
 1

Fast Parallel Maximum Likelihood-based Protein Phylogeny

C. Blouin1,2,3, D. Butt1, G. Hickey1, A. Rau-Chaplin1.

1 – Faculty of Computer Science, Dalhousie University, Halifax, Canada, B3H 5W1
2 – Dept. of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax,

Canada, B3H 5X1
3 – Genome Atlantic

Keywords: Protein Phylogeny, Maximum Likelihood Methods, Parallel Computing.

Abstract
Inferring phylogenetic relationships between sequences is a difficult and interesting
problem. Assuming that there is enough phylogenetic signal in biological sequence to
resolve every tree bifurcation, the resulting tree is a representation of the vertical descent
history of a gene. A popular method to evaluate a candidate phylogenetic tree uses the
likelihood of the data, given an empirical model of character substitution. The
computational cost of search for the maximum-likelihood tree is, however, very large. In
this paper, we present an algorithm for protein phylogeny using a maximum likelihood
framework. A key design goal, which differentiates our method from others, is that it
determines a range (confidence set) of statistically equivalent trees, instead of only a
single solution. We also present a number of sequential algorithmic enhancements and
both sequential and parallel performance results.

 2

Introduction
Proteins are genetically encoded polymeric molecules from linear chains of amino

acids. Proteins adopt biologically active 3D structures through a process called protein
folding. These structures offer the chemical environment to perform specific biological
functions. Although genetics only indirectly encode 3D information, proteins have precise
structures which are tuned through the evolution of their sequences. Over time, the
sequence of a protein is perturbed by point mutations, insertions and deletion events. In
general, phylogeny is the sequence of events involved in the development of the evolution
of a gene, a species or a taxonomic group of organisms (Felsenstein, 2004). Molecular
phylogeny reconstruction typically uses point mutations as a signal to infer the
evolutionary history of homologous sequences. These reconstructed histories are
represented by phylogenetic trees. Assuming that a gene has propagated via vertical
descent (i.e. from a parent to subsequent generations), a phylogeny inferred from
sequences can be extrapolated to the evolution of their respective host species.

While a protein structure remains constant, all aligned residues in one column of a
multiple sequence alignment (a site) are assumed to be in positional homology. This
assumption allows the evolution of a site to be modeled as a distance-dependent Markov
process of substitution (Felsenstein, 1981). Given this model, the tree topology which
maximizes the likelihood of an alignment is known as the maximum likelihood (ML) tree.

In terms of graph theory, a rooted phylogenetic tree is a binary tree. Each node
represents a sequence while each edge, referred herein as branch length, represents the
evolutionary distance between two sequences. This distance is measured in expected
substitution per site. The main challenge in protein phylogeny is to traverse the search
space to find the topology of the maximum likelihood tree. The search space for a tree
with n terminal sequences is large, approximately equal to the term nT defined in Equation
1 (Felsenstein, 2004).

 ()
() ()2

2 3 !
2 2 !T n

n
n

n−

−
=

−
 [1]

For very small numbers of sequences, it is possible to exhaustively search the solution
space. However, this solution becomes intractable for datasets with 15 or more sequences.
For the general case, it is thought that the problem of maximum likelihood phylogeny is
NP-hard (Felsenstein, 2004). Global methods to traverse this search space have already
been implemented, specifically for protein phylogeny in PROML (Felsenstein, 2002) and
PAML (Yang, 1997). A selection of clever heuristics have been devised including
Likelihood-Neighbor joining hybrid algorithms (Ota, 2001; Ota, 2000), Nearest
Neighbors Interchange (Guindon, 2003) or the structural EM algorithm (Friedman, 2002).
Although the performance of these heuristics is drastically better than global
rearrangement search methods, their accuracy and robustness are affected (Vinh le, 2004).
Another class of methods, Tree-Puzzle (Schmidt, 2002) are quartet based methods of
reconstruction which are also popular in protein phylogeny.

In this paper, we present an algorithm with emphasis on a systematic tree traversal for
protein phylogeny that is suitable for a parallel implementation. Our interest is in a
practical algorithm that permits the solution of large protein phylogeny problems. This
being the case, we explore both parallel and sequential efficiency enhancements. The

 3

challenge is that the sequential enhancements often make the computation less regular,
and therefore may reduce total time, yet still have a negative effect on speedup.

Basic Parallel Method
Parallel computation has been successfully applied to DNA phylogeny in packages

such as Parallel DNAml (Ceron, 1998), and a parallel implementation of fastDNAml
(Olsen, 1994). Parallel protein phylogeny can also be performed using the quartet
puzzling method (Strimmer, 1996) implemented in TREE-PUZZLE (Schmidt, 2002). In
this section, we describe our basic parallel approach for protein phylogeny using a
maximum likelihood framework. A key design goal, which differentiates our method
from others, is that we are interested in determining a range (confidence set) of
statistically equivalent trees, instead of only the best solution. The membership of the
confidence set can be defined by a selection of ad hoc criterion or using confidence
interval approximations. It is unclear as to what constitutes the real confidence intervals,
so the confidence sets should be regarded as approximation at this point. The statistical
properties of using confidence intervals approximation as a means to determine the
memberships of candidate tree topologies is beyond the scope of this paper but is
described in Pepke et al..

Because we are ultimately interested in approximating confidence intervals in tree
space, our basic algorithm attempts to explore a broad sample of topologies through the
enumeration of all possible Subtree Pruning Regrafting (SPR) operations (Felsenstein,
2004) for each tree in the solution pool. At each iteration, the SPR enumeration is
performed on all trees newly added to the solution pool. The likelihood of each of these
enumerated trees is optimized with respect to branch lengths. All returned trees are
compared to the current best tree using a specified statistical test. The computation
terminates when both the reference tree is unchanged and the evaluation of the trees
corresponding to all SPR enumerations in the solution pool have been completed (i.e. no
new trees are returned from an iteration). As a practical matter it may also be terminated
when a user specified maximum number of iterations, M, has been reached.

Our basic parallel method, as executed by the “Master” processor, is sketched in
Algorithm 1; while Algorithm 2 outlines the task of the “Worker” processors. The key
issues driving the design of these algorithms were as follows: 1) How to minimize
communication overhead, 2) How to evenly distribute workload across the processors, 3)
How to avoid re-evaluating trees which have been traversed in previous iterations, and
lastly 4) How to efficiently perform branch length optimization, which is the most
computationally intensive component of the method. In the remainder of this section we
will discuss Issues 1 and 2, while Issues 3 and 4 are discussed in the following sections.

Our general approach to minimizing communication is to perform some redundant
computations. Whenever possible, Algorithm 1 avoids communicating sets of trees by
communicating singleton trees and allowing the worker processors to reconstruct the sets
at the cost of some redundant computation. For example, the Master processor
communicates single trees from the current pool at Line 9 forcing the redundant
computation of unique SPR descendants by the Workers (Lines 6-11) but saving on
significant communication. The one place where communication is not spared is in the
repeated communication of the reference tree, Tr, by the Master (Line 7). Maintaining this
global information as to the best tree found globally to date allows the Workers to prune

 4

their local pools, LP, and reduces both local computational costs (Lines 13-17) and
communication costs (Line 21).

Algorithm 1 covSEARCH Master
Input: A – the sequence alignment. M – the maximum number of iterations. FF – a filter function to

determine trees in the confidence set. MLtolerance – a Maximum likelihood tuning parameter.
Output: P - The set of most likely trees.

1: From the alignment A, load an initial pool of trees, P0, or generate one using neighbour joining.
2: Tr ← T ∈ P with highest ML value
3: Perform FF on P removing any trees which are sufficiently unlikely compared to Tr.
4: P1 ← P0. i ← 2. done ← FALSE.
5: WHILE NOT done
6: Pi ← ∅ .
7: Broadcast reference tree Tr to all workers.
8: FOR ALL T ∈ Pi-1
9: Broadcast T to all workers.
10: * Workers perform their local computation and return resulting trees to the master*\
11: FROM EACH worker
12: Receive result set of trees J and set Pi ← Pi ∪ J
13: IF there is a tree T ∈ Pi with a higher ML value than Tr THEN
14: Tr ← T.
15: Perform FF on Pi removing trees which are sufficiently unlikely compared to Tr.
16: P ← P ∪ Pi
17: IF Pi is empty or i > M THEN
18: done ← TRUE
19: Perform FF on P removing trees which are sufficiently unlikely compared to Tr.
20: ELSE
21: i ← i + 1
22: Return P, the final pool of trees, and, Tr, the most likely tree found.

Algorithm 2 covSEARCH Worker j

1: WHILE true DO
2: Receive a tree T from Master Processor.
3: If T is a new reference tree THEN
4: Tr ← T ∈ Pi-1
5: ELSE /* T is a tree from the pool*/
6: LP ← all distinct SPR permutations of T
7: FOR ALL T ∈ LP
8: IF T ∈ TreeCache THEN
9: LP ← LP – {T}
10: ELSE add T to TreeCache
11: Remove from LP all but every jth tree
12: FOR ALL T ∈ LP
13: Compute Maximum Likelihood of T using existing branch lengths
14: IF ML(T) + MLtolerance >= ML(Tr) THEN
15: Optimize the Branch Lengths of T
16: Recomputed the Maximum Likelihood of T
17: ELSE LP ← LP – {T}
18: IF there exists a T ∈ LP such that ML(T) > ML(Tr) THEN
19: Tr ← T
20: Perform FF on LP removing trees which are sufficiently unlikely compared to Tr.
21: Send trees in LP back to the Master Processor.

 5

Avoiding Redundant Search
As the computation progresses, the probability of re-evaluating a tree which was

traversed in a previous iteration increases. Especially when the search is about to
converge, this duplication of the computation unnecessarily extends the tree search. To
implement the Tree Cache used in Lines 8-10 of Algorithm 2, we have applied a string-
based method for recording tree topologies. This method allows us to maintain a compact
history of the search which is then used to avoid redundant tree evaluation.

The first challenge was to define an algorithm that generates a unique string
representation for each topologically distinct tree. This task is performed by re-rooting
each tree to the parent of an arbitrary terminal node: the sequence whose label is the first
in the alphabetical order of all sequence labels. It thus generates a NEWICK string
representation with the property that unique tree topologies result in unique string
representations. The branch length values are then stripped to preserve only the
topological information. An example of a string representation follows:

(A,((B,Z),C))

The Tree Cache itself was implemented as a PATRICIA tree (Morrison, 1968). In this

compact Trie based data structure there is node for each common suffix in the stored
strings. A Patricia Tree compacts this by merging single child nodes with their parents,
and usually stores the strings in binary form. A new node in the tree is created when a
difference in the string is encountered. Each internal node contains the character of the
string that is different. Therefore, concatenating from a path from the root to an external
node gives a string that is stored in the tree. For n keys stored in the tree, there are n
external nodes. For keys of length k, insertion requires O(log(n+k)) time assuming the
keys are evenly distributed, while lookup requires O(k) time. All string-based
representations of phylogenetic trees with the same number of taxa are of the same
length. Since only the differences in the strings need to be stored, this saves considerably
on memory space. An obvious alternative approach would be a hash based scheme;
however in practice we obtained better performance using the PATRICIA tree.

As the topological search expands from the current maximum likelihood tree, the
candidate trees are one step of SPR away from the pool of the previous generation.
Consequently, a fraction of the candidate in a given iteration will be overlapping with the
candidate trees of the previous iteration(s). In fact, it appears that most trees that are
generated through an enumerative SPR search strategy are overlapping with previously
traversed topologies. Because the definition of confidence intervals requires a thorough
traversal of the search space, this effect is marked for broad-search for which the
membership to the solution pool is determined using a statistical criterion. Assuming that
each candidate tree takes approximately the same amount of time to optimize its branch
length using the maximum likelihood criterion, and that the time to look up a string in a
PATRICIA is much smaller than optimizing an entire tree, the relative speedup of
maintaining a history will be roughly proportional to the ratio of unique trees to total
topology generated (Table 1). Note that an important feature of our Tree Cache is that it is
global, that is to say the cache maintained on each processor is identical and records all
trees visited previously by any processor. This is a second advantage of performing
redundant SPR operations in Line 6 of Algorithm 2.

 6

Pfam set
Unique

topologies1
[ml/SH]2

Total
topologies3

[ml/SH]

Duplication
[ml/SH]

Number of
solution in final
pool (SH test)

Cytochrom_B_C4 215/22,980 340/95,490 1.6/4.1 584
Cytochrom_B_N5 79/1671 114/7326 1.4/4.4 63

MAP6
clade 1 (7 seqs.)
Clade 2 (6 seqs.)

1243/-
97/821
43/105

1614/-
172/9366
110/2738

1.3/-
1.8/11.4
2.6/26.1

>6000
113
52

Table 1: Overlap caused by the enumerative SPR tree search strategy.

Efficient Computation of Branch Lengths
The likelihood of substitution is derived from matrices of probabilities of character

substitution. Typical substitution matrices are developed using empirical data and
different derivation methods. For amino acid data, the most commonly used matrices are
PAM (Dayhoff, 1978), JTT (Jones, 1992) and WAG (Whelan, 2001). These matrices
contain instant rate of substitution. From these instant rate matrices, it is possible to
compute distance dependent matrices of probabilities of substitution. To optimize the
branch lengths, the distance dependent probability matrices have to be continuously
computed. For an evolutionary distance t, and given an instant rate matrix Q, the matrix
of probability of substitution P is computed according to Equation 2.

 () QtP t e= [2]
The likelihood of observing a substitution from state i to j can thus be expressed as a

function of t as Pij(t). The calculation of P is computationally costly. One method to
compute the P-matrix proceeds through finding the Q matrix eigenvectors and
corresponding eigenvalues by a divide-and-conquer approach. This algorithm requires on
the order of O(203) floating point calculations. As a first step, Pi!j values can be
approximated by interpolation using Chebyshev polynomials. It has been shown that
Chebyshev polynomials can significantly decrease the time to calculate P without
noticeable error in likelihood values (Pupko, 2002).

In this paper our key approach to efficiently performing branch length optimizations
is to cache the most commonly occurring values of P(t). Likelihoods are computed using
matrices of probability of substitution P(t). As the number of internal nodes grows large,
generating these matrices becomes a significant computational bottleneck. For a given
model of substitution, there is a single P-matrix for each evolutionary distance t.
Although the variable t is a continuous variable, no attempts are made to optimize this
parameter beyond the precision threshold of 10E-5, some 90,000,000 matrices are
necessary to cover the reasonable range to t from 0.00001 to 900. Since each matrix is
1600 bytes, 144 Gb of RAM would be required to store all possible P-matrices. This is

1 Number of unique tree topology traversed during the calculation.
2 ml: tree search with solution pool limited to one tree. sh : tree search with solution pool membership
determined by the SH test.
3 Number of tree topology generated through SPR enumeration.
4 Pfam::Cytochrom_B_C seed alignment : 9 sequences X 79 sites, 84% average sequence identity.
5 Pfam::Cytochrom_B_N seed alignment: 8 sequences X 190 sites (edited), 69% average sequence identity.
6 Pfam::MAP seed alignment : 13 sequences X 87 sites, 51% average sequence identity

 7

more memory than is typically available; however it turns out that it is not necessary to
store all 90,000,000 P-matrices.

 In general, the distribution of branch lengths is not uniform over the 0.00001 to 900
range. Caching only the most commonly used matrices appears thus to be appropriate.
However, there is no reason to believe that there is a universal distribution of value t. The
collection of cached matrices should thus be determined as the calculation progresses.
Each input alignment will result in different tree topologies and associated branch
lengths. The cache should therefore keep track of which branch lengths are being used
most often, and save the corresponding P-matrix.

In our implementation the P-matrix cache is implemented using a hash table with
chaining. For a hash function, we simply use the mantissa bits of the floating point
branch length. These lengths are rounded to increase the cache hit probability as
described previously. One challenge is how to handle the situation when the size of the P-
matrix cache reaches the redefined maximum size. Initially, we attempted to maintain
access frequency counts for each entry to determine the least used so that it might be
discarded. However, this approach has significant overhead which appears to make it
unattractive in practice. Instead, we maintain an additional move-to-front data structure
which contains an entry for each hashed matrix. Entries in this structure are moved to the
front every time the associated matrix is referenced. When, to free up storage, a matrix
must be discarded the “oldest” one, that is the one at the end of the move-to-front data
structure, is selected. In this approach every operation requires expected O(1) time and
the memory footprint is minimal.

Some branch length precision is lost when t is converted to obtain an integer value.
Branch lengths, t, with very similar values, such as 1.245391 and 1.245398, get hashed to
the same value floor(10000*t) = 124539. Observations indicate that the rounding the
variable t is minimal (Table 2) and does not affect the likelihood ranking of the
phylogenetic trees.

Range in t P-matrix entry
(average difference)

P-matrix entry
(max difference)

0.123450 and 0.123459 8.65e-09 1.29e-07

1.345670 and 1.345679 8.52e-09 1.27e-07

10.342190 and 10.342199 7.64e-09 1.09e-07

50.781560 and 50.781569 4.76e-09 5.68e-08

100.975420 and 100.975429 2.77e-09 3.08e-08

Table 2: Sample rounding error on P-matrices due to hashing.

Furthermore, since substitutions are modeled as a reversible Markov-process, the
probability of substitution of P(i->j) converges to the equilibrium frequency of j as t
becomes large. In practice, P-matrices for t > 1.5 are essentially identical and the
precision appears to be superfluous for the computation of likelihood and the ranking of
trees according to the ML criterion.

Table 3 demonstrates that a caching between 32-64 thousand matrices is sufficient to
store most of the matrices required to optimize trees with relatively similar topologies.
The benefit of caching these matrices is a relative sequential speedup of between 15% and

 8

20%. Storing more matrices continues to improve the hit percentage, but the improvement
is likely not large enough to warrant the extra storage space.

Table 3: Effects of P-matrix caching on sequential performance on three data sets.

Experimental Evaluation
We have implemented the parallel covSEARCH algorithm as presented in the previous

sections. Our sequential code with the tree and P-matrix caching is written in C++ and
makes extensive use of the phylogenetic library, libcov . Our parallel code is based on our
sequential code and communication operations drawn from the MPI communication
library.

The following performance evaluation uses 16 processor Beowulf style cluster. This
shared nothing parallel machine consists of a collection of 1.8 GHz Intel Xeon processors
each with 1 GB of RAM, a 40 GB 7200 RPM IDE disk and an onboard Inter Pro 1000
XT NIC. Each processor is running Linux Redhat 7.2 with gcc 2.95.3 and MPI/LAM
6.5.6. as part of a ROCKS cluster distribution. All processors are interconnected via a
Cisco 6509 GigE switch.

In the following experiments, all sequential times are measured as wall clock times in
seconds. All parallel times are measured as the wall clock time between the start of the
first process and the termination of the last process. All times include the time taken to
read the input from files and write the output into files. Furthermore, all wall clock times
are measured with no other users on the machine.

0

2000

4000

6000

8000

10000

12000

A.a.fa
s

A.a.lo
ng

al1.
fas

A.a.sm
all

.fa
s

No Cache

Matrix Cache

Matrix and Tree Cache

Figure 1: Cumulative effect of P-Matrix and Tree caches on wall clock time in seconds.

A.a.fas 34x347 A.a.small.fas 17x347 Longal1.fas 34x1000
Cache
Size

Time Hit
%

Speed
up %

Cache
Size

Time Hit % Speed
up %

Cache
Size

Time Hit % Speed up
%

0 1:36:28 - - 0 3:52.85 - - 0 1:07:34 - -
8192 1:17:38 70 19.5 8192 3:13.61 52.6 16.8 8192 56:52.09 84.7 15.8

16384 1:17:32 70.8 19.6 16384 3:13.27 53.6 16.9 16384 57:07 85.3 15.4
32768 1:17:22 72 19.7 32768 3:12.66 55 17.2 32768 55:31 85.9 17.8
65536 1:17:12 73.9 19.9 65536 3:12.48 57.2 17.3 65536 55:29.6 86.8 17.8

131092 1:16:46 77 20.4 131092 3:11.01 60.9 17.9 131092 55:24.70 88.3 17.9

 9

Figure 1 shows the cumulative impact of tree and P-matrices caching on the
performance of covSEARCH method on a variety of datasets, and the corresponding
relative speedup. We observe that these caching schemes improve sequential performance
by between 25% and 30%.

0

1000

2000

3000

4000

5000

6000

7000

8000

0 2 4 6 8 10 12 14 16

S
ec

on
ds

Processors

A.a.fas
longal1.fas

A.a.small.fas

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

R
el

at
iv

e
S

pe
ed

up

Processors

A.a.fas
longal1.fas

A.a.small.fas
linear speedup

Figure 2: Parallel wall clock time in seconds as a function of the number of processors for three
datasets and the corresponding speedup.

Figure 2 shows parallel wall clock time in seconds as a function of the number of

processors for three datasets of varying size in terms of both number of sequences and
number of sites, and the corresponding relative speedup. We observe that for two of these
datasets covSEARCH exhibits near linear relative speedup on up to 8 processors and
good speedup on up to 16 processors. For the third dataset we observe around 50%
speedup. The problem here appears to be that we are not achieving a sufficiently even
balance of workload in the branch optimization phase of the algorithm. We are currently
exploring ways to predict which branch length optimization problems are likely to require
significantly greater time so that we may ensure that they are distributed more evenly
across the processors.

Conclusion
In this paper, we have presented a parallel algorithm for protein phylogeny using a

maximum likelihood framework. A key feature of our covSEARCH approach is that it
determines a range (confidence set) of statistically equivalent trees, instead of only a
single solution. By treating the topologies of the phylogenetic tree as a variable with an
intrinsic uncertainty, we have discovered that most multiple sequence alignments used to
infer phylogeny do not contain enough information to be fully resolved into a single tree.
Obtaining these types of results was made possible only by the enhanced throughput in
computation provided by the parallel framework.

Acknowledgments
The authors acknowledge Dr. A. J. Roger, Dalhousie University for his involvement

in the phylogeny aspect of this project. The author also thanks Ms. J. Murdoch for her
implementation of the treespace module that is part of the libcov library. This work was

 10

supported by the Genome Atlantic grant on Prokaryotic genome diversity and evolution
and NSERC discovery grants 298397-04 (CB) and 170169-04 (ARC).

References
Butt, D. J., G. Hickey, A. J. Roger and C. Blouin. 2005. libcov: A C++ bioinformatic library to manipulate
protein structures, sequence alignments and phylogeny, BMC Bioinformatics 2005, 6:138 (6 June 2005)
Ceron, C., J. Dopazo, E. L. Zapata, J. M. Carazo and O. Trelles. 1998. Parallel implementation of dnaml
program on message-passing architectures. Parallel Computing. 24:710-716.
Dayhoff, M. O., R. M. Schwartz and B. C. Orcutt (1978). A model of evolutionary change in proteins. Atlas
of protein sequence and structure. M. O. Dayhoff. Silver Spring, MA, National Biomedical Research
Foundation. 5: 345-352.
Doolittle, W. F. 1999. Phylogenetic classification and the universal tree. Science. 284:2124-9.
_________. 2000. The nature of the universal ancestor and the evolution of the proteome. Curr Opin Struct
Biol. 10:355-8.
Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol
Evol. 17:368-76.
_________. 2002. PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author, Dept. of
Genetics, U. of Washington, Seattle, Wa.
_________. 2004. Inferring Phylogenies. Sinauer Associates, Inc., Sunderland, MA.
Friedman, N., M. Ninio, I. Pe'er and T. Pupko. 2002. A structural EM algorithm for phylogenetic inference.
J Comput Biol. 9:331-53.
Guindon, S. and O. Gascuel. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by
maximum likelihood. Syst Biol. 52:696-704.
Jones, D. T., W. R. Taylor and J. M. Thornton. 1992. The rapid generation of mutation data matrices from
protein sequences. Comput Appl Biosci. 8:275-82.
Morrison, D. R. 1968. Patricia - practical algorithm to retrieve information coded in alphanumeric. Journal
of ACM. 15:514-534.
Olsen, G. J., H. Matsuda, R. Hagstrom and R. Overbeek. 1994. fastDNAmL: a tool for construction of
phylogenetic trees of DNA sequences using maximum likelihood. Comput Appl Biosci. 10:41-8.
Ota, S. and W. H. Li. 2000. NJML: a hybrid algorithm for the neighbor-joining and maximum-likelihood
methods. Mol Biol Evol. 17:1401-9.
_________. 2001. NJML+: an extension of the NJML method to handle protein sequence data and
computer software implementation. Mol Biol Evol. 18:1983-92.
Pupko, T. and D. Graur. 2002. Fast computation of maximum likelihood trees by numerical approximation
of amino acid replacement probabilities. Computational Statistics & Data Analysis. 40:285-291.
Roberts, D. L. and A. R. Solow. 2003. Flightless birds: when did the dodo become extinct? Nature.
426:245.
Schmidt, H. A., K. Strimmer, M. Vingron and A. von Haeseler. 2002. TREE-PUZZLE: maximum
likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics. 18:502-4.
Strimmer, K. and A. von Haeseler. 1996. Quartet puzzling: A quartet maximum likelihood method for
reconstructing tree topologies. J Mol Biol. 13:964-969.
Vinh le, S. and A. Von Haeseler. 2004. IQPNNI: Moving Fast Through Tree Space and Stopping in Time.
Mol Biol Evol. 21:1565-71.
Whelan, S. and N. Goldman. 2001. A general empirical model of protein evolution derived from multiple
protein families using a maximum-likelihood approach. Mol Biol Evol. 18:691-9.
Yang, Z. 1997. PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl
Biosci. 13:555-6.

