
cgmOLAP: Efficient Parallel Generation and
Querying of Terabyte Size ROLAP Data Cubes

Ying Chen
Dalhousie University

Halifax, Canada

ychen@cs.dal.ca

Frank Dehne
Griffith University

Brisbane, Australia

www.dehne.net

Todd Eavis
Concordia University

Montreal, Canada

eavis@cs.concordia.ca

Andrew Rau-Chaplin
Dalhousie University

Halifax, Canada

www.cs.dal.ca/∼arc

Abstract

In this demo we present the cgmOLAP server, the
first fully functional parallel OLAP system able
to build data cubes at a rate of more than 1 Ter-
abyte per hour. cgmOLAP incorporates a vari-
ety of novel approaches for the parallel computa-
tion of full cubes, partial cubes, and iceberg cubes
as well as new parallel cube indexing schemes.
The cgmOLAP system consists of an applica-
tion interface, a parallel query engine, a parallel
cube materialization engine, meta data and cost
model repositories, and shared server components
that provide uniform management of I/O, mem-
ory, communications, and disk resources. The
cgmOLAP demo system will be running on two
32 processor Linux-based clusters, one located in
Canada the other in Australia. Our demonstra-
tion interface consists of three parts: (1) a cube
specification panel that allows attendees to initiate
the parallel generation of full, partial, or iceberg
cubes (2) a query specification panel that allows
attendees to initiate parallel range, rollup, drill-
down, slice, dice and pivot queries (3) a perfor-
mance monitoring panel which supports the vi-
sualization of cube generation and querying per-
formance parameters such as rows generated, or
queries evaluated, per second.

1 Introduction
In this demo we present the cgmOLAP server, developed
as part of the PANDA project [1] at Dalhousie, Concordia,
Carleton and Griffith universities. The cgmOLAP server

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005

employs parallel processing techniques to support a highly
scalable ROLAP data cube system. The size of a single
data cube query can be massive. cgmOLAP is the first fully
functional parallel OLAP system able to build data cubes at
a rate of more than 1 Terabyte per hour.

For a given raw data set,R, with N records andd at-
tributes (dimensions), a view is constructed by an aggrega-
tion of R along a subset of attributes. As proposed in [11],
the pre-computation of the full data cube (the set of all2d

possible views) or a partial data cube (a subset of all2d

possible views) supports the fast execution of subsequent
OLAP queries. The size of data cubes can be massive. In
the Winter Corporation’s report [15], the largest three DSS
databases exceed 20 Terabytes in size. More importantly,
it is expected that as of 2005, the storage requirements of
more than 40% of production data warehouses will exceed
one Terabyte [8].

Parallel processing can provide two key ingredients for
dealing with the data cube size: increased computational
power through multiple processors and increased I/O band-
width through multiple parallel disks (e.g. [3, 5, 6, 10, 12]).
In particular, our cgmOLAP server has the following dis-
tinguishing characteristics:

1. Fully parallel. The cgmOLAP server is fully paral-
lel and has been designed from the ground up to ef-
ficiently exploit the computational power of inexpen-
sive, shared-nothing, distributed memory clusters.

2. Memory hierarchy adaptive. All of the key algo-
rithms that make up the cgmOLAP server are de-
signed to be both cache friendly and capable of run-
ning fully in external memory. No requirement that
even data stored on a single processor will fit in mem-
ory. Detailed engineering of I/O managers to manage
local disk subsystems.

3. Highly tunable. All of the key algorithms that make
up the cgmOLAP server are driven off an explicit cost
model. This approach supports both hardware plat-
form portability and application self tuning.

4. Scalability. The cgmOLAP server is highly scalable
in terms of dimensions, processors, and input records.

All of the key parallel algorithms for data cube gener-
ation and query processing exhibit close to linear (op-
timal) speedup.

2 The cgmOLAP Architecture and Hard-
ware Platform.

Disk Subsystem

OS Support

Parallel Communication Library

Memory Manager

Sorting

Module

Aggregation

Module
I/O

Manager

Metadata Reporting Cost Module Reporting

Pipeline Process Module

Layout Manager PnP Operator

Full Cube

Generation

Partial Cube

Genertion Iceberg Cube

Generation View Selection

Module

Cube Generation Engine

Caching

Framework

 Materialized

View Manager

 Index Builder

Module

Transformation Module

Query Engine

Application Interface

 Query Resolution

Figure 1: cgmOLAP software architecture.

Key system components include:

1. Application interface. Provides the application inter-
face to the cgmOLAP system.

2. Parallel query engine.Supports parallel rollup, drill-
down, slice, dice, and pivot queries as well asd-
dimensional range search.

3. Parallel cube materialization engine.Supports par-
allel generation of full, partial and iceberg cubes.

4. Meta data and cost model repositories.Reposito-
ries for meta data describing original data sets and
materialized cubes, as well as hardware configuration
and system performance parameters that drive the al-
gorithmic cost models.

5. Shared server components.These components pro-
vide uniform management of I/O, memory, communi-
cations, and disk resources.

A particular feature of cgmOLAP is that it shows very
high performance on low cost, shared nothing, commodity
cluster architectures. A diagram of such an architecture is
given in Figure 2. Consider a storage node as shown in
Figure 2 that holds the initial, possibly very large, raw data
setR on a disk array. cgmOLAP fully distributes the data
setR over thep local disks of processorsP0 to Pp−1 in
striped format as shown in Figure 3. Similarly, each view
created by cgmOLAP is generated over thep local disks
in striped format, using a Hilbert order space filling curve.
The striped format ensures that subsequent accesses to an

individual view generated by cgmOLAP can access allp
local disks in parallel, providing maximum I/O bandwidth,
with balanced retrieval across the disks/processors.

network or switch

proc

NIC

mem

disk

proc

NIC

mem

disk

proc

NIC

mem

disk

proc

NIC

mem

disk array

P0 P1 Pp-1 Storage node

Figure 2: Shared-Nothing Multiprocessor.

Disk for
P

0 1

Disk for
P p-1

Disk for
P

...

...

...

.........

INPUT

OUTPUT

ABCD (raw data set, R)

ABC

ABD

ACD

D
...

Figure 3: Parallel Disk Layout.

3 cgmOLAP For Uncompressed Data Cubes
We first consider the construction of data cubes without
data reduction (in contrast to iceberg cubes [2, 9, 16] where
aggregate values are only stored if they have a certain, user
specified, min support). The global structure of our par-
allel data cube construction algorithm for shared-nothing
multiprocessors [5] is illustrated in Figure 4 and consists
of d iterationsi = 1 . . . d. In iteration i, the i-subcube

ABCD

BCACAB

BCDACDABC

ALL

DCBA

AD CDBD

ABD

1-Subcube

2-Subcube

3-Subcube

4-Subcube

Root

Figure 4: Subcubes of a data cube ford = 4.

DCi is created in five main steps: ComputingRooti, com-
puting the schedule treeTi, optimizing the partitioning of
Rooti into Rooti1 ... Rootip over thep local disks, com-
puting on each processor the localDCij from eachRootij ,
and merging theDCij to obtain the correcti-subcubeDCi.
The algorithm can be applied to both full and partial data
cube construction, where only a subset of the2d possible
views is to be created. The only difference is in the chosen
schedule treeTi. For a full cube we use Pipesort to com-
puteTi and for a partial cube we use a modified schedule
tree construction method presented in [7].

Good data partitioning is the key factor in obtaining
good performance. We have devised a dynamic data par-
titioning scheme called “pivoting”. A carefully selected set

of pivots is chosen to partition the data and ensure mini-
mum data movement during the merging of theDCij . This
dynamic data partitioning scheme adapts to both, the cur-
rent data set and the performance parameters of the parallel
machine. Using this scheme, data cube generation tasks in-
volving millions of rows of input, that take days to perform
on a single processor machine, can be completed in just
hours on a 32 processor cluster. We have performed an ex-
tensive performance evaluation of our new method, explor-
ing relative speedup, scaleup, sizeup, output sizes and data
skew. The optimized data partition scheme exhibited op-
timal, linear, speedup for full cube generation on as many
as 32 processors, as well as excellent sizeup and scaleup
behavior. For the planned demonstration, we will provide
data sets where the response times are within the range of
a few minutes. For example, for a fact table with 16 mil-
lion rows and 8 attributes, our parallel data cube generation
method achieves close to optimal speedup for 32 proces-
sors, generating a full data cube in under 3 minutes. We
will also execute a few larger demo runs in the background.
For example, for a fact table with 256 million rows and 8 at-
tributes, our parallel method achieves optimal speedup for
32 processors, generating a full data cube consisting of≈
7 billion rows (200 Gigabytes) in under 37 minutes.

4 cgmOLAP For Iceberg Cubes

For iceberg cubes (e.g. [2, 9, 16]), aggregate values are
only stored if they have a certain, user specified, mini-
mum support. In [4] we introduced the “Pipe ’n Prune”
(PnP) operator for parallel and external memory iceberg
cube computation. The PnP operator is part of cgmOLAP.
The novelty of our method, which is illustrated in Figure 5
is that it completely interleaves a top-down piping approach
for data aggregation with bottom-up Apriori data pruning.
The idea behind PnP is to fully integrate data aggregation
via top-down piping [14] with bottom-up (BUC [2]) Apri-
ori pruning. For a group-byv, the PnP operator performs
two steps: (1) It builds all group-bysv′ that are a prefix
of v through one single sort/scan operation (piping [14])
with iceberg cube pruning. (2) It uses these prefix group-
bys to perform bottom-up (BUC [2]) Apriori pruning for
new group-bys that are starting points of other piping op-
erations. The PnP operator is applied recursively until all
group-bys of the iceberg cube have been generated. An
example of a 5-dimensionalPnP Treedepicting the entire
process for a 5-dimensional iceberg cube query is shown
in Figure 5. A particular strength of PnP is that it is very
efficient for all of the following scenarios: (1) Sequential
iceberg cube queries. (2) External memory iceberg cube
queries. (3) Parallel iceberg cube queries on shared-nothing
PC clusters with multiple disks.

Our performance analysis shows that PnP performs very
well for both, denseand sparse data sets and it scales
well, providing linear speedup for larger number of proces-
sors. In [13] Ng et.al. observe for their parallel iceberg
cube method that “the speedup from 8 processors to 16

processors is below expectation” and attribute this scalabil-
ity problem to scheduling and load balancing issues. Our
analysis shows that PnP solves these problems and scales
well for at least up to 32 processors. For the planned
demonstration, we will provide data sets where the re-
sponse times are within the range of a few minutes. For
example, for a fact table with 10 million rows and 10 at-
tributes, our PnP implementation builds the iceberg cube
of 363984 rows (8.8 MB) on 16 processors in less than 3
minutes.

ABCDE

ABCD ABCE ABDE ACDE BCDE

ABC

AB

A

ABD ABR ACD

AC

ACE ADE BCD

BC

B

AD AE

BCE BDE CDE

BD CD

C

CE DE

D E

BE

Figure 5: A PnP Tree.(Plain arrow: Top-Down Piping. Dashed
Arrow: Bottom-up Pruning. Bold Arrow: Sorting.)

5 Parallel OLAP Query Processing

While the previous algorithms can be used to produce ag-
gregated data cubes, the associated tables may still be quite
large. Moreover, given the complex, multi-dimensional na-
ture of the OLAP environment, a naive query implementa-
tion would significantly undermine the potential benefit of
the materialized cubes. Therefore, it is crucial that an effi-
cient, OLAP-centric query engine be developed to support
the existing suite of cube generation algorithms.

Given the requirement for direct and intuitive multi-
dimensional query functionality, a dimension-aware index-
ing mechanism is required. Specifically, each aggregated
view is supported by an r-tree that has been “packed” us-
ing the Hilbert space filling curve. Packing not only allows
more efficient storage, but it isdimension neutral, thereby
ameliorating the performance issues often associated with
other packing schemes. Our r-trees are fully parallelized,
using a round robin striping mechanism to distribute indi-
vidual Hilbert-ordered views to each of thep nodes of the
parallel machine. The resulting framework creates a set of
p partial packed r-trees, each of which contributes equally
to the resolution of individual queries. Experimental analy-
sis has shown the query load balancing error to be consis-
tently less the 1%. We note that the collective resolution of
queries is more appropriate in data warehousing environ-
ments, where queries tend to be larger, more complex, and
less frequent than would be the case in OLTP settings.

Figure 6 depicts the basic query model. Essentially, the
servervirtualizesthe data cube so that the user simply sees
a fully materialized data cube that is indexable on all di-
mensions and/or dimension hierarchies. In order to main-
tain this transparency, the query engine transforms queries
to reflect the physical storage and indexing formats. Non-

existent views (i.e., partial cube materializations) are sup-
ported by way of surrogate views that are selected based
upon size and dimension considerations. An optimized par-
allel sample sort supports re-ordering and aggregation fea-
tures that ultimately return a result set consistent with the
user’s original specification.

CDAB ACBE

ACBDE

Surrogate Pool

Intermediate
Superset
on ABCD

Final Result:
ABC

A = 10/20
B = 1/6
C = 15/50

Initial User
Query on the

View ABC

Query
Engine

C = 15/50
D = min/max
A = 10/20
B = 1/6

Resolve Transformed
Query on Surrogate

Identify
Cheapest
Surrogate

Sort and
Aggregate

Permute Partial Result

Figure 6: The process of resolving queries against materi-
alized views. Note the view specified in the query may not
exist in which case a surrogate will be selected.

In practice, OLAP queries tend to exploit dimension hi-
erarchies such as time or product classification. Our server
supports hierarchical query resolution by way of an exten-
sive dimension-aware caching subsystem. Not only does
the caching framework improve the response time for gen-
eral queries, but it can be used to efficiently resolve com-
mon hierarchical OLAP queries. Specifically, roll-up, drill-
down, slice and dice, and pivot queries can directly ma-
nipulate the intermediate hypercube results sets associated
with previous hierarchical queries. We will show in our
demonstration examples where arbitrary OLAP queries (in-
cluding hierarchical dimensions) are submitted in batches
of 1000 to 16-nodes of our Linux cluster and are answered
at approximately 100 queries per second.

6 Demonstration Description
In our demonstration, we will show the efficiency of cg-
mOLAP’s parallel data cube generation and querying algo-
rithms. Our demonstration interface consists of three parts.

1. A cube specification panel that supports the selection
of existing benchmark data sets or the specification of
synthetic data sets in terms of number of rows, dimen-
sionality, cardinality, skew, min support etc. From this
panel, attendees can initiate the generation of full, par-
tial, or iceberg cubes.

2. A query specification panel that allows the specifica-
tion of parameters to our synthetic query generator or
allows queries to entered directly by attendees. Our
synthetic query generator produces batches of random
range, rollup, drilldown, slice, dice and pivot queries
to be evaluated against randomly selected views which
may or may not have been materialized.

3. A performance monitoring panel which supports the
visualization of cube generation and querying perfor-
mance parameters such as rows generated per second
and queries evaluated per second.

For this demonstration, the cgmOLAP system will be run-
ning on two 32 processor Linux-based clusters, one located
in Canada and the other in Australia. In the unlikely event
that both of these machine become unavailable over the In-
ternet during the demo session, the cgmOLAP system will
be run locally on a single processor machine using MPI’s
virtual processor simulation.

References
[1] The PANDA project. http://www.cs.dal.ca/∼panda/.
[2] K. Beyer and R. Ramakrishnan. Bottom-up computa-

tion of sparse and iceberg cubes.SIGMOD, 1999.
[3] Y. Chen, F. Dehne, T. Eavis, and A. Rau-Chaplin.

Parallel ROLAP data cube construction on shared-
nothing multiprocessors. InInt. Parallel and Distrib-
uted Processing Symposium, 2003.

[4] Y. Chen, F. Dehne, T. Eavis, and A. Rau-Chaplin.
PnP: Parallel and external memory iceberg cube com-
putation. InICDE (to appear), 2005.

[5] Y. Chen, F.Dehne, T.Eavis, and A.Rau-Chaplin.
Building large ROLAP data cubes in parallel. In
IDEAS ’04, 2004.

[6] F. Dehne, T. Eavis, and A. Rau-Chaplin. Paralleliz-
ing the datacube.Distributed and Parallel Databases,
11(2):181–201, 2002.

[7] F. Dehne, T. Eavis, and A. Rau-Chaplin. Computing
partial data cubes. InHICSS-37, 2004.

[8] The Rising Storage Tide, 2003.
www.datawarehousing.com/papers.

[9] M. Fang, N. Shivakumar, H. Garcia-Molina, R. Mot-
wani, and J. Ullman. Computing iceberg queries effi-
ciently. VLDB, pp 299–310, 1998.

[10] S. Goil and A. Choudhary. High performance OLAP
and data mining on parallel computers.Journal of
Data Mining and Knowledge Discovery, (4), 1997.

[11] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman,
D. Reichart, and M. Venkatrao. Data Cube: A re-
lational aggregation operator generalizing group-by,
cross-tab, and sub-totals.J. Data Mining and Knowl-
edge Discovery, 1(1):29–53, 1997.

[12] H.Lu, J.X. Yu, L. Feng, and X. Li. Fully dynamic
partitioning: Handling data skew in parallel data cube
computation. Distributed and Parallel Databases,
13:181–202, 2003.

[13] R. Ng, A. Wagner, and Y. Yin. Iceberg-cube compu-
tation with PC clusters.SIGMOD, pp 25–36, 2001.

[14] S. Sarawagi, R. Agrawal, and A. Gupta. On com-
puting the data cube. Technical report rj10026, IBM
Almaden Research Center, San Jose, CA, 1996.

[15] The Winter Report. www.wintercorp.com/vldb/.
[16] D. Xin, J. Han, X. Li, and B. W. Wah. Star-cubing:

Computing iceberg cubes by top-down and bottom-up
integration.VLDB, 2003.

