
Adding Parallelism to Visual Data Flow Programs

Philip Cox
pcox@cs.dal.ca

Simon Gauvin
gauvins@cs.dal.ca

Faculty of Computer Science,
Dalhousie University

Halifax, Nova Scotia, Canada

Andrew Rau-Chaplin
arc@cs.dal.ca

ABSTRACT
Programming in parallel is an error-prone and complex task
compounded by the lack of tool support for both programming
and debugging. Recent advances in compiler-directed shared
memory APIs, such as OpenMP, have made shared-memory
parallelism more widely accessible for users of traditional
procedural languages: however, the mechanisms provided are
difficult to use and error-prone. This paper examines the use
of visual notations for data flow programming to enable the
creation of shared memory parallel programs. We present a
model, arising from research on the ReactoGraph visual pro-
gramming language, that allows code in a general class of
visual data flow languages to be parallelized using visual an-
notations, and discuss the advantages this has over current
textual methods.

Keywords
Data Flow, Parallel, Visual Language

1. INTRODUCTION
During the 70s and 80s, several groups of researchers pur-

sued the goal of building highly parallel computers based on
data flow [19]. Although differing in detail, these machines
shared a common architectural concept, a directed graph
with edges, implemented by a configurable communication
network, routing data between nodes consisting of simple
independent processors. They also shared data-driven data
flow semantics, whereby a node would execute after receiv-
ing input data. Some of these projects are still continuing:
none, however, has produced hardware that is used commer-
cially, or by researchers who use high-performance comput-
ing platforms.

Despite its lack of success as a hardware architecture, data
flow has survived as a software model, providing the basis
for various visual programming languages. Research into
visual data flow languages has a long history, and has re-
sulted in various research systems such as Fabrik [3], BDL
[18] and Vista [8]. In particular, the project from which

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

the results reported here have arisen involves the design of
a message-passing visual data flow language, ReactoGraph
[9, 10]. Commercial visual, data flow programming prod-
ucts include LabVIEW [13], VEE [12], Simulink [5], Soft-
wire [21], and Prograph [17]. Data gathered from LabVIEW
users, indicates that they prefer visual, data flow languages
to textual, procedural ones, and that the usability of the
LabVIEW package is to a large extent attributable to the
visual data flow nature of the language [1, 22].

After much experimentation, two dominant parallel archi-
tectures have emerged, distributed-memory multicomputers
as typified by clusters, and shared-memory multiprocessors
as typified by the bus-based SMP machines [7]. In fact, to-
day most distributed-memory machines are actually made
up of nodes which are themselves SMP machines. Typical
corporate servers are four- or eight-way SMP’s, and even to-
day’s personal computers are often SMP machines, in which
two or more processors share access to a global shared mem-
ory via a bus.

As parallel machines have developed, the problem of how
to program them has been intensively studied [20]. For dis-
tributed memory machines, message passing languages or
libraries (e.g. PVM or MPI) have been developed. However,
this approach often requires existing programs to be mostly
re-written with parallelism in mind, if they are to be effi-
cient and scalable. Message-passing systems like MPI are
the “assembly language programming” of parallel comput-
ing in that the programmer has complete control but must
address all technical aspects of the parallelism such as thread
management, data dependencies, and synchronization.

In the context of shared-memory or SMP machines, much
of the research effort has focused on identifying the potential
parallelism inherent in program semantics written in stan-
dard procedural languages such as C or Fortran, and rewrit-
ing or annotating programs so that they can be deployed on
parallel hardware. As a result, various libraries have been
developed, providing the programmer with tools to manage
the parallel execution of threads [7, 15]. However, these
tools are still primitive and complex making their use time
consuming and programs constructed with them difficult to
understand.

At a slightly higher level of abstraction lies OpenMP,
which presents a parallel computation model, realized as a
collection of directives, variables, and functions, with which
a programmer can annotate a program to run on shared-
memory machines [2]. OpenMP is conceptually language
independent, and has implementations specific to various
standard procedural languages [16], but none to support

visual programming languages. To parallelise an existing
sequential program using OpenMP, a programmer inserts
compiler directives that identify program blocks as parallel
regions. The code in a parallel region is to be executed on
some set of threads, as determined by parameters to the
parallel directive, and by other related directives. Thus,
OpenMP provides a higher level of abstraction than mes-
sage passing libraries such as MPI; however, it still requires
the programmer to pay close attention to important details
such as data dependencies and race conditions.

One of the important philosophies behind the design of
OpenMP is that one should be able to parallelise existing
sequential programs simply by inserting OpenMP directives,
thereby producing code that can be compiled both by a
normal sequential compiler ignoring the directives, and an
OpenMP-compliant parallel compiler. In practice, however,
the code usually requires some changes and, to achieve max-
imum performance, may require major rewriting. It is im-
portant to note that at least some of these changes are ne-
cessitated by the fact that OpenMP is designed for use with
procedural languages. Some of the more subtle and difficult
features of OpenMP are present for the same reason.

Although data flow has been used as the basis for paral-
lel architectures, as discussed above, little research has been
aimed at realizing the parallelism depicted in visual data
flow programs. A simple visual data flow language was im-
plemented for the DDM-1 data flow machine [6]. A simple,
conservative system of annotations and a related parallel
computation model for Prograph was proposed in [4].

In the following, we present the Visual Parallel Regions
(VPR) model, a system of annotations for denoting paral-
lelism applicable to the class of languages of which Prograph,
LabVIEW, and ReactoGraph are representatives. These are
languages where each wire in an execution instance of a di-
agram can carry at most one token, and data flow diagrams
are contained in control structures which manage iteration
and conditional execution. Our annotations are inspired by
OpenMP, but do not follow it in precise detail since many
OpenMP features are a consequence of the procedural lan-
guages to which it applies, and are irrelevant or unnecessary
in a data flow context. Nevertheless, we adopt the OpenMP
philosophy that the annotations for parallelism should be an
overlay that can be applied to an existing data flow program.

Parallel programming is practised primarily by a com-
munity of users who are interested in achieving maximum
possible performance for well structured code for numeri-
cal computations written in Fortran, C, or C++. Although
there has been some research into the parallelisation of vi-
sual data flow programs, for example [4, 14], there are no
such tools available in existing language implementations.
Data flow languages such as LabVIEW and Prograph, were
designed for users who are attracted to the elegance, ease of
use, and speed of application development that visual pro-
gramming provides. Up to now, however, they have been
unable to scale their applications to the new SMP com-
modity hardware now readily available on many desktops.
LabVIEW is widely used by engineers and researchers for
simulation, control and large numerical computations, and
provides arrays and for loops, ideal candidates for paralleli-
sation. Clearly parallelisation of LabVIEW programs would
enable computation on larger data sets on SMP PCs, for
example. Similarly, ReactoGraph is being designed for de-
velopment of web-based enterprise applications on complex

platforms such as Web services [23] connecting legacy sys-
tems; so parallel annotations for ReactoGraph provide a
means for enterprise developers to better access the paral-
lelism in SMP systems now common in most enterprise web
system installations.

This work is novel in that it extends a family of visual
data flow languages by providing parallel semantics in a vi-
sually integrated and non-obstructive way requiring little or
no modification to the language syntax yet providing con-
trol of parallel execution beyond that inherent in data flow
graphs.

2. COMPARING PARALLELIZATION OF
COMMON TASKS

In the following sections we compare some simple exam-
ples of parallel algorithms written in textual programming
languages with their equivalent visual data flow code an-
notated with VPR. The sample programs are small and
meant to illustrate common real-world tasks in paralleliz-
ing sequential code and to show how VPR can simplify the
creation of parallel code, and enhance its comprehensibility.

We present an informal explanation of parallel data flow
execution followed by three examples that illustrate various
capabilities and facets of VPR increasing in complexity from
simple to more involved. The examples cover parallelizing
loops, managing data dependencies in arrays, and paralleliz-
ing recursion and the accumulation of values across multiple
threads respectively.

2.1 Parallel Data Flow Execution
In the class of languages that we are concerned with here

a data flow graph is an acyclic directed graph, the edges and
nodes of which are called data links and operations respec-
tively. Each operation has zero or more terminals (inputs)
and roots (outputs). A data link out of an operation is
incident on a root of the operation. A data link into an
operation is incident on a terminal of the operation. Each
terminal has at most one associated data link while roots
may have one or more incident data links. Data links trans-
mit data between operations. An operation uses the values
arriving at its terminals to compute values which it places
on its roots. Each link has at most one value at any time.
An operation may be a primitive, such as an arithmetic or
I/O function, or a call to another data flow graph.

The execution of a data flow graph is determined by the
flow of data through its links. An operation is ready to
execute when data is present at each of its terminals. On
execution, an operation consumes the data on its terminals,
preventing its reuse. Once execution of the operation is
complete, its output values are placed on its roots. If a root
is at the tail of more than one link, each link transmits a
copy of the value on the root. Each link corresponds to a
local variable in a procedural language, but unlike variables
in procedural languages, can be assigned a value only once
during the execution of a data flow graph call. This property
of data flow graphs is called single assignment.

Sequential execution of a data flow graph is achieved by
executing operators that are ready, one at a time. Note that
more than one operator may be in the ready state at any
point, so there may be many different execution orderings
of a data flow graph on any given input; however, the single
assignment property ensures that all executions will produce

the same output. Some data flow languages, such as Reac-
toGraph, Prograph and LabVIEW, provide other kinds of
variables that can be assigned values more than once, al-
lowing side effects not admitted by the “pure” data flow
discussed so far. To control these effects, such languages
provide synchronization constructs for imposing an order
on the execution of operations other than that implied by
data flow.

In the case where several operations are ready for execu-
tion at the same time, we have an opportunity to execute
them simultaneously, leading to what we call implicit paral-
lelism inherent in the structure of the data flow graph. Most
implementations of data flow that have included parallel ex-
ecution have concentrated on this implicit parallelism; for
example, data flow hardware [19], and software [20].

In the work reported here, we have taken a somewhat
different approach to parallelizing data flow programs by
allowing arbitrary subgraphs of a graph to be executed in
parallel. Note that these subgraphs do not necessarily de-
pend on one another for data. In this approach, which we
call explicit parallelism, a programmer specifies that copies
of some subgraph are to be executed in parallel by some
set of threads. This approach requires no modification to
the original subgraph but provides a set of explicit anno-
tations, using visual rectangular regions, that are overlaid
on the subgraph to define its parallel execution. Although
“readiness” is not the criterion for scheduling a subgraph for
parallel execution in a region, any operation within a region
must be in the ready state before being executed.

2.2 Parallel Loops: Computing π
A common real-world source of parallelism in sequential

programs is the parallelization of loops, in which the iter-
ations of a loop are divided between a number of threads
[11]. Figure 1 presents a program that calculates π using
C and the OpenMP API and illustrates the common use
of for() loops for counted iteration over a set of values or
data structures. Such loops are a common source of sig-
nificant computational work and are prime candidates for
parallelism. In principle, a counted loop of fixed length can
be easily subdivided among a set of threads; however, care
must be taken to identify cases where data within the loop
are shared so as not to cause race conditions or corruption
of data due to data dependencies. In this example we are in-
terested in showing how OpenMP is used to parallelize such
loops and how our model is able to perform the same func-
tion with less cognitive work on the part of the programmer.

The example in Figure 1 shows the sequential program 1

computing π augmented with four additional Lines, 1, 4, 8,
and 9, which transform it into a parallel program through
the use of OpenMP directives. In Line 1 the programmer in-
dicates that the OpenMP runtime library will be used. Lines
4 and 8 define a constant, NUM THREADS, used to set the num-
ber of threads, in this case 2, to be used in parallelizing the
loop. Finally on Line 9 the parallel for directive defines the
following for() loop as a parallel region. The next line af-
ter this directive must be a for() loop construct otherwise
the OpenMP compiler will generate an error. In this case
the parallel for directive is modified by the addition of two
clauses. The first is a data-sharing private clause that in-
structs the compiler to treat the variable x as a private value

1In the code examples we denote changes to the sequential
code with an asterisk next to the line number.

1* #include <omp.h>

2 static long num_steps = 10000;

3 double step;

4* #define NUM_TREADS 2

5 void main() {

6 int i; double x, pi, sum = 0.0;

7 step = 1.0/(double)num_steps;

8* omp_set_num_threads(NUM_THREADS);

9* #pragma omp parallel for private(x)

reduction(+:sum)

10 for (i=1; i <= num_steps; i++) {

11 x = (i-0.5)*step;

12 sum = sum + 4.0/(1.0+x*x);

}

13 pi = step * sum;

}

Figure 1: Parallel π program in C using the
OpenMP API on the starred lines.

that is independently allocated in each thread. Note that
x is not given an initial value from the master thread (used
to run the program sequentially), meaning that x must be
initialized within the loop before it can be used. In this case
this is done in Line 11. The second clause is a reduction
clause that instructs the compiler to treat the variable sum

as if it were a private value, to initialize each thread’s copy
based on the master thread’s value (0.0), and to return to
the master thread a value computed by applying the binary
associative operator + to all of the threads’ private values
for sum.

The presence of the parallel for directive results in a
program that runs sequentially until Line 9, then forks into
two threads with the for() loop spread between them, iter-
ations 1 to 5000 running in one thread and iterations 5001
to 10000 in the other. By default, variables in OpenMP are
shared between threads. Without the private(x) clause, x
would be shared by default within the parallel region, and
would be the source of a race condition, where each thread
would compete to write a value to it in Line 11. As well,
since its value is dependent on the iteration variable i , the
value of x set by one thread would be out of the loop range
in the other thread. Finally, since x is shared across Lines
11 and 12, there is a data dependency between these lines,
where x could change between the write in Line 11 and the
read in Line 12. The solution is to make variable x pri-
vate for each thread, using the private(x) clause in Line
9. Because the value of sum is dependent on all iterations of
the loop, it must be reduced at the end of the loop. Since
the variable step is only ever read in the loop it can be
shared. Notice that the iteration variable i is not declared
private, although it behaves as private, since the parallel

for directive automatically makes any such counting vari-
ables private by default.

From a programming and cognitive work point of view all
these data dependency issues need to be considered by the
programmer when evaluating any variables used in a loop
to be parallelized. Although in OpenMP it is easy to iden-
tify a for loop and wrap it in a parallel for directive,
the challenge is in discerning and addressing all of the data
dependency issues caused by the directive and its resulting
parallel execution of the loop. As we will see, VPR takes

Figure 2: Parallel data flow π program.

advantage of the fact that data dependencies are explicitly
represented in visual data flow programs to significantly al-
leviate this cognitive overhead.

Figure 2 shows the data flow code corresponding to the
C program in Figure 1. Figure 2(a) is approximately equiv-
alent to the procedure main() in lines 5 to 13 of Figure 1,
while Figure 2(b) depicts the body of the Loop operation
and corresponds to lines 10 to 13. Each is an example of a
case, consisting of a data flow graph between an input bar at
the top and an output bar at the bottom, which respectively
transmit data into and out of the diagram.

The Loop operation is a local operation which has been
transformed into a counted loop by applying the n-loop an-
notation to one of its terminals, indicating that the terminal
must receive a nonnegative integer at execution. On the in-
side of the local, a root () and terminal (), on the input
and output bar respectively, correspond to the n-loop ter-
minal on the outside of the local. The root on the input
bar provides the current iteration number, starting at 1 and
counting to N by 1. The terminal on the output bar allows
the bounding value of the loop, 10000 in this example, to be
changed within the local. The second input to Loop is the
value calculated by the local Step corresponding to Line 7
in Figure 1. The locals inside Loop correspond to Lines 11
and 12 in Figure 1. The internals of these locals and Step
are trivial and are omitted for clarity.

Ignoring the rectangle enclosing the local Loop, the pro-
gram in Figure 2 will execute in the usual sequential fashion
where the execution order is a total order of the data flow
graph. The rectangle is an example of a parallel region anno-
tation which instructs the execution mechanism to execute
the enclosed code in parallel. In our example, the annotation
is in fact a loop annotation (see Section 3.1), indicated by
the icon in its lower right corner, that parallelizes local op-
erations with either n-loop or list terminals; in other words,
counted loops. Parallel annotations have terminals, denoted
in the same way as operations, by small icons, circles and
squares. The loop annotation has two terminals. The ter-
minal on the right, the thread terminal, requires an integer
value, which specifies the maximum number of threads to be
used in executing the enclosed subgraph of code. The ter-
minal on the left is the block terminal, requiring a boolean
input used for switching between parallel and sequential ex-

ecution. If no values are provided on these two terminals,
execution defaults to sequential. The root on the inside of
the annotation is the thread id root which outputs an integer
value that uniquely identifies the thread currently executing
the enclosed code. All annotation types are identified by
unique icons (e.g. loop annotation is) in the lower right
corner. In the example shown in Figure 2, the local Loop will
be executed in parallel using 2 threads, each of which will
execute half the iterations, as described in our commentary
on the code in Figure 1.

This example highlights some of the data sharing prop-
erties of VPR, which derive from considering the ways that
data links interact with parallel annotations. A link em-
anates from a root and ends at a terminal, and depending
on whether one or both of the root and terminal are inside
a parallel region, the link may lie within the region, enter
the region, or exit the region. In the C version of the π
program, the use of an OpenMP private clause, discussed
above, is necessary because some procedural languages, C
for example, require declarations to precede executable code;
hence every variable occurring in a parallel region must be
declared outside that region, regardless of whether or not it
is intended only for local use. In a data flow graph, however,
each root is analogous to a distinct variable that is simul-
taneously defined and assigned in a procedural program. In
VPR, therefore, all links contained within a parallel region
are of private scope by default (see Section 3.2).

In procedural languages an uninitialized variable can be
read. In data flow, however, the order of execution ensures
that a link has a value before it is read. Hence, in VPR a
link that enters a parallel region is by default firstprivate, as
defined by OpenMP, meaning that it is private but initial-
ized with the value computed in the master thread for the
root, which lies outside the parallel region.

A link that leaves a parallel region is by default lastprivate
in scope, meaning that value provided by the last returning
thread is passed back to the master thread. In our example,
however, we require more than just lastprivate, since each
thread produces a value from just part of the whole iteration.
These individual thread outputs must be added together to
produce the required value. This is accomplished by the re-
duction annotation (Section 3.2) located at the intersection
of the border of the loop annotation and the link transmit-
ting the output the local Loop. The + sign located in the
reduction annotation icon denotes that the binary associa-
tive operator + is applied to compute the sum of the values
produced by the threads. The link leaving the reduction
annotation carries the result of this reduction.

2.3 Data Dependencies and Array Processing
In our second example we illustrate the common prob-

lem in procedural code with multiple assignment semantics
and the data dependencies between array locations. These
dependencies occur when a single memory location is read
and written by more than one process. In parallel code we
typically find three types of dependencies that need to be
identified and corrected: 1) flow, 2) anti, and 3) output de-
pendencies [2].

In this example we focus on anti dependencies. As we
will see, solving array-related dependency problems in tex-
tual code, by using parallel programming models such as
OpenMP directives, often requires significant re-structuring
of the sequential program, while our data flow approach sup-

1 do i = 1, N - 1

2 x = (B(i) + C(i))/2

3 A(i) = A(i + 1) + x

4 enddo

(a) Sequential data dependency

1* #omp parallel do shared(A, A2)

2 do i = 1, N - 1

3 A2(i) = A(i + 1)

4 enddo

5* #omp parallel do shared(A, A2) private(x)

6 do i = 1, N - 1

7 x = (B(i) + C(i))/2

8 A(i) = A2(i) + x

9 enddo

(b) Parallel OpenMP array processing code

Figure 3: Data dependencies.

ports parallelization via only minor program annotation. In
OpenMP the two most difficult issues that a programmer
must grapple with are data dependencies and understand-
ing the behavior of sequential code that has been annotated
for parallelism. A race condition is where the output of the
program becomes dependent on the relative timing of events,
particularly thread scheduling. As will be illustrated in the
remainder of this section, because data flow is at a higher
level of abstraction than say C, and explicitly captures many
data dependencies, these issues are more easily addressed in
the visual data flow setting.

The code in Figure 3(a) shows a small sequential Fortran
program fragment that uses some arrays in a do loop to
perform a simple calculation. Using OpenMP we can easily
parallelize this loop. However, avoiding data dependencies
and race conditions presents a significantly more challenging
problem.

Figure 3(a) depicts an example of a non-loop carried anti
dependency on variable x. When x is written in Line 2 and
read in Line 3 a race condition may occur if a thread sets x
at Line 2, but x is reset by another thread executing Line
2 before the initial thread executes Line 3. The solution
to this problem is straight-forward: one simply makes x a
private variable for each thread.

However, Figure 3(a) also contains an example of a loop-
carried anti dependency in Line 3 on the array A. Note that
the code writes to A(i) after reading from A(i + 1). This
can cause a race condition if index i+1 is written to by an-
other thread causing the two threads to read different values
for the same index. The common solution to this problem is
to rewrite the code into two independent parallel loops that
are executed one after the other, the first of which copies
array A, and the second of which uses the copy.

Dealing with data dependencies requires changing the or-
ganization of this simple example by modifying the original
code. First the data dependent part of the computation
in Line 3 is separated into two parts using copies of array
A, as shown in Figure 3(b). The values of the array A are
first copied in parallel with no dependencies to a new array
A2. The #parallel directive also defines both arrays to be
shared so that each thread has access to all elements of the
array. This does not cause race conditions since the itera-

Figure 4: Parallel data flow dependency solution.

tions are divided across threads to prevent index collision
of any writes. Next, the first part of the original code in
Line 2 is placed in a second parallel loop, starting at Line
5 in Figure 3(b). Here arrays A and A2 are shared, and the
loop-carried anti dependency is removed since we only write
to A and read from A2. No reads on A2(i+1) occur while A2

is being written.
This example illustrates a common technique for correct-

ing data dependency problems when parallelizing sequen-
tial code. This technique yields the program in Figure 3(b)
which is semantically identical to Figure 3(a), but with the
added benefit of being data dependency free and able to run
partially in parallel to improve execution speed. However,
the result is an increased use of resources with the addi-
tion of the second array A2, the need to modify the code to
remove dependencies, and more complex code to maintain.
With large programs this technique may account for a sig-
nificant portion of the parallelization effort often requiring
entire sections of sequential programs to be re-written in
order to run in parallel. Also note that some of the poten-
tial parallelism of the OpenMP do directive is lost from the
initial loop since we now have two parallel loops executing
sequentially.

In visual languages of the kind we are considering list pro-
cessing is indicated by a list interator terminal or root ()
on the input or output of an operation repectively. Figure
4 presents a visual data flow equivalent to the textual pro-
gram in Figure 3(a). In this program the local Do has three
list terminals that iterate through corresponding elements
of the three input arrays A,B, and C. The leftmost input is
processed by the detach list head operation which
receives an array as input, and outputs its first element and
a copy of the remaining array on its left and right roots re-
spectively. Hence the body of Do is equivalent to Lines 2
and 3 in Figure 3(a). Since the root of Do is also list an-
notated, it produces a list of the values computed by the
individual executions of Do.

As in the example of Section 2.2, the program in Figure
4 is parallelized by enclosing the Do local in a parallel loop
annotation. In this case the number of threads has not been
specified so the region will be automatically assigned the
default maximum number of threads. The total number of
iterations, equal to the length of the shortest input list, will
be divided among the threads, as before.

The data dependencies in the OpenMP code do not arise
in the data flow solution since in the local Do, all links are
private by default as discussed above, and the link attached

to the root of Do is lastprivate by default, so each thread
creates its own list of results produced by Do. In effect, the
creation of the second array required in the OpenMP code
is handled automatically by the normal single-assignment
semantics of data flow.

It is also important to note that since data links that en-
ter a parallel region are by default firstprivate, lists arriving
on these links would normally be copied for each process.
However, when a list is routed to a list terminal of an oper-
ation in a parallel loop region, it is partitioned into separate
lists, one for each of the threads across which the iteration
is distributed. This optimization prevents needless copying
of large quantities of data. Of course, if a list arrives at such
an iterative operation via a simple terminal, then it will be
copied like any other firstprivate data.

The example in Figure 4 also features a reduction applied
to the output of the Do local. Each thread returns the list
resulting from its portion of the computation, and the com-
plete output list is assembled by the list reduction that
concatenates the individual lists.

2.4 Parallel Recursion with Quicksort
Our final example illustrates a more advanced work-sharing

construct, the section annotation (Section 3.1). A section
annotation allows the creation of sub-regions of a parallel re-
gion, each to be executed by an independent thread. Parallel
sections support both the Multiple Program Multiple Data
(MPMD) programming style, in which different threads run
different code, and Single Program Multiple Data (SPMD)
programming, in which different threads run the same code
but on different data. They are also very useful in express-
ing the parallelism inherent in recursive programs, as we will
see in this example.

Figure 5 presents a concise version of parallel quick sort
written in C using OpenMP. Note that the program is only
slightly modified from the original sequential version. The
function quicksort() starts on Line 3 and receives array T,
and range values q and r, and an additional parameter, deep,
used to control the use of parallelism based on the depth of
recursion, to avoid potentially high parallel overheads when
dealing with a small input array.

Note that there are two potential sources of parallelism in
this example, loop parallelism in the partition step (Lines
9-17), and recursive parallelism associated with the two in-
dependent calls to quicksort() (Lines 26 and 28). Since
we have discussed loop parallelism at some length, we will
focus in this example on recursive parallelism. Note, how-
ever, that to parallelize the for() loop in this case using
OpenMP would require significant changes to the code to
address data dependency issues.

Lines 21 to 30 thread the two recursive calls in parallel us-
ing the OpenMP sections work-sharing construct. The use
of the sections directive in this example shows how two inde-
pendent recursive calls, normally executed sequentially, can
be parallelized by being run in independent threads. The
parallel directive on Line 21 begins a parallel region and de-
clares T to be shared. No other variables need to be private
since all modifications to the variables occur before the par-
allel region in the master thread, where those modifications
are performed on copies of variables passed as parameters in
the function call. Within the sections block (Line 23) there
are two section blocks (Lines 25 and 27). As a result there
are only ever two threads spawned at each level of recursion

1* #include <omp.h>

2* #define DEEPPAR 3

3 void quicksort(double *T, int q, int r, int deep) {

4 int s; i;

5 double buff, pivot;

6 if (q < r) {

7 pivot = T[q];

8 s = q;

9 for (i = q+1; i <= r; i++) {

10 if (T[i] <= pivot) {

11 s = s+1;

12 buff = T[s];

13 T[s] = T[i];

14 T[i] = buff;

15 }

16 }

17 }

18 buff = T[q];

19 T[q] = T[s];

20 T[s] = buff;

21* #pragma omp parallel if(deep < DEEPPAR) shared(T)

22* {

23* #pragma omp sections

24* {

25* #pragma omp section

26* quicksort(T, q, s-1, deep+1);

27* #pragma omp section

28* quicksort(T, q, s+1, deep+1);

29* }

30* }

31 }

Figure 5: Parallel Quicksort in C using OpenMP.

no matter how many threads may be available for use at
Line 21 of the parallel region. As the depth of the recursion
reaches a certain threshold, defined by DEEPAR in Line 2, the
test in the if() clause in the pragma at Line 21 switches off
parallelism in the region from Line 22 to Line 30, causing
the recursive quicksort calls to be executed sequentially.

The equivalent visual data flow version of parallel quick-
sort, again using lists rather than arrays, is shown in Figure
6. Note that the quicksort algorithm itself does not de-
pend on arrays specifically so our choice of lists allows the
data flow code to use the same algorithmic approach but
in a way that is more natural in the data flow program-
ming style. Here the identical logic for run-time recursion
depth detection is used as well as a similar section annota-
tion. The inputs to Quicksort are a list and an integer used
to limit the depth of recursion. This code is a minor varia-
tion of the quicksort one would normally construct in a data
flow language of this kind. In particular, an extra input has
been added to track the depth of recursion, together with a
+1 operation to increment it, and an operation to compare
it with a limit on depth in the persistent (global variable)
DEEPAR.

This example illustrates the use of the section annota-
tion in VPR, indicated by the rectangle surrounding the two
Quicksort operations in the first case 1:2 Quicksort. This an-
notation causes each operation in the parallel region to be
run independently in its own thread (see Section 3.1). Anno-
tations we have seen in previous examples have been drawn

Figure 6: Parallel visual data flow Quicksort.

with a solid border indicating a thread barrier, which blocks
execution of code outside the region until all operations in
the region have been executed. In this example, however,
the outputs of the recursive Quicksort call operations do not
have to be combined in any way, except as indicated by
the data flow output links, unlike previous examples where
outputs of operations in parallel regions were combined by
reduction. Therefore, we have applied no-wait (Section 3.3)
synchronization to the annotation indicated by its dashed
border. This allows operation , which creates a new
list by appending an element to the end of the list it receives
as input, to be executed as soon as the leftmost Quicksort
produces its value, even if the other Quicksort call operation
has not finished. This example also illustrates the function
of the block terminal on a parallel annotation, used to
enable or disable parallel execution (Section 3.1).

We also exploit loop parallelism in this example by apply-
ing the parallel loop directive to the partition operation ≥
which, as discussed in previous examples, divides the iter-
ations of the loop between the available threads. Applying
loop parallelism to the C quicksort for() loop to achieve
the same effect requires far more cognitive work dealing with
the resulting data dependencies. The loop concludes with
two list reductions that assemble the results of the par-
titioned list as two lists.

3. VISUAL PARALLEL REGIONS
In the previous section, we introduced some of the con-

structs of VPR via a sequence of examples, assuming a
knowledge of the semantics of the kind of visual data flow
languages for which VPR is designed. In this section we
provide a catalogue of the constructs that VPR provides,
and informally describe their functionality. We will explain
parallel regions, data flow scoping rules, synchronization and
environment control.

3.1 Annotations for Parallel Regions
To parallelise a data flow graph, the programmer defines

subgraphs called regions, by drawing rectangular outlines
(annotations) to enclose operations. An operation can occur
in two regions if and only if one of the regions is nested inside
the other. A region or operation is said to be top-level in a
graph G if it is not nested inside another region of G. We
refer to top-level operations and regions as units of G.

Each annotation has exactly two terminals, one on the
top at the far left, the other at the far right, and exactly
one root on the inside of the annotation boundary at the
top as shown in Table 3.1. The terminal on the right, the
thread terminal, requires an integer specifying the maximum
number of threads to be used in executing the enclosed code.
The terminal on the left is the block terminal, and requires
a boolean that dictates whether execution of the subgraph
in the region should be parallel or not. The root, called
the thread id root, produces an integer value identifying the
thread currently executing the enclosed subgraph. In addi-
tion, for each data link connecting a root r of an operation
inside the region to a terminal t outside the region, there is
a terminal t′ on the inside of the annotation border and a
matching root r′ on the outside, and the link is replaced by
two links, from r to t′ and from r′ to t. The terminal t′ and
root r′ are said to be induced by the link.

Each annotation has an icon in its bottom right corner
identifying its type (ex. loop annotation is). Table 3.1
depicts the three types of annotations, parallel, section and
loop, which are analogous, although not identical, to simi-
larly named constructs in OpenMP.

The notion of data dependency, on which the ordering
of execution of operations in a data flow graph is based, is
extended to include top-level regions, as follows. If X is a
unit and Y is a top-level operation, then Y depends on X
iff there is a link from a root of X to a terminal of Y . If
X is a unit and Y is a top-level region, then Y depends on
X iff there is a data link from a root of X to a terminal
of Y , or to a terminal of some operation in Y . Let GP be
the directed graph consisting of the units of G connected
by edges implied by this dependency relation. We say that
an annotated graph G is valid if and only if GP is acyclic.
We can similarly extend the “ready-to-execute” notion for
operations, described in Section 2.1, to units. Note that
if there is no link into the thread terminal of a region, the
terminal receives a system-supplied default value. Similarly,
the value of an unconnected block terminal defaults to true.

As the examples in Section 2 illustrate, execution of an an-
notated graph proceeds sequentially according to the normal
execution order dictated by the data flow dependencies in
the graph, except where an annotation indicates some form
of parallel execution. In general, a graph G is assigned to
a thread P , called the master thread for G, which executes
the units of G in sequence according to a schedule for G,
consisting of a total ordering of GP . If the first item of the
schedule is not ready, P waits. Otherwise, if it is an opera-
tion, P executes it in the normal way. If it is a region, then
if it has the value false on its block terminal, its units are
added to the schedule of P . Otherwise, suppose its thread
terminal has the value n, then the following occurs.

If the region is defined by a parallel annotation, n copies
of the enclosed subgraph are assigned to n threads including
P , which proceed as described above, in parallel.

If the region is defined by a section annotation, the first

n units of a schedule for the enclosed subgraph are assigned
to n threads including P , which proceed as described above,
in parallel. As soon as one of these threads completes, it is
assigned the next unit in the schedule. This continues until
all units in the schedule have been assigned to threads.

If the region is defined by a loop annotation, each iteration
operation in the enclosed subgraph is tagged with a set of
n threads including P , then a schedule for the subgraph
is added to the the beginning of the schedule of P . Now
during the processing of its schedule, whenever P encounters
a tagged iteration, n copies of the loop body are assigned to
the n threads in the tag, and each input value is partitioned
into n sets, distributed across the n threads, which proceed
to execute their portions of the iteration in parallel.

In each of the above cases, as each of the n threads as-
signed to a region completes its execution, it must wait until
all n threads have finished before proceeding to further com-
putation.

This general execution can be modified by various VPR
constructs explained below.

Table 1: Visual Parallel Regions
Region Representation

parallel

section

loop

3.2 Data Scoping of Parallel Regions
In this section we define scoping rules for data flowing

into and out of a region. In procedural languages such as
C, a variable can be declared and used in different portions
of the code, and can be assigned a value more than once.
These properties can lead to data dependency errors when
parallelizing sequential textual code as illustrated in Exam-
ple 3. Scoping rules provided by OpenMP provide some
tools for the programmer to address these problems. In
contrast, a variable in the data flow languages we are con-
sidering is declared, assigned once and used all in the same
context, defined by the corresponding root and connected
data links. There is less need, therefore, for scoping rules
in VPR. However, where links are duplicated as a result of
subgraphs being copied across threads, some scoping rules
are required to control data sharing and aggregation.

A link emanates from a root and ends at a terminal, and
depending on whether one or both of the root and termi-
nal are inside a parallel region, the link may lie within the
region, enter the region, or exit the region. Table 3.2 illus-

trates the possible combinations of data flow code and par-
allel region with its associated default variable scope. Unlike
OpenMP, where various scopes can be declared for a vari-
able, VPR defines a default scope for links and provides a
single option for sharing a link between threads, as follows.

Table 2: Scope Rules for Parallel Regions

Scope Representation

first private

last private

private

reduction

shared

In VPR, a link that enters a region is by default firstpri-
vate, that is, private but initialized to the value computed
in the master thread for the root, which lies outside the par-
allel region, for all threads executing in the region. Any link
contained entirely within a region is private by default, so
that its value is unique within each thread executing a copy
of the subgraph. A link that leaves a region is by default
lastprivate, meaning that it is private, but the root induced
by the link receives the value provided to the link by the
thread which is last to complete execution of a copy of the
subgraph.

The default scope for a link contained entirely within a
region can be overridden by marking the link shared. The
value of a shared link is the same for all threads executing a
copy of the subgraph, so the value it has at a particular time
is the value it most recently received in any of the threads.

In some cases, the various parallel executions resulting
from a region may produce different values at the induced
terminals; for example, the threads executing portions of
an iteration in a loop region. In such situations, the pro-
grammer may wish to aggregate these values in some way.
To accomplish this in VPR, an induced root can be marked
as a reduction, indicating that the value of this root is to
be computed from the individual values of the correspond-
ing induced terminal. The computation applied can be a
primitive (sum, +,−, /, x, concat) or a named function. Re-
duction is illustrated in the preceding examples.

3.3 Synchronization
The three types of parallel region defined above do not

provide all the necessary parallelization tools. Finer control
of the execution of threads is often required. To address
this requirement VPR provides synchronization regions. A
synchronization region can be placed inside a parallel region
to control the parallel execution of the subgraph it encloses.
Table 3.2 illustrates the synchronization annotations.

Table 3: Synchronization of Parallel Regions

Region Representation Region Representation

single master

atomic critical

no wait barrier

The single annotation indicates that the enclosed sub-
graph is to be executed only once using any of the threads
assigned to the enclosing parallel region.

The master annotation indicates that the enclosed sub-
graph is to be executed only once using the master thread
of the enclosing region.

The critical annotation indicates that although all the
threads assigned to the enclosing parallel region must ex-
ecute the enclosed subgraph, they must do so one at a time.

The atomic annotation indicates that once execution of
the enclosed subgraph, restricted to contain only primitive
operations, has begun in some thread, all other computation
on the processor running this thread should be suspended.
Correct execution of an atomic region is not guaranteed un-
less the region contains only primitives supported by the
underlying operating system.

The no wait annotation can be added to any of the anno-
tations defined in Section 3.1 to disable the default barrier
implicit in these regions. That is, as soon as any thread
assigned to the region has completed, it can continue exe-
cuting rather than wait for all other threads assigned to the
region to finish. Care must be taken when using this anno-
tation since the master thread may complete execution of
the region and begin to execute operators outside the region
before the remaining threads inside the region are complete.

The barrier annotation can be added to any of the an-
notations defined in Section 3.1 to partition the enclosed
subgraph into two or more sub regions. It indicates that
all threads must finish executing the first region before any
thread can begin executing the second, and so forth.

3.4 Environment Control
Occasionally, it is necessary for a programmer to control

the environment in which a parallel program is executed.

The ability to dynamically control the maximum number
of threads, or how scheduling is performed, allows a pro-
grammer to maximize the performance of an application by
tuning the code to run more efficiently on a specific plat-
form. Environment control is provided in VPR via a set
of primitive operations that set or get the value of some
environmental parameter via a data flow operation. Table
3.4 illustrates one example of a get/set pair of environmen-
tal primitive operations. Other primitives are available for
manipulating other system-dependent parameters.

Table 4: Environment Control for Parallel Regions

Control Representation

Set maximum number of threads

Get maximum number of threads

4. CONCLUDING REMARKS
In this paper we have presented a model that allows se-

quential visual data flow code to be parallelized using a
visual notation inspired by OpenMP semantics. We have
shown how this model can effectively realize the goal of in-
crementally transforming sequential programs into parallel
ones. Through examples, we have explored ways in which
the parallelism inherent in existing sequential visual data
flow programs can be identified and annotated so that they
can be effectively deployed in parallel shared memory set-
tings.

In applying OpenMP-like semantics in the visual data flow
context, we have been struck by the significant number of
ways in which inherent properties of visual data flow lan-
guages aid in making the transformation from sequential to
parallel codes easier, more direct, and likely less error prone.
These results produce a system of parallel programming that
reduces the cognitive load normally associated with text-
based languages. In text-based OpenMP it is often easy to
specify parallelism, but much harder to create a parallel ver-
sion of a sequential program that produces correct results.
Issues relating to data dependencies, race conditions, and
understanding the wider implications of parallel directives,
must be expertly finessed by the programmer. When us-
ing our visual notation, in many instances, these issues are
either less challenging to address or are absent altogether.
The explicit visual representation of data flow and the sin-
gle assignment property of data flow semantics greatly aid in
identifying and removing data dependencies and race condi-
tions. In addition, the use of graphics to represent directives
provides a concrete representation of the notion of regions
enclosing the code to be parallelized, potentially resulting
in improved program comprehension.

Our Visual Parallel Regions model provides a level of ab-
straction equivalent to that provided by OpenMP. We are
presently exploring the implementation of VPR in the con-
text of ReactoGraph using OpenMP libaries.

5. ACKNOWLEDGMENTS
This work was partially supported by Natural Sciences

and Engineering Research Council of Canada Discovery Grants
OGP0000124 and OGP170169-04

6. REFERENCES
[1] E. Baroth and C. Hartsough. Visual programming in

the real world. Visual Object-Oriented Programming:
Concepts and Environments, pages 21–42, 1995.

[2] R. Chandra, R. Menon, L. Dagum, D. Kohr,
D. Maydan, and J. McDonald. Parallel Programming
in OpenMP. Morgan-Kaufmann, New York, 2000.

[3] Y. Chow, K. Doyle, F. Ludolph, D. Ingalls, and
S. Wallace. The Fabrik Programming Environment.
IEEE Workshop on Visual Languages, pages 222–230,
September 1987.

[4] P. T. Cox, H. Glaser, and S. Maclean. A visual
development environment for parallel applications. In
Symposium on Visual Languages, pages 144–151.
IEEE, October 1998.

[5] J. B. Dabney and T. L. Harman. Mastering Simulink
4. Prentice Hall, New York, 2001.

[6] A. L. Davis and R. M. Keller. Data flow program
graphs. IEEE Computer, 15(2):26–41, February 1982.

[7] M. Frigo, C. E. Leiserson, and K. H. Randall. The
Implementation of the Cilk-5 Multithreaded
Language. In ACM SIGPLAN Conference on
Programming Language Design and Implementation
(PLDI). ACM, June 1998.

[8] J. Frohlich and S. Schiffer. Visual Programming and
Software Engineering with Vista. In Visual
Object-Oriented Programming: Concepts and
Environments, pages 21–42. Manning Publications
Co., 1995.

[9] S. Gauvin. ReactoGraph: A visual language for the
development of user interfaces, Master’s Thesis.
Faculty of Computer Science, Dalhousie University,
http://gauvins.cs.dal.ca/reactograph, 2003.

[10] S. Gauvin and T. Smedley. Concrete Programming
with Reactive Objects. In IEEE Symposium on
Human-Centric Computing: End-User Programming.
IEEE, September 2002.

[11] A. Grama, V. Kumar, A. Gupta, and G. Karypis. An
Introduction to Parallel Computing: Design and
Analysis of Algorithms, 2nd. ed. Pearson Addison
Wesley, New York, 2003.

[12] R. Helsel. Visual Programming For HP-VEE. Prentice
Hall, New York, 1997.

[13] G. W. Johnson and R. Jennings. LabVIEW Graphical
Programming. McGraw-Hill, New York, 2001.

[14] B. Lanaspre. Static Analysis for Distributed Prograph,
PhD Thesis. Dept. of Electronics and Computer
Science, University of Southhampton, 1998.

[15] F. Mueller. A Library Implementation of POSIX
Threads under UNIX. In USENIX Conference, pages
29–41, January 1993.

[16] OpenMP Architecture Review Board. OpenMP C and
C++ Application Program Interface, Version 2.0.
www.openmp.org, March 2002.

[17] Pictorius Inc. Prograph CPX Reference Manual.
Pictorius Inc, Halifax, 1996.

[18] A. Schurr. BDL-a nondeterministic data flow
programming language with backtracking. IEEE
Symposium on Visual Languages, pages 391–401,
September 1997.

[19] J. A. Sharp. Data Flow Computing. Ellis Horwood,

1985.

[20] D. B. Skillicorn and D. Talia. Models and languages
for parallel computation. ACM Computing Surveys,
30(2):123–169, June 1998.

[21] Softwire Inc. http://www.softwire.com. Softwire Inc.,
2004.

[22] K. N. Whitley and A. F. Blackwell. Visual
Programming in the Wild: A Survey of LabVIEW
Programmers. Journal of Visual Languages and
Computing, 12(4):435–472, 2001.

[23] World Wide Web Consortium on Web Services
Activies. http://www.w3.org/2002/ws/. W3C.org,
2002.

