
PnP: Parallel And External Memory Iceberg Cube Computation

Ying Chen
Dalhousie University

Halifax, Canada
ychen@cs.dal.ca

Frank Dehne
Griffith University
Brisbane, Australia

www.dehne.net

Todd Eavis
Concordia University

Montreal, Canada
toddeavis@rogers.com

Andrew Rau-Chaplin
Dalhousie University

Halifax, Canada
www.cs.dal.ca/∼arc

Abstract

Motivated by the work of Ng et.al., and the recent success
of Star-Cubing (Han et.al.), we further investigate the use
of hybrid approaches for the parallel computation of very
large iceberg-cube queries. We present “Pipe ’n Prune”
(PnP), a new hybrid method for iceberg-cube query compu-
tation. The novelty of our method is that it achieves a tight
integration of top-down piping for data aggregation with
bottom-up Apriori data pruning. A particular strength of
PnP is that it is very efficient forall of the following scenar-
ios: (1) Sequential iceberg-cube queries. (2) External mem-
ory iceberg-cube queries. (3) Parallel iceberg-cube queries
on shared-nothing PC clusters with multiple disks.

We performed an extensive performance analysis of PnP
for all of the above scenarios with the following main re-
sults: In the first scenario, PnP performs very well for both,
denseand sparse data sets, providing an interesting alterna-
tive to BUC and Star-Cubing. In the second scenario, PnP
shows a surprisingly efficient handling of disk I/O, with an
external memory running time that is less than twice the
running time for full in-memory computation of the same
iceberg-cube query. In the third scenario, PnP scales very
well, providing near linear speedup for a larger number of
processors, thereby solving an open scalability problem ob-
served by Ng et.al.

1 Introduction

One of the most powerful and prominent technolo-
gies for knowledge discovery in Decision Support Sys-
tems (DSS) environments is On-line Analytical Processing
(OLAP) [6]. By exploiting multi-dimensional views of the
underlying data warehouse, the OLAP server allows users
to “drill down” or “roll up” on hierarchies, “slice and dice”
particular attributes, or perform various statistical opera-
tions such as ranking and forecasting. To support this func-
tionality, OLAP relies heavily upon a data model known as
the data cube[17, 18]. Conceptually, the data cube allows

users to view organizational data from different perspectives
and at a variety of summarization levels. It consists of the
base cuboid, the finest granularity view containing the full
complement of d dimensions (or attributes), surrounded by
a collection of 2d − 1 sub-cubes/cuboids that represent the
aggregation of the base cuboid along one or more dimen-
sions. The data cube operator(an SQL syntactical exten-
sion) was proposed by Gray et al. [17] as a means of sim-
plifying the process of data cube construction. Subsequent
to the publication of the seminal data cube paper, a number
of independent research projects began to focus on design-
ing efficient algorithms for the computation of the data cube
[3, 2, 18, 20, 21, 23, 24, 25, 26, 27, 28, 30, 31].

The size of data cubes can be massive. In the Winter Cor-
poration’s report [29], the largest three DSS databases ex-
ceed 20 Terabytes in size. More importantly, it is expected
that by the end of 2004, the storage requirements of more
than 40% of production data warehouses will exceed one
Terabyte [12]. One approach for dealing with the data cube
size is to allow user-specific constraints. For iceberg-cubes
(e.g. [3, 13, 30]), aggregate values are only stored if they
have a certain, user specified, minimum support. Another
possible approach is to introduce parallel processing which
can provide two key ingredients for dealing with the data
cube size: increased computational power through multiple
processors and increased I/O bandwidth through multiple
parallel disks (e.g. [4, 5, 7, 8, 9, 10, 14, 15, 16, 19, 22]). In
[23], Ng et.al. combined both of the above approaches and
studied various algorithms for parallel iceberg-cube compu-
tation on PC clusters. The algorithm of choice in [23], re-
ferred to as PT, applies a hybridapproach in that it combines
top-down data aggregation with bottom-up data reduction.

Motivated by the work of Ng et.al. [23] and the recent
success of another hybrid sequential method, Star-Cubing
[30], we further investigate the use of hybrid approaches
for the parallel computation of iceberg-cube queries. We
present a new hybrid method, called “Pipe ’n Prune”
(PnP), for iceberg-cube query computation. Our approach
combines top-down data aggregation through piping with
bottom-up Apriori data reduction. The main difference to

previous approaches is the introduction of a novel PnP op-
erator which uses a piping approach to aggregate data and,
at the same time, performs Apriori pruning for subsequent
group-by computations. Our approach was motivated by the
work of Ng et.al. [23] who presented a two phase hybrid
parallel method, PT, which first partitions BUC bottom-up
computation and then use top-down aggregation for build-
ing the startup group-by for each partition. Inspired by Star-
Cubing [30], our new PnP operator extends this two phase
approach towards a complete merge between data aggrega-
tion and Apriori pruning. PnP is very different from Star-
Cubing [30] in that PnP retains top-down data aggregation
through piping and interleaves it with iceberg bottom-up
data reduction (pruning). An illustration of our approach
is sketched in Figure 2. An important property of our PnP
method is that it is composed mainly of linear data scans
and does not require complex in-memory structures. This
allows us to extend PnP to external memory computation of
very large iceberg-cube queries with only minimal loss of
efficiency. In addition, PnP is well suited for shared-nothing
parallelization (where processors do not share any memory
and all data is partitioned and distributed over a set of disks).
Our new parallel, external memory, PnP method provides
close to linear speedup particularly on those data sets that
are hard to handle for sequential methods. In addition, par-
allel PnP scales well and provides linear speedup for larger
number of processors, thereby also solving an open scala-
bility problem observed in [23].

This paper makes the following contributions:

• We present a novel PnP operator and “Pipe ’n Prune”
(PnP) algorithm for the computation of iceberg-cube
queries. The novelty of our method is that it com-
pletely interleaves a top-down piping approach for data
aggregation with bottom-up Apriori data pruning. A
particular strength of PnP is that it is very efficient for
all of the following scenarios:

– Sequential iceberg-cube queries.

– External memory iceberg-cube queries.

– Parallel iceberg-cube queries on shared-nothing
PC clusters with multiple disks.

• We performed an extensive performance analysis of
PnP for all of the above scenarios. In general, PnP per-
forms very well for both, dense and sparse data sets
and it scales well, providing linear speedup for larger
number of processors. In [23] Ng et.al. observe for
their parallel iceberg-cube method that “the speedup
from 8 processors to 16 processors is below expecta-
tion” and attribute this scalability problem to schedul-
ing and load balancing issues. Our analysis shows that
PnP solves these problems and scales well for at least
up to 16 processors.

In more detail, our analysis of PnP for the above three
scenarios showed the following:

– Sequential iceberg-cube queries: As a special
case, PnP also provides a new sequentialhy-
brid method for the computation of iceberg-cube
queries. We present an extensive performance
analysis of PnP in comparison with BUC [3] and
StarCube [30]. We observe that the sequential
performance of PnP is very stable even for large
variations of data density and data skew. Sequen-
tial PnP typically shows a performance between
BUC and StarCube, while BUC and StarCube
have ranges of data density and skew where BUC
outperforms StarCube or vice versa. For the spe-
cial case of full cube computation, PnP outper-
forms both BUC and StarCube.

– External memory iceberg-cube queries: Since
PnP is composed mainly of linear scans and does
not require complex in-memory data structures,
it is conceptually easy to implement as an exter-
nal memory method for very large iceberg-cube
queries. In order to make good use of PnP’s
properties, we have implemented our own I/O
manager to have full control over latency hid-
ing through overlapping of computation and disk
I/O. We present an extensive performance anal-
ysis of PnP for external memory computation
of very large iceberg-cube queries. Our exper-
iments show minimum loss of efficiency when
PnP switches from in-memory to external mem-
ory computation. The measured external mem-
ory running time (where PnP is forced to use
external memory by limiting the available main
memory) is less than twice the running time for
full in-memory computation of the same iceberg-
cube query.

– Parallel iceberg-cube queries on shared-
nothing PC clusters (with multiple disks): PnP
is well suited for shared-nothing parallelization,
where processors do not share any memory and
all data is partitioned and distributed over a set
of disks (see Figure 4). We present a PnP par-
allelization which (1) minimizes communication
overhead, (2) balances work load, and (3) makes
full use of our I/O manager by overlapping par-
allel computation and parallel disk access on all
available disks in the PC cluster. Extensive ex-
periments show that our new parallel, external
memory, PnP method provides close to linear
speedup particularly on those data sets that are
hard to handle for sequential methods. Most im-
portantly, parallel PnP scales well and provides

near linear speedup for larger numbers of pro-
cessors, thereby also solving an important open
scalability problem observed in [23].

The remainder of this paper is organized as follows. Sec-
tion 2 provides first a high level overview of our PnP ap-
proach and then present the algorithmic details for the three
scenarios mentioned above. Section 3 presents an in-depth
performance evaluation of PnP, and Section 4 concludes our
paper.

2 The PnP Algorithm

PnP is a hybrid, sort-based, algorithm for the computa-
tion of very large iceberg-cube queries. The idea behind
PnP is to fully integrate data aggregation via top-down pip-
ing [26] with bottom-up (BUC [3]) Apriori pruning. We
introduce a new operator, called the PnP operator. For
a group-by v, the PnP operator performs two steps: (1)
It builds all group-bys v ′ that are a prefix of v through
one single sort/scan operation (piping [26]) with iceberg-
cube pruning. (2) It uses these prefix group-bys to perform
bottom-up (BUC [3]) Apriori pruning for new group-bys
that are starting points of other piping operations. An exam-
ple of a 5-dimensional PnP operator is shown in Figure 1.
The PnP operator is applied recursively until all group-bys
of the iceberg-cube have been generated. An example of a
5-dimensional PnP Treedepicting the entire process for a 5-
dimensional iceberg-cube query is shown in Figure 2. The
remainder of this section describes in detail our PnP method
for the following three scenarios:

• Sequential, in memory, iceberg-cube queries.

• External memory iceberg-cube queries.

• Parallel iceberg-cube queries on shared-nothing PC
clusters with multiple disks.

ABCDE

ABCD ABCE ABDE ACDE

ABC

AB

A

Figure 1. A PnP Operator.

ABCDE

ABCD ABCE ABDE ACDE BCDE

ABC

AB

A

ABD ABR ACD

AC

ACE ADE BCD

BC

B

AD AE

BCE BDE CDE

BD CD

C

CE DE

D E

BE

Figure 2. A PnP Tree. (Plain arrow: Top-Down Pip-
ing. Dashed Arrow: Bottom-up Pruning. Bold Arrow: Sort-
ing.)

2.1 PnP: Sequential In-Memory Version

We assume as input a table R[1..n] representing a d-
dimensional raw data set R consisting of n rows R[i],
i = 1 . . . n. Because of the iceberg-cube constraint, a cell
in a cuboid is only returned if it has minimum support. That
is, a cell is only calculated if there are at least min sup tu-
ples assigned to that cell, for some given input parameter
min sup.

For a row R[i] we denote with Rj [i] the prefix of R[i]
consisting of the first j feature values of R[i], followed by
the measure value of R[i]. We denote with R̂j[i] the row
R[i] with its feature value in dimension j removed. We
denote with ∅ the empty (0-dimensional) group-by. For a
group-by v we denote with |v| the number of dimensions
of v, and with v̂j the group-by that is the same as v but
with dimension j removed. We denote with v j the group-
by identifier consisting of the first j dimensions of v.

Our PnP method for the sequential, in memory, case is
shown in Algorithms 1 and 2. Algorithms 2 represents the
main part, the implementation of the recursive PnP operator.

We explain our algorithm using the example in Figure 2
for a 5-dimensional iceberg-cube query. In Line 2 of Al-
gorithms 1, we call PnP-1(R, ABCDE, ∅). This will first
result in the creation of the pipe ABCDE - ABCD - ABC -
AB - A and then create pruned versions of ABCE, ABDE,
and ACDE for subsequent piping operations. Table 1 shows
a complete execution for the example raw data set R indi-
cated in the first column of Table 1. Buffers b[5] ... b[1]
represent the results of piping operations, while R3 ... R1

show the result of pruning operations. Note that, the PnP
operator uses only one single pass through the data set. The
horizontal lines in Table 1 indicate cases where aggregation
or pruning take place. The recursive call in Line 12 of Al-
gorithms 2 initiates the PnP operator for group-bys ABCE,
ABDE, and ACDE. The prefix passed as third parameter in
Line 12 of Algorithms 2 is shown in Figure 2 as the under-
lined portions of ABCE, ABDE, and ACDE, respectively.
It represents for those recursive calls the portion of the pipe

R b[5] b[4] b[3] R3 b[2] R2 b[1] R1
ABCDE ABCDE ABCD ABC ABCE AB ABDE A ACDE
11111 1 11111 1 pruned 1111 2 1111 1
11112 1 11112 1 1111 2 1112 1 1112 1
11122 1 11122 1 1112 1 111 3 1122 1 1122 1
11211 1 11211 1 1121 1 112 1 pruned 11 4 1 4 1211 1
21111 1 21111 1 2111 1 pruned pruned pruned
21121 1 21121 1
21122 1 21122 1 2112 2 211 3 21 3 2 3
31111 1 31111 1 3111 1 pruned 3111 1 3111 1
31121 1 31121 1 3121 2 3121 1
31122 1 31122 1 3112 2 311 3 3122 1 3122 1
31221 1 31221 1 pruned 3123 1 3221 1
31223 1 31223 1 3122 2 312 2 31 5 3 5 3223 1
41111 1 41111 1 4111 1 411 1 pruned 41 1 pruned 4111 2
42111 1 42111 1 pruned pruned 4112 1
42112 1 42112 1 4211 2 421 2 42 2 4121 1
43121 1 43121 1 4312 1 431 1 pruned 43 1 pruned 4 4

Table 1. PnP Processing of ABCDE

that has already been computed. The recursive call in Line
20 of Algorithms 2 initiates the PnP operator for group-
by BCDE and starts the iceberg-cube computation for all
group-bys not containing A. The resulting entire process is
depicted in Figure 2.

Algorithm 1 Algorithm PnP: sequential, in memory

Input: R[1..n]: a table representing a d-dimensional raw
data set consisting of n rows R[i], i = 1 . . . n;
min sup: the minimum support.

Output: The iceberg data cube.
1: Sort R and aggregate duplicates in R.
2: Call PnP-1(R, vR, ∅), where vR is the group-by con-

taining all dimensions of R (sorted by cardinality in
decreasing order).

2.2 PnP: Sequential External Memory Version

Since PnP is sort based, it is easy to extend PnP to ex-
ternal memory, as shown in Algorithms 3 and 4. We dis-
cuss here only the main differences between Algorithm 2
and Algorithm 4. All sort operations are replaced by exter-
nal memory sorts. Some care has to be taken with the scan
and aggregation/pruning operations, as buffers may over-
flow and have to be saved to disk. The main difference be-
tween Algorithm 2 and Algorithm 4 is with respect to the
recursive calls in Line 12 in Algorithm 2. In the external
memory version, we have to save the tables Rj into a file
Fj on disk as shown in Line 11 of Algorithm 4. A separate
loop in Lines 18 to 22 of Algorithm 4 is then required to
retrieve all Rj and perform the recursive calls. Note that,
these operations are independent and we can apply disk la-
tency hiding through overlapping of computation and disk
I/O. In order to make good use of this effect, we have imple-
mented our own I/O manager which resulted in a significant
performance improvement (see Section 3.2).

Algorithm 2 PnP-1(R, v, pv)

Input: R[1..n]: a table representing the raw data set con-
sisting of n rows R[i], i = 1 . . . n; v: identifier for a
group-by of R; pv: a prefix of v.

Output: The iceberg data cube.
1: Local Variables: k = |v| − |pv|; Rj : tables for storing

rows of R; b[1..k]: a buffer for storing k rows, one for
each group-by v1 . . . vk; h[1..k]: k integers; i, j: in-
teger counters. Initialization: b[1..k] = [null .. null];
h[1..k] = [1..1].

2: for i = 1..n do
3: for j = k..1 do
4: if (b[j] = null) OR (the feature values of b[j] are a

prefix of R[i]) then
5: Aggregate Rj [i] into b[j].
6: else
7: if b[j] has minimum support then
8: Output b[j] into group-by vj .
9: if j ≤ k − 2 then

10: Create a table Rj = R̂j+1[h[j]] ... R̂j+1[i−
1].

11: Sort and aggregate Rj .
12: Call PnP-1(Rj , v̂j+1, vj).
13: end if
14: end if
15: Set b[j] = null and h[j] = i.
16: end if
17: end for
18: end for
19: Create a table R′[1..n′] by sorting and aggregating

R̂1[1] ... R̂1[n].
20: Call PnP-1(R′, v̂1, ∅).

Algorithm 3 Algorithm PnP: sequential, external memory

Input: R[1..n]: a table (stored on disk) representing a d-
dimensional raw data set consisting of n rows R[i], i =
1 . . . n; min sup: the minimum support.

Output: The iceberg data cube (stored on disk).
1: Sort R, using external memory sorting, and aggregate

duplicates in R.
2: Call PnP-2(R, vR, ∅), where vR is the group-by con-

taining all dimensions of R (sorted by cardinality in
decreasing order).

Algorithm 4 PnP-2(R, v, pv)

Input: R[1..n]: a table (stored on disk) representing the
raw data set consisting of n rows R[i], i = 1 . . . n; v:
identifier for a group-by of R; pv: a prefix of v.

Output: The iceberg data cube (stored on disk).
1: Local Variables: k = |v| − |pv|; Rj : tables for storing

rows of R (called partitions); Fj : disk files for stor-
ing multiple partitions Rj ; b[1..k]: a buffer for storing
k rows, one for each group-by v 1 . . . vk; h[1..k]: k in-
tegers; i, j: integer counters. Initialization: b[1..k] =
[null .. null]; h[1..k] = [1..1].

2: for i = 1..n (while reading R[i] from disk in streaming
mode...) do

3: for j = k..1 do
4: if (b[j] = null) OR (the feature values of b[j] are a

prefix of R[i]) then
5: Aggregate Rj [i] into b[j].
6: else
7: if b[j] has minimum support then
8: Output b[j] into group-by vj . Flush to disk if

vj’s buffer is full.
9: if j ≤ k − 2 then

10: Create a table Rj = R̂j+1[h[j]] ... R̂j+1[i−
1].

11: Sort and aggregate Rj (using external
memory sort if necessary). Write the re-
sulting Rj and an “end-of-partition” sym-
bol to file Fj .

12: end if
13: end if
14: Set b[j] = null and h[j] = i.
15: end if
16: end for
17: end for
18: for j = k..1 do
19: for each partition Rj written to disk file Fj in line 11

do
20: Call PnP-2(Rj, v̂j+1, vj).
21: end for
22: end for
23: Create a table R′[1..n′] by sorting and aggregating

R̂1[1] ... R̂1[n] (using external memory sort if neces-
sary).

24: Call PnP-2(R′, v̂1, ∅).

mem

di
sk

proc

NIC

mem

di
sk

proc

NIC

mem

di
sk

proc

NIC

mem

di
sk

proc

NIC

xx
xx
xx

P
0 1

P p-1P

network or switch

Figure 3. Shared-Nothing Multiprocessor

Disk for
P0 1

Disk for
P p-1

Disk for
P

...

...

...
.........

INPUT

OUTPUT

ABCD (raw data set, R)

ABC

ABD

ACD

D
...

Figure 4. Parallel Disk Layout.

2.3 PnP: Parallel And External Memory Version

We now discuss how our PnP algorithm can be paral-
lelized in order to be executed on a shared-nothing multi-
processor as shown in Figure 3. Such a multiprocessor con-
sists of p processors P0 ... Pp−1, each with its own mem-
ory and disk. The processors are connected via a network
or switch. Our focus is on practical parallel methods that
can be implemented on low-cost, Beowulfstyle, PC clus-
ters consisting of standard Intel processor based Linux ma-
chines connected via Gigabit Ethernet. However, our meth-
ods can also be used, and will perform even better, on more
expensive platforms such as clusters connected via Myrinet
or shared memory parallel machines like the SunFire.

We assume as input a d-dimensional raw data set R
stored in a table consisting of n rows that are distributed
over the p processors as shown in Figure 4. More precisely,
every processor Pi stores on its disk a table Ri consisting
of n

p rows of R. As indicated in Figure 4, each group-by of
the output (iceberg-cube) will also be partitioned and dis-
tributed over the p processors. We refer to this process as
striping a table over the p disks. When every group-by is
striped over the p disks, access to the group-by can be per-
formed with maximum I/O bandwidth through full parallel
disk access.

For a d-dimensional table Ri, we define tables T j
i , j =

1, .., d, as the tables obtained by removing from each row
of Ri the first j − 1 feature values and performing aggrega-
tion to remove duplicates (but not performing iceberg-cube
pruning). Note that, T 1

i = Ri.
Our parallel PnP method is shown in Algorithm 5. The

basic idea is illustrated in Figure 5. The figure shows a PnP
forestobtained by partitioning the PnP tree in Figure 2 into
d trees, one for each feature dimension. The data set for the

root of the j-th tree is the set T j = T j
0 ∪ T j

1 ∪ ... ∪ T j
p−1.

We start with T 1 = R striped over the p disks, where pro-
cessor Pi stores T 1

i = Ri, and execute on each processor Pi

the sequential Algorithm 3 with input T 1
i (Line 7 of Algo-

rithm 5). This creates the first tree in the PnP forest of Fig-
ure 5. Next, we compute on each processor P i the table T 2

i

from T 1
i by removing the first feature dimension and per-

forming aggregation to remove duplicates (via a sequential
sort); see Line 3 of Algorithm 5. Different data aggrega-
tion on different processors can lead to imbalance between
processors, and the set T 2

0 ∪ T 2
1 ∪ ... ∪ T 2

p−1 is therefore re-
balanced through a global sort (Line 4 of Algorithm 5). We
can then execute on each processor Pi the sequential Algo-
rithm 3 with input T 2

i (Line 7 of Algorithm 5), creating the
second tree in the PnP forest of Figure 5. This process is
iterated d times, until all group-bys have been built.

ABCDE

ABCD ABCE ABDE ACDE

ABC

AB

A

ABD ABR ACD

AC

ACE ADE

AD AE

BCDE

BCD

BC

B

BCE BDE CDE

BD CD

C

CE DE

D E

BE

T1

T2

T3

T 4

T 5

Figure 5. A PnP Forest.

Algorithm 5 Algorithm PnP: parallel, external memory
Input: R: a table representing a d-dimensional raw data

set consisting of n rows, stored on p processors. Every
processor Pi stores (on disk) a table Ri of n

p rows of R
as shown in Figure 4. min sup: the minimum support.

Output: The iceberg data cube (distributed over the disks
of the p processors as shown in Figure 4).

1: Variables: On each processor Pi a set of d tables T 1
i ,

..., T d
i .

2: for j = 1..d do
3: Each processor Pi: Compute T j

i from T j−1
i via se-

quential sort. (T 1
i = Ri)

4: Perform a parallel global sort on T j
1 ∪ T j

1 ∪ ... ∪ T j
p .

5: end for
6: for j = 1..d do
7: Each processor Pi: Apply Algorithm 3 to T j

i .
8: end for

3 Performance Evaluation

We have implemented the sequential, external memory,
and parallel versions of our PnP algorithm as presented in
the previous section. Our sequential C++ code evolved from

the code for top-down sequential pipesort used in [4]. Our
external memory code evolved from the sequential code
through the addition of an external memory sort and a spe-
cially written I/O manager that allows us to overlap compu-
tation and disk I/O. Our parallel code evolved, in turn, from
our the external memory code through the addition of com-
munication operations drawn from the MPI communication
library.

Our performance evaluation was conducted in two
stages. In the first stage we evaluate the sequential ver-
sion of PnP by comparing it with implementations of BUC
and Star-Cubing. The Microsoft Window’s executables for
these implementations were kindly provided by J. Han’s re-
search group to enable just such comparative performance
testing of cube construction methods [1]. The PnP codes,
for both the sequential (in-memory) version and external
memory version, were compiled using Visual C++ 6.0.
Both sequential and external memory experiments were
conducted on a 2.8 GHz Intel Pentium 4 based PC running
Microsoft Windows 2000 with 1 GB RAM and an 80 GB
7200 RPM IDE disk.

In the second stage of our performance evaluation we
explored the performance of our the parallel version of PnP
on a 32 processor Beowulf style cluster. This shared noth-
ing parallel machine consists of a collection of 1.7 GHz In-
tel Xeon processors each with 1 GB of RAM, two 40 GB
7200 RPM IDE disks and an onboard Inter Pro 1000 XT
NIC. Each processor is running Linux Redhat 7.2 with gcc
2.95.3 and MPI/LAM 6.5.6. as part of a ROCKS cluster
distribution. All processors are interconnected via a Cisco
6509 GigE switch. Due to restrictions in machine access,
we were frequently unable to reserve all 32 processors of
this machine. In such cases a minimum of 16 processors
were used.

In the following experiments, all sequential times are
measured as wall clock times in seconds. All parallel times
are measured as the wall clock time between the start of
the first process and the termination of the last process. All
times include the time taken to read the input from files and
write the output into files. Furthermore, all wall clock times
are measured with no other users on the machine. The run-
ning times for BUC and Star-Cubing that we show are those
captured and reported by the executables obtained from [1].

To fully explore the performance of these cube construc-
tion methods we generated a large number of synthetic data
sets which varied in terms of the following parameters: n -
the number of rows in the raw data set R, d - the number of
dimensions, s - the skew in each dimension as a zifp value,
m - the minimum support, b - the available memory in bytes,
and c1 . . . cd - the cardinality of each dimension (where an
unsubscripted c indicates the same cardinality in all dimen-
sions). The data generator used in the sequential and ex-
ternal memory experiments to generate the raw data set R

was provided with the BUC and Star-Cubing executables
from [1]. For the parallel experiments we generated similar
synthetic data sets using our own data generator, which had
been previously used in [4, 5].

3.1 Sequential Experiments

The performance results for our sequential experiments
are shown in Figures 6 to 17. Figures 6 to 9 compare PnP to
BUC and Star-Cubing, first for the special case of full cube
computation, and then for iceberg cube computation on raw
data sets of varying sparsity. The remaining sequential ex-
periments (Figures 10 to 17) explore various settings of the
parameters n, d, m and s for both sparse and dense cubes.

Figures 6 and 7 show for full cube computation (i.e.
m = 1) results for PnP compared to BUC and Star-Cubing
on various cardinalities and growing data sizes. Note that
varying cardinality, while holding the other parameters con-
stant, amounts to varying the sparsity. We observe that for
the special case of full cube computation the sequential ver-
sion of PnP performs better than BUC or Star-Cubing re-
gardless of sparsity. In this case, PnP takes full advantage
of pipeline processing and saves significant time by sharing
sorts, while bottom-up Apriori data pruning is ineffectual.

Figures 8 and 9 compare PnP to BUC and Star-Cubing
for iceberg cube computation while varying sparsity. We
observe that the sequential performance of PnP is very sta-
ble even for large variations of data density. Sequential
PnP typically shows a performance between BUC and Star-
Cubing, while BUC and Star-Cubing have ranges of data
density where BUC outperforms Star-Cubing or vice versa.

Finally, Figures 10 to 17 compare PnP to BUC and Star-
Cubing for iceberg cube computation while varying input
size t, dimensionality d, minimum support m, and skew s,
for both dense (c = 10) and sparse (c = 100) cubes. Again,
we observe that the sequential performance of PnP is highly
stable. Sequential PnP performance is almost always be-
tween that of BUC and Star-Cubing, while BUC tends to
perform best on relatively sparse data sets and Star-Cubing
best on somewhat denser data sets. In many of these ex-
periments, the shape of the curves for the various methods
are quite similar making the constants, and therefore issues
of implementation, critical. Overall, sequential PnP appears
to be an interesting alternative to BUC and Star-Cubing es-
pecially in applications where performance stability over a
wide range of input parameters is important.

3.2 External Memory Experiments

The performance results for the external memory ver-
sion of PnP are shown in Figures 18 and 19. Note that since
PnP is composed mainly of linear scans and does not re-
quire complex in-memory data structures, it is reasonably

easy to implement as an external memory method for very
large iceberg-cube queries. For these experiments, in order
to make good use of PnP’s properties, we have implemented
our own I/O manager to have full control over latency hid-
ing through overlapping of computation and disk I/O.

In evaluating the external memory version of PnP we use
larger data sets, ranging in size from 1 million to 20 million
rows, while varying dimensionality d and available memory
b.

Overall, our experiments show minimum loss of ef-
ficiency when PnP switches from in-memory to external
memory computation. The measured external memory run-
ning time (where PnP is forced to use external memory
by limiting the available main memory) is less than twice
the running time for full in-memory computation of the
same iceberg-cube query. In Figure 18 we observe similarly
shaped curves even as we increase the dimensionality of the
problem due in large part to the effects of iceberg pruning.
The location of the slight jump in time, corresponding to
the switch to external memory, occurs between 5 million
rows and 7 million rows depending on the dimensionality
of the iceberg cube being generated. Figure 19 shows, not
surprisingly, that there is a benefit to increasing the memory
space b available to the external memory algorithm. How-
ever, the relative size of this benefit diminishes significantly
as t grows.

To test the scalability of our external memory version of
PnP we also ran it on a number of extremely large input
data sets. Without modification, PnP was able to construct
iceberg cubes on input tables consisting of 200 Million rows
(5.6 Gigabytes) and 6 dimensions in under three hours and
forty-five minutes. To the best of our knowledge, PnP is
the first cubing method described in the literature that has
demonstrated the ability to construct iceberg cubes on such
massive data sets.

3.3 Parallel Experiments

The performance results for the parallel shared-nothing
version of PnP are shown in Figures 20 to 29. Note that this
version is based on the external memory PnP code base and
uses external memory processing, in addition to parallelism,
as needed.

These experiments focus on speedup, that is they consist
of incrementally increasing the number of processors avail-
able to the parallel version of PnP to determine the time and
corresponding parallel speedup obtained while varying the
other key parameters of input data size t, dimensionality d,
cardinality c, minimum support m, and skew s. Speedup is
one of the key metrics for the evaluation of parallel database
systems [11] as it indicates the degree to which adding pro-
cessors decreases the running time. The relative speedup
for p processors is defined as Sp = t1

tp
, where t1 is the

running time of the parallel program using one processor,
all communication overhead having been removed from the
program, and tp is the running time using p processors. An
ideal Sp is equal to p, which implies that p processors are
p times faster than one processor. That is, the curve of an
ideal Sp is a linear diagonal line.

Figure 20 shows the running time of parallel PnP for in-
put data sizes between 1 and 8 million rows and Figure 21
shows the corresponding speedup. As is typically the case,
relative speedup improves as we increase the size of the in-
put and consequentially the total amount of work to be per-
formed. With t ≥ 4, 000, 000 rows, near optimal linear
speedup is observed all the way up to 16 processors, while
with t = 2, 000, 000 rows speedup drops off beyond 8 pro-
cessors. In general, near linear speedup is observed when
there is at least n/p = 500, 000 rows per processor.

Figure 22 shows the running time of the parallel version
of PnP for increasing dimensionality and Figure 23 shows
the corresponding speedup. For this experiment we were
able to reserves all 32 processors of our parallel machine.
Again we observe near optimal linear speedup all the way
up to 16 processor. With 32 processors the parallel ver-
sion of PnP achieves at least 50% speedup when generating
cubes of between 8 and 10 dimensions and near optimal lin-
ear speedup when generating a 11 dimensional cube. Note
that the best speedup is achieved on the problems which are
hardest to solve sequentially, that is those that involve the
largest problems in terms of input size and/or dimensional-
ity.

The cardinality of the dimensions in the input data can
significantly effect performance. As cardinalities increase
so does the sparsity of the data set, and this typically re-
duces the size of the resulting iceberg query result. Fig-
ure 24 shows the running time of the parallel version of
PnP for input data covering a range of cardinalities and Fig-
ure 25 shows the corresponding speedup. Overall we ob-
serve near linear speedup for all but the most sparse data.
When the cardinality is 512 in each of the 10 dimensions
the data space is so sparse and the resulting iceberg cube so
small that the speedup drops significantly. When the cardi-
nality is 32 in each of the 10 dimensions the data space is
so dense and the resulting iceberg cube so large that on a
single processor significant external memory processing is
required. In this case moving to more processors has the
added advantage of avoiding much of the external memory
processing and therefore in this case we actually observe
super linear relative speedup.

Figures 26 to 29 show the effects on running time and
speedup of varying minimum support and skew. We ob-
serve that for smaller values of minimum support and skew
the time required is larger (as is typically the case in cube
construction) and the speedup obtained by our parallel PnP
algorithm is near linear. When either minimum support or

skew are sufficiently large speedup falls off, however so
does the wall clock time required by parallel PnP to com-
pute the iceberg cube.

Overall our experiments show that the parallel, external
memory, version of PnP provides close to linear speedup
particularly on those data sets that are hard to handle for
sequential methods. Most importantly, parallel PnP scales
well providing near linear speedup for larger numbers of
processors, thereby also solving an important open scala-
bility problem observed in [23].

4 Conclusions

In this paper, we further investigated the use of hybrid
approaches for the parallel computation of iceberg-cube
queries and presented a new hybrid method, “Pipe ’n Prune”
(PnP), for iceberg-cube query computation. The most im-
portant feature of our approach is that it completely in-
terleaves top-down data aggregation through piping with
bottom-up Apriori data reduction.

For sequential iceberg-cube queries, PnP typically shows
a performance between BUC and StarCube, while BUC and
StarCube have ranges of data density and skew where BUC
outperforms StarCube or vice versa. This makes PnP an
interesting new alternative method, especially in applica-
tions where performance stability over a wide range of in-
put parameters is important. For external memory iceberg-
cube queries, we observe minimum loss of efficiency. The
measured external memory running time is less than twice
the running time for full in-memory computation of the
same iceberg-cube query. For parallel iceberg-cube queries
on shared-nothing PC clusters, PnP scales well and pro-
vides near linear speedup for larger numbers of processors,
thereby also solving an important open scalability problem
observed in [23].

References

[1] J. Han, Software download site. http://www-
sal.cs.uiuc.edu/∼hanj/pubs/software.htm.

[2] S. Agarwal, R. Agrawal, P. Deshpande, A. Gupta,
J. Naughton, R. Ramakrishnan, and S. Sarawagi. On the
computation of multidimensional aggregates. Proceedings
of the 22nd International VLDB Conference, pages 506–
521, 1996.

[3] K. Beyer and R. Ramakrishnan. Bottom-up computation of
sparse and iceberg cubes. Proceedings of the 1999 ACM
SIGMOD Conference, pages 359–370, 1999.

[4] Y. Chen, F. Dehne, T. Eavis, and A. Rau-Chaplin. Paral-
lel rolap data cube construction on shared-nothing multipro-
cessors. Distributed and Parallel Databases, 15:219–236,
2004.

[5] Y. Chen, F.Dehne, T.Eavis, and A.Rau-Chaplin. Building
large rolap data cubes in parallel. In to appear in Proceed-
ings of the 8th International Database Engineering and Ap-
plications Symposium (IDEAS ’04), 2004.

[6] E. F. Codd. Providing olap (on-line analytical processing)
to user-analysts: An it mandate. Technical report, E.F. Codd
and Associates, 1993.

[7] F. Dehne, T. Eavis, S. Hambrusch, and A. Rau-Chaplin.
Parallelizing the datacube. International Conference on
Database Theory, 2001.

[8] F. Dehne, T. Eavis, and A. Rau-Chaplin. A cluster architec-
ture for parallel data warehousing. International Conference
on Cluster Computing and the Grid (CCGRID 2001), 2001.

[9] F. Dehne, T. Eavis, and A. Rau-Chaplin. Computing partial
data cubes for parallel data warehousing applications. Euro
PVM/MPI 2001, 2001.

[10] F. Dehne, T. Eavis, and A. Rau-Chaplin. Parallelizing the
datacube. Distributed and Parallel Databases, 11(2):181–
201, 2002.

[11] D. DeWitt and J. Gray. Parallel database systems: the future
of high performance database systems. Communications of
the ACM, 35(6):85–98, 1992.

[12] The Rising Storage Tide, 2003.
http://www.datawarehousing.com/papers.

[13] M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani,
and J. Ullman. Computing iceberg queries efficiently. in
Proceedings VLDB, pages 299–310, 1998.

[14] S. Goil and A. Choudhary. High performance OLAP and
data mining on parallel computers. Journal of Data Mining
and Knowledge Discovery, (4), 1997.

[15] S. Goil and A. Choudhary. High performance multidimen-
sional analysis of large datasets. Proceedings of the First
ACM International Workshop on Data Warehousing and
OLAP, pages 34–39, 1998.

[16] S. Goil and A. Choudhary. A parallel scalable infrastructure
for OLAP and data mining. International Database Engi-
neering and Application Symposium, pages 178–186, 1999.

[17] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data
cube: A relational aggregation operator generalizing group-
by, cross-tab, and sub-totals. Proceeding of the 12th Inter-
national Conference On Data Engineering, pages 152–159,
1996.

[18] V. Harinarayan, A. Rajaraman, and J. Ullman. Implement-
ing data cubes. Proceedings of the 1996 ACM SIGMOD
Conference, pages 205–216, 1996.

[19] H.Lu, J. Yu, L. Feng, and X. Li. Fully dynamic partition-
ing: Handling data skew in parallel data cube computation.
Distributed and Parallel Databases, 13:181–2002, 2003.

[20] L. Lakshmanan, J. Pei, and J. Han. Quotient cube: How to
summarize the semantics of a data cube. Proceedings of the
28th VLDB Conference, 2002.

[21] L. Lakshmanan, J. Pei, and Y. Zhao. Qc-trees: An efficient
summary structure for semantic olap. Proceedings of the
2003 ACM SIGMOD Conference, pages 64–75, 2003.

[22] S. Muto and M. Kitsuregawa. A dynamic load balancing
strategy for parallel datacube computation. ACM 2nd An-
nual Workshop on Data Warehousing and OLAP, pages 67–
72, 1999.

[23] R. Ng, A. Wagner, and Y. Yin. Iceberg-cube computation
with PC clusters. Proceedings of 2001 ACM SIGMOD Con-
ference on Management of Data, pages 25–36, 2001.

[24] K. Ross and D. Srivastava. Fast computation of sparse data
cubes. Proceedings of the 23rd VLDB Conference, pages
116–125, 1997.

[25] N. Roussopoulos, Y. Kotidis, and M. Roussopolis. Cube-
tree: Organization of the bulk incremental updates on the
data cube. Proceedings of the 1997 ACM SIGMOD Confer-
ence, pages 89–99, 1997.

[26] S. Sarawagi, R. Agrawal, and A.Gupta. On computing the
data cube. Technical Report RJ10026, IBM Almaden Re-
search Center, San Jose, California, 1996.

[27] Y. Sismanis, A. Deligiannakis, N. Roussopolos, and Y. Ko-
tidis. Dwarf: Shrinking the petacube. Proceedings of the
2002 ACM SIGMOD Conference, pages 464–475, 2002.

[28] W. Wang, J. Feng, H. Lu, and J. Yu. Condensed cube: An
effective approach to reducing data cube size. Proceedings
of the International Conference on Data Engineering, 2002.

[29] The Winter Report. http://www.wintercorp.com/vldb/.
[30] D. Xin, J. Han, X. Li, and B. W. Wah. Star-cubing: Com-

puting iceberg cubes by top-down and bottom-up integra-
tion. in Proceedings Int. Conf. on Very Large Data Bases
(VLDB’03), 2003.

[31] Y. Zhao, P. Deshpande, and J. Naughton. An array-based
algorithm for simultaneous multi-dimensional aggregates.
Proceedings of the 1997 ACM SIGMOD Conference, pages
159–170, 1997.

 0

 20

 40

 60

 80

 100

 120

 140

 10 20 30 40 50 60 70 80 90 100

S
e
c
o
n
d
s

Cardinality

Star cubing
PnP
BUC

Figure 6. Sequential PnP. Full
cube, varying cardinality. Fixed
t=1M, d=6, s=0, m=1.

 50

 100

 150

 200

 250

 300

 350

 400

 450

 1 2 3 4 5

S
e
c
o
n
d
s

Rows (Millions)

Star cubing
PnP
BUC

Figure 7. Sequential PnP. Full
cube, varying input size. Fixed
d=6, c=100, s=0, m=1.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 10 20 30 40 50 60 70 80 90 100

S
e
c
o
n
d
s

Cardinality

Star cubing
PnP
BUC

Figure 8. Sequential PnP. Ice-
berg cube, varying cardinality.
Fixed t=5M, d=6, s=0, m=10.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 10 20 30 40 50 60 70 80 90 100

S
e
c
o
n
d
s

Cardinality

Star cubing
PnP
BUC

Figure 9. Sequential PnP. Ice-
berg cube, varying cardinality.
Fixed t=5M, d=6, s=0, m=100.

 0

 5

 10

 15

 20

 25

 30

 35

 1 2 3 4 5

S
e
c
o
n
d
s

Rows (Millions)

Star cubing
PnP
BUC

Figure 10. Sequential PnP. Ice-
berg cube, varying input size.
Fixed d=6, c=10, m=100, s=0.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 1 2 3 4 5

S
e
c
o
n
d
s

Rows (Millions)

Star cubing
PnP
BUC

Figure 11. Sequential PnP. Ice-
berg cube, varying input size.
Fixed d=6, c=100, m=100, s=0.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 6 7 8 9 10

S
e
c
o
n
d
s

Dimensions

Star cubing
PnP
BUC

Figure 12. Sequential PnP. Ice-
berg cube, varying dimensional-
ity. Fixed t=5M, c=10, m=100,
s=0.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 6 7 8 9 10

S
e
c
o
n
d
s

Dimensions

Star cubing
PnP
BUC

Figure 13. Sequential PnP. Ice-
berg cube, varying dimensional-
ity. Fixed t=5M, c=100, m=100,
s=0.

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 0 100 200 300 400 500 600 700 800 900 1000

S
e
c
o
n
d
s

Mininum Support

Star cubing
PnP
BUC

Figure 14. Sequential PnP. Ice-
berg cube, varying min support.
Fixed t=1M, d=6, c=10, s=0.

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 100 200 300 400 500 600 700 800 900 1000

S
e
c
o
n
d
s

Mininum Support

Star cubing
PnP
BUC

Figure 15. Sequential PnP. Ice-
berg cube, varying min support.
Fixed t=1M, d=6, c=100, s=0.

 1

 2

 3

 4

 5

 6

 7

 0 0.5 1 1.5 2 2.5 3

S
e
c
o
n
d
s

Skew

Star cubing
PnP
BUC

Figure 16. Sequential PnP. Ice-
berg cube, varying skew. Fixed
t=1M, d=6, c=10, m=10.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 0.5 1 1.5 2 2.5 3

S
e
c
o
n
d
s

Skew

Star cubing
PnP
BUC

Figure 17. Sequential PnP. Ice-
berg cube, varying skew. Fixed
t=1M, d=6, c=100, m=10.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

S
e
c
o
n
d
s

Rows (Millions)

d=9
d=10
d=11

Figure 18. External Mem-
ory PnP. Varying dimensional-
ity. Fixed c=300, m=1000, s=0,
b=500M.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

S
e
c
o
n
d
s

Rows (Millions)

b=500
b=300
b=100

Figure 19. External Memory
PnP. Varying input size. Fixed
d=10, c=300, m=1000, s=0.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
e
c
o
n
d
s

Processors

t=1M
t=2M
t=4M
t=8M

Figure 20. Parallel PnP. Vary-
ing input size. Fixed d=10,
c=100, m=100, s=0.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

R
e
la

ti
v
e
 S

p
e
e
d
u
p

Processors

t=1M
t=2M
t=4M
t=8M

Linear

Figure 21. Parallel PnP.
Speedup of Figure 20. Fixed
d=10, c=100, m=100, s=0.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 5 10 15 20 25 30 35

S
e
c
o
n
d
s

Processors

d=8
d=9

d=10
d=11

Figure 22. Parallel PnP. Vary-
ing dimensions. Fixed t=8M,
c=100, m=100, s=0.

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35

R
e
la

ti
v
e
 S

p
e
e
d
u
p

Processors

d=8
d=9

d=10
d=11

Linear

Figure 23. Parallel PnP.
Speedup of Figure 22. Fixed
t=8M, c=100, m=100, s=0.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
e
c
o
n
d
s

Processors

c=32
c=100
c=512

c=1024,512,256,128,64,32,16,8,4,2

Figure 24. Parallel PnP. Vary-
ing cardinality. Fixed t=8M,
d=10, m=100, s=0.

 0

 5

 10

 15

 20

 25

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

R
e
la

ti
v
e
 S

p
e
e
d
u
p

Processors

c=32
c=100
c=512

c=1024,512,256,128,64,32,16,8,4,2
Linear

Figure 25. Parallel PnP.
Speedup of Figure 24. Fixed
t=8M, d=10, m=100, s=0.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
e
c
o
n
d
s

Processors

m=100
m=500

m=1000
m=2500

Figure 26. Parallel PnP. Vary-
ing minimum support. Fixed
t=8M, d=10, c=100, s=0.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

R
e
la

ti
v
e
 S

p
e
e
d
u
p

Processors

m=100
m=500

m=1000
m=2500

Linear

Figure 27. Parallel PnP.
Speedup of Figure 26. Fixed
t=8M, d=10, c=100, s=0.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
e
c
o
n
d
s

Processors

s=0
s=1
s=2
s=3

Figure 28. Parallel PnP. Vary-
ing skew. Fixed t=8M, d=10,
c=100, m=100.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

R
e
la

ti
v
e
 S

p
e
e
d
u
p

Processors

s=0
s=1
s=2
s=3

Linear

Figure 29. Parallel PnP.
Speedup of Figure 28. Fixed
t=8M, d=10, c=100, m=100.

