
Parallel CLUSTAL W For PC Clusters

James Cheetham1, Frank Dehne2, Sylvain Pitre3

Andrew Rau-Chaplin4, Peter J. Taillon5

1 Institute of Biochemistry, Carleton University,
Ottawa ON Canada, jcheetha@ccs.carleton.ca

2 School of Computer Science, Carleton University,
Ottawa, ON Canada, frank@dehne.net

3 School of Computer Science, Carleton University,
Ottawa, ON Canada, spitre@scs.carleton.ca

4 Faculty of Computer Science, Dalhousie University,
Halifax, NS Canada, arc@cs.dal.ca

5 School of Computer Science, Carleton University,
Ottawa, ON Canada, ptaillon@scs.carleton.ca

Abstract. This paper presents a parallel version of CLUSTAL W, called
pCLUSTAL. In contrast to the commercial SGI parallel Clustal, which
requires an expensive shared memory SGI multiprocessor, pCLUSTAL
can be run on a range of distributed and shared memory parallel ma-
chines, from high-end parallel multiprocessors (e.g. Sunfire 6800, IBM
SP2, etc.) to PC clusters, to simple networks of workstations. We have
implemented pCLUSTAL using C and the MPI communication library,
and tested it on a PC cluster. Our experimental evaluation shows that
our pCLUSTAL code achieves similar or better speedup on a distributed
memory PC clusters than the commercial SGI parallel Clustal on a shared
memory SGI multiprocessor.

Key Words: Multiple Sequence Alignment, CLUSTAL W, Parallel Com-
puting, Computational Biochemistry.

1 Introduction

The alignment of DNA or protein sequences is by far the most common task
in Bioinformatics. Procedures relying on sequence comparison are diverse and
range from database searches and studies of evolution to protein structure pre-
diction. Pairwise alignment of sequences is the most simple form of sequence
alignment and is mainly used for searching sequence databases. More than two
sequences can also be aligned, and this multiple sequence alignment has many
uses. Sequences can be aligned along their entire length (global alignment) or
only in certain regions (local alignment). Global and local alignment can be
used for both pairwise and multiple alignments. Global alignments use gaps (in-
sertions/deletions) while local alignments don’t have to and only align regions
between gaps (Figure 1). A global alignment compares the two sequences over
their entire lengths, and is appropriate when comparing sequences that are ex-
pected to share similarity over their entire lengths. Global alignment maximizes
regions of similarity and minimizes gaps using scoring matrices and gap param-
eters set by the user.

Protein sequences can be related by homology or convergence. Multiple se-
quence alignments are useful in both cases. Homologous proteins, by definition,

Fig. 1. A comparison of local and global sequence alignments.

have a common ancestor and usually a common function. Converged proteins
have evolved independently and have similar amino acid sequences and usually
similar structures and/or functions. The helix-turn-helix DNA binding domain
is an example of convergence in archael, eubacterial and eukaryotic DNA binding
proteins.

The alignment of novel DNA or protein sequences with well characterized
homologous sequences can provide information on the potential functions of the
novel sequences. A multiple alignment of protein sequences determines the po-
sition and nature of conserved regions in each member of the group. Conserved
amino acid sequences usually correspond to structurally and/or functionally im-
portant parts of a protein. It is a common occurrence that we only know the
structure or function for one or two members of a group of protein sequences.
Constructing multiple alignments allows us to infer structures and functions for
other members of the group and to generate hypotheses about the functional
importance of specific sequences which can be tested experimentally.

Phylogenetic analysis provides a conceptual framework for understanding
evolution but involves several computational challenges. The generation of evo-
lutionary trees can be seen as two distinct NP-complete problems: multiple se-
quence alignments and phylogenetic tree searchs. Phylogenetic analysis of se-
quence data depends strongly on accurate multiple alignments (Figure 2). In
addition, there are other problems, such as orthologs and paralogs. Orthologs
are sequences derived from a common ancestor through vertical descent. In more
direct terms, this means the same gene in different species. Paralogs are genes
within the same genome that have been generated by duplication. Distinguish-
ing between orthologs and paralogs is important is we hope to build accurate
phylogenetic trees.

One objective of multiple sequence alignments can be the generation of fully
annotated phylogenetic trees. (An example is shown in Figure 2.) This is difficult
for two reasons. (1) To considers all possible multiple sequence alignments and
then, all possible phylogenetic trees and pick the best one, would be impossible.
Thus, most phylogenetic programs use previously aligned sequences. (2) The
result will be influenced by the criteria used to determine the best tree.

There are three common types of tree building algorithms: distance matrix,
maximum likelihood and parsimony. Distance matrix methods estimate pairwise
distances between the sequences (which reduces the information in the alignment
to a single number). Other methods build several trees from the information in
the multiple alignment and select the best tree. The guide tree in CLUSTAL
is derived from the distances between pairwise aligned sequences. These dis-
tances may not be equal to the distances between sequence pairs in the multiple
sequence alignment.

Fig. 2. An example phylogenetic tree constructed from a multiple sequence alignment.
The tree was made using protein sequences from the synapsin family. Bootstrap values
are percentages for 1000 trials. The tree was calculated using a multiple alignment from
the ClustalW program and drawn with the TreeView program.

As the number of DNA and protein sequences in databases increases, it is
increasingly important to be able to create multiple sequence alignments for
very large numbers of sequences. Using standard multiple sequence alignment
tools like Clustal W [10] (see Figure 3) a set of 100 sequences can be aligned
in under an hour on a fast workstation. However, given that the underlying
alignment algorithm requires O(n2) steps, where n is the number of sequences
to be aligned, it is not surprising that these standard tools soon begin to take
many hours to run.

In this paper, we describe a parallel version of Clustal W, called pCLUSTAL,
that can be run a range of distributed memory parallel machines, from high-end
parallel multiprocessors (e.g. Sunfire, IBM SP, SGI Origin, etc.), to PC clusters,
to simple networks of workstations. We have implemented pCLUSTAL using C

Fig. 3. CLUSTAL W.

and the MPI communication library, and tested it on a PC cluster. Our exper-
iments, presented in Section 4, investigate the speedup and scalability of our
method on gene sequences obtained from the National Center for Biotechnology
Information.

A parallelization of Clustal for shared memory SGI multicomputers, like
the SGI Origin 3000, was previously developed by the SGI ChemBio group [8].
Their implementation was based on SGI OpenMP shared memory compilers and
runs only on shared memory SGI machines. They report achieving a maximum
speedups of 10 on 16 processor machines [8].

The main contribution of this paper is to provide an efficient distributed
memory implementation of CLUSTAL W that can be run on a wide range of
distributed memory PC clusters and parallel multicomputers. Our experimental
evaluation shows that our pCLUSTAL code achieves similar or better speedup
on distributed memory PC clusters than the SGI parallel Clustal on a shared
memory SGI Origin 3000.

The remainder of this paper is organized as follows. Section 2 reviews the
multiple sequence alignment problem and sequential Clustal W algorithm. In
Section 3, we present a parallelization of CLUSTAL W for distributed memory
multicomputers. Section 4 presents the experimental performance results for our
pCLUSTAL code on a PC cluster, and Section ?? concludes the paper.

2 Review: Sequential CLUSTAL W

CLUSTAL W has become the most popular algorithm for multiple sequence
alignment [4, 5, 3, 10, 6, 9, 7]. This program implements a progressive method for
multiple sequence alignment. A high level description of the three basic phases
in the CLUSTAL W alignment algorithm are given in Algorithm 1.

Algorithm 1 Sequential CLUSTAL W
Input: A set S of n sequences. Output: A multiple alignment of S.

(1) Pairwise alignment: Compute pairwise alignments for all sequences against
all other sequences and store the result in a similarity matrix. Convert the
values in the sequence similarity matrix to distance measures which reflect
the evolutionary distance between each pair of sequences.

(2) Guide-tree: Construct a guide-tree which defines the order in which pairs
of sequences are aligned and combined with previous alignments using the
sequence similarity matrix and a neighbour-joining algorithm.

(3) Multiple alignment: Align progressively following guide tree. Start by align-
ing most closely related pairs of sequences and at each step align two se-
quences or one to an existing subalignment.

— End of Algorithm —

Scoring

There are two main types of scoring used in CLUSTAL W: pairwise scores and
multiple alignment scores.

When aligning two sequences, scoring matrices (e.g. PAM250 or BLOSUM62)
are used in order to determine a similarity score for matches and mismatches for
each amino acids or nucleotides. A penalty is incurred when gaps are inserted,
as well as smaller penalties for extending those gaps. The pairwise score between
a pair of sequences is calculated as the sum of similarity scores for all aligned
pairs of characters minus the gap penalties introduced in either sequences. These
scores are necessary for building the guide tree used in the multiple alignment
phase.

The multiple alignment score is a sum-of-pair score or SP [1]. For an align-
ment of N sequences, each of M columns (length), we will denote the i-th column
in the alignment by Ai1, Ai2, ..., AiN . We define Pijk = 1 for every pair Aij and
Aik which are aligned with each other and Pijk = 0 otherwise. The score Si for
the i-th column is

Si =
N∑

j=1,j �=k

N∑

k=1

Pijk

and the SP for the alignment is

SP =
∑M

i=1 Si∑Mr

i=1 Sri

.

Here Mr is the number of columns in the reference alignment and Sri is the
score Si for the i-th column in the reference alignment. Other attempts have

been made to improve this scoring method, such as Circular tours and Traveling
Salesman Problem [2].

3 Parallel CLUSTAL for Distributed Memory
Multicomputer

In the following, we describe a parallelization of the tree basic phases of the
CLUSTAL W alignment algorithm. Our method assumes a set of p processors,
P0, P1, . . ., Pp−1 where each processor.

Algorithm 2 pCLUSTAL
Input: set of sequences, 〈S〉. Output: guide tree, TS; alignment, AS .
(1.0) Processor P0 reads the sequence set S. It then determines the mapping of

sequence-pairs to processors, based on the number of processors, p, and the
number of sequences, n = |S|.

(1.1) Processor P0 sends the precomputed subset of sequences to the correspond-
ing processors, Pi, 1 ≤ i ≤ p − 1.

(1.2) Each processor Pi, 0 ≤ i ≤ p − 1, performs a pairwise alignment on its
assigned sequences using the CLUSTAL W sequential algorithm.

(1.3) Each processor Pi, 1 ≤ i ≤ p − 1, sends its relative pairwise alignment
scores to P0.

(2.0) Processor P0 builds the alignment guide tree, TS , using the scores gathered
in Step (1.3).

(3.0) Processor P0 analyzes TS to identify sequence pairings that can be eval-
uated independently in Step (3.1). Sequences that can be evaluated inde-
pendently are assigned to processors, Pi, 1 ≤ i ≤ j − 1.

(3.1) Processor P0 gathers resulting pairs evaluated in Step (3.0) and, using TS ,
sequentially completes the multiple alignment of the sequences, AS .

— End of Algorithm —

Correctness

The correctness of Algorithm pCLUSTAL follows from the correctness of the
sequential CLUSTAL W. The reported results are identical.

Performance

We assume that n is the number of input sequences, each of which is bounded
in length by m, and that p is the number of processors.

Phase One: Step (1.0) requires O(nm) time to read the sequence file and
O(n2) time to map the sequence pairs to the processors. In Step (1.1), specific
subsets of sequences are sent to specific processors requiring O(1) h-relation op-
erations (MPI AllToAllv). Each processor sends it scores to P0 in Step (1.3),
using O(1) h-relation operations. In Step (1.2), each processor performs a se-
quential pairwise alignment on its sequence subsets, requiring O(n2m2/p) time.

Phase Two: Building the guide tree in Step (2.0) requires O(n) time. There
is no communication required in this phase.

Phase Three: The analysis of TS in Step (3.0) requires O(n) time. The
multiple alignment operation in Step (3.1) requires O(nm2) time. The dispersal

and gathering of independent candidate pairs in Steps (3.0) and (3.1) require
O(1) h-relation operations.

Algorithm Complexity: From the previous analysis, the total time for
Algorithm pCLUSTAL is O(n2m2/p) local computation and O(1) h-relation op-
erations for communication. This shows the effectiveness, in theory, of Algorithm
pCLUSTAL. The local computation shows linear speedup, and the communica-
tion overhead consists only of a small, fixed, number of data permutations. Our
performance analysis in Section 4 below shows that this property of Algorithm
pCLUSTAL does indeed translate into very good practice performance of our
pCLUSTAL code.

4 Experimental Performance Analysis

We implemented Algorithm 2 (pCLUSTAL), using C and the MPI communica-
tion library. For our experiments, we used a 64 node PC cluster with 1.8 GHz
Intel Xeon processors, 512 MB RAM per node and 60 GB of disk storage per
node. Every node is running Linux Redhat 7.2 with gcc 2.95.3 and MPI/LAM
6.5.6. The nodes are interconnected via a gigabit Ethernet switch. All parallel
times are measured as the wall clock time between the start of the first process
and the termination of the last process. We will refer to this as parallel wall clock
time. All times include the time taken to read the input graph from a file and
write the solution into a file. Furthermore, all wall clock times were measured
with no other user except us on the parallel machine.

Our experiments measured the following: (1) Parallel wall clock times as a
function of the number of processors. (2) Relative speedup (ratio of parallel wall
clock time on one processor and parallel wall clock time on p processors) as a
function of the number of processors.

As test data, we obtained protein sequence data sets from the National Center
for Biotechnology Information (NCBI). The sequences were, on average, about
300 amino acids in length. We used the following sequence sets:

– SYNAPSIN: 28 sequences
– SYNAPTOTAGMIN: 66 sequences
– RELAXIN: 426 sequences
– GLUCAGON: 478 sequences
– KINASE: 647 sequences
– TRYPSIN: 878 sequences

Figures 4 to 6 show the parallel wall clock times as a function of the number
of processors for SYNAPSIN, SYNAPTOTAGMIN, RELAXIN, GLUCAGON,
KINASE, and TRYPSIN, respectively. The figures show the parallel wall clock
times for the three phases of the algorithm (pairwise alignment, guide tree con-
struction, and multiple alignment) as well as the total measured parallel wall
clock time. We observe, that all six sets of curves are very similar. The guide tree
construction and multiple alignment times are small compared to the pairwise
alignment times. The pairwise alignment requires time O(n2m2/p) in theory and
the times measured are indeed proportional to 1/p. Furthermore, the pairwise
alignment times dominate the guide tree construction and multiple alignment
times and, therefore, the total measured parallel wall clock times are similar to
the pairwise alignment times and proportional to 1/p.

Figure 7 shows the measured relative speedup (ratio of parallel wall clock
time on one processor and parallel wall clock time on p processors), as a function
of the number of processors, for SYNAPSIN, SYNAPTOTAGMIN, RELAXIN,
GLUCAGON, KINASE, and TRYPSIN, respectively. Except for the SYNAPSIN
case (small data set), the speedup is very good for up to 8 processors, good for
up to 16 processors, and still reasonable for up to 32 processors.

Figure 8 is taken from [8] and shows the speedups reported in [8] for the com-
mercial SGI parallel CLUSTAL on a shared memory SGI Origin 3000. Despite
the much more powerful machine, the speedups reported are similar or less than
the speedups obtained by pCLUSTAL on a much simpler distributed memory
PC cluster.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 10 20 30 40 50 60 70

T
im

e
(w

al
l c

lo
ck

)

Number of Processors

Pairwise
Guide Tree
Multiple Alignment
Total

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 10 20 30 40 50 60 70

T
im

e
(w

al
l c

lo
ck

)

Number of Processors

Pairwise
Guide Tree
Multiple Alignment
Total

(a) (b)

Fig. 4. Parallel Wall Clock Times Measured For SYNAPSIN And SYNAPTOTAG-
MIN.

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50 60 70

T
im

e
(w

al
l c

lo
ck

)

Number of Processors

Pairwise
Guide Tree
Multiple Alignment
Total

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60 70

T
im

e
(w

al
l c

lo
ck

)

Number of Processors

Pairwise
Guide Tree
Multiple Alignment
Total

(a) (b)

Fig. 5. Parallel Wall Clock Times Measured For RELAXIN And GLUCAGON.

References

1. H. Carillo. and D. Lipman. The multiple sequence alignment problem in biology.
SIAM J. Appl. Math, 48(5):1073–1082, 1998.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 10 20 30 40 50 60 70

T
im

e
(w

al
l c

lo
ck

)

Number of Processors

Pairwise
Guide Tree
Multiple Alignment
Total

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 10 20 30 40 50 60 70

T
im

e
(w

al
l c

lo
ck

)

Number of Processors

Pairwise
Guide Tree
Multiple Alignment
Total

(a) (b)

Fig. 6. Parallel Wall Clock Times Measured For KINASE And TRYPSIN.

2. G.H. Gonnet, C. Korostensky, and S. Benner. Evaluation measures of multiple
sequence alignments. J Comput Biol., 7(1-2):261–276, 2000.

3. H.G. Higgins, A.J. Bleasby, and R. Fuchs. Clustal v: improved software for multiple
sequence alignment. CABIOS, 8:189–191, 1992.

4. H.G. Higgins and P.M. Sharp. Clustal: a package for performing multiple sequence
alignment on a microcomputer. Gene, 73:237–244, 1988.

5. H.G. Higgins and P.M. Sharp. Fast and sensitive multiple sequence alignments on
a microcomputer. CABIOS, 5:151–153, 1989.

6. H.G. Higgins, J.D. Thompson, and T.J. Gibson. Using clustal for multiple sequence
alignments. Methods Enzymol, 266:383–402, 1996.

7. F. Jeanmougin, J.D. Thompson, M. Gouy, D.G. Higgins, and T.J. Gibson. Multiple
sequence alignment with clustal x. Trends Biochem Sci, 23:403–405, 1998.

8. Performance optimization of clustal w: Parallel clustal w, ht clustal, and multi-
clustal. http://www.sgi.com/ industries/ sciences/ chembio/ resources/ papers/
Clustal DevNews/ Clustal DevNews.html.

9. J.D. Thompson, T.J. Gibson, F. Plewniak, F. Jeanmougin, and H.G. Higgins. The
clustalx windows interface: flexible strategies for multiple sequence alignment aided
by quality analysis tools. Nucleic Acids Research, 24:4876–4882, 1997.

10. J.D. Thompson, H.G. Higgins, and T.J. Gibson. Clustal w: improving the sen-
sitivity of progressive multiple sequence alignment through sequence weighting,
positions-specific gap penalties and weight matrix choice. Nucleic Acids Research,
22:4673–4680, 1994.

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70

S
pe

ed
up

Number of Processors

Synapsin (28)
Synaptotagmin (66)
Relaxin (426)
Glucagon (478)
Kinase (647)
Trypsin (878)
Linear

Fig. 7. Relative Speedup For pCLUSTAL On A PC Cluster As Measured In Figures
4 To 6

Fig. 8. Relative Speedup of SGI’s parallel CLUSTAL on a SGI Origin 3000. From
[8]: “Parallel Clustal W scaling. Calculation was done for 100 and 600 GPCR protein
sequences with the average length 390 amino acids.”

