P-matrix. 

In our implementation the P-matrix cache is implemented using a hash table with 
chaining.  For a hash function, we simply use the mantissa bits of the floating point 
branch length.  These lengths are rounded to increase the cache hit probability as 
described previously. One challenge is how to handle the situation when the size of the P-
matrix cache reaches the redefined maximum size. Initially, we attempted to maintain 
access frequency counts for each entry to determine the least used so that it might be 
discarded. However, this approach has significant overhead which appears to make it 
unattractive in practice. Instead, we maintain an additional move-to-front data structure 
which contains an entry for each hashed matrix. Entries in this structure are moved to the 
front every time the associated matrix is referenced. When, to free up storage, a matrix 
must be discarded the “oldest” one, that is the one at the end of the move-to-front data 
structure, is selected. In this approach every operation requires expected O(1) time and 
the memory footprint is minimal.  

Some branch length precision is lost when t is converted to obtain an integer value. 
Branch lengths, t, with very similar values, such as 1.245391 and 1.245398, get hashed to 
the same value floor(10000*t) = 124539. Observations indicate that the rounding the 
variable t is minimal (Table 2) and does not affect the likelihood ranking of the 
phylogenetic trees.  
 

Range in t P-matrix entry 
(average difference) 

P-matrix entry 
(max difference) 

0.123450 and 0.123459  8.65e-09 1.29e-07 

1.345670 and 1.345679 8.52e-09 1.27e-07 

10.342190 and 10.342199 7.64e-09 1.09e-07 

50.781560 and 50.781569 4.76e-09 5.68e-08 

100.975420 and 100.975429 2.77e-09 3.08e-08 

Table 2: Sample rounding error on P-matrices due to hashing. 

Furthermore, since substitutions are modeled as a reversible Markov-process, the 
probability of substitution of P(i->j) converges to the equilibrium frequency of j as t 
becomes large. In practice, P-matrices for t > 1.5 are essentially identical and the 
precision appears to be superfluous for the computation of likelihood and the ranking of 
trees according to the ML criterion. 

Table 3 demonstrates that a caching between 32-64 thousand matrices is sufficient to 
store most of the matrices required to optimize trees with relatively similar topologies. 
The benefit of caching these matrices is a relative sequential speedup of between 15% and 



 8

20%. Storing more matrices continues to improve the hit percentage, but the improvement 
is likely not large enough to warrant the extra storage space. 
 

Table 3: Effects of P-matrix caching on sequential performance on three data sets. 

Experimental Evaluation 
We have implemented the parallel covSEARCH algorithm as presented in the previous 

sections. Our sequential code with the tree and P-matrix caching is written in C++ and 
makes extensive use of the phylogenetic library, libcov . Our parallel code is based on our 
sequential code and communication operations drawn from the MPI communication 
library. 

The following performance evaluation uses 16 processor Beowulf style cluster. This 
shared nothing parallel machine consists of a collection of 1.8 GHz Intel Xeon processors 
each with 1 GB of RAM, a 40 GB 7200 RPM IDE disk and an onboard Inter Pro 1000 
XT NIC. Each processor is running Linux Redhat 7.2 with gcc 2.95.3 and MPI/LAM 
6.5.6. as part of a ROCKS cluster distribution. All processors are interconnected via a 
Cisco 6509 GigE switch.  

In the following experiments, all sequential times are measured as wall clock times in 
seconds. All parallel times are measured as the wall clock time between the start of the 
first process and the termination of the last process.  All times include the time taken to 
read the input from files and write the output into files. Furthermore, all wall clock times 
are measured with no other users on the machine.  
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Figure 1: Cumulative effect of P-Matrix and Tree caches on wall clock time in seconds. 

 

A.a.fas 34x347 A.a.small.fas 17x347 Longal1.fas 34x1000 
Cache 
Size 

Time Hit 
% 

Speed 
up % 

Cache 
Size 

Time Hit % Speed 
up % 

Cache 
Size 

Time Hit % Speed up 
% 

0 1:36:28   - - 0 3:52.85 - - 0 1:07:34 - - 
8192 1:17:38 70  19.5 8192 3:13.61 52.6 16.8 8192 56:52.09 84.7 15.8 

16384 1:17:32 70.8 19.6 16384 3:13.27 53.6 16.9 16384 57:07 85.3 15.4 
32768 1:17:22 72 19.7 32768 3:12.66 55 17.2 32768 55:31 85.9 17.8 
65536 1:17:12 73.9 19.9 65536 3:12.48 57.2 17.3 65536 55:29.6 86.8 17.8 

131092 1:16:46 77  20.4 131092 3:11.01 60.9 17.9 131092 55:24.70 88.3 17.9 
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Figure 1 shows the cumulative impact of tree and P-matrices caching on the 
performance of covSEARCH method on a variety of datasets, and the corresponding 
relative speedup. We observe that these caching schemes improve sequential performance 
by between 25% and 30%.  
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Figure 2: Parallel wall clock time in seconds as a function of the number of processors for three 
datasets and the corresponding speedup. 

 
Figure 2 shows parallel wall clock time in seconds as a function of the number of 

processors for three datasets of varying size in terms of both number of sequences and 
number of sites, and the corresponding relative speedup. We observe that for two of these 
datasets covSEARCH exhibits near linear relative speedup on up to 8 processors and 
good speedup on up to 16 processors. For the third dataset we observe around 50% 
speedup. The problem here appears to be that we are not achieving a sufficiently even 
balance of workload in the branch optimization phase of the algorithm. We are currently 
exploring ways to predict which branch length optimization problems are likely to require 
significantly greater time so that we may ensure that they are distributed more evenly 
across the processors. 

Conclusion 
In this paper, we have presented a parallel algorithm for protein phylogeny using a 

maximum likelihood framework. A key feature of our covSEARCH approach is that it 
determines a range (confidence set) of statistically equivalent trees, instead of only a 
single solution. By treating the topologies of the phylogenetic tree as a variable with an 
intrinsic uncertainty, we have discovered that most multiple sequence alignments used to 
infer phylogeny do not contain enough information to be fully resolved into a single tree.  
Obtaining these types of results was made possible only by the enhanced throughput in 
computation provided by the parallel framework. 
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