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Abstract

The precomputation of the different views of a data cube is critical to improving the
response time of data cube queries for On-Line Analytical Processing (OLAP). However,
the user is often not interested in the set of all views of the data cube but only in a
certain subset of views. In this paper, we study the problem of computing the partial
data cube, i.e. a subset of selected views in the lattice. We consider the case of dense
relations, using top-down cube construction methods like Pipesort. This paper presents,
both, sequential and parallel methods for partial data cube construction as well as an
experimental performance evaluation of our methods.

1 Introduction

The precomputation of the different views (group-bys) of a data cube [9] is critical to im-
proving the response time of data cube queries for On-Line Analytical Processing (OLAP).
Numerous solutions for generating the entire data cube (i.e. all views) have been proposed;
see e.g. [3, 12, 18, 19, 22]. One of the main differences between the many solutions is
whether they are aimed at sparse or dense relations. To meet the need for improved perfor-
mance and to effectively handle the increase in data sizes, parallel solutions for generating
the data cube have been proposed in [4, 7, 8, 16, 14, 21]. However, the user is often not
interested in the set of all views of the data cube but only in a certain subset of views. For
example, only the views up to a certain number of dimensions may be of interest as these
views are more easily visualized. More importantly, for a large number of dimensions and
for realistic size data sets, where the original relation may be terabytes in size, it is often
impractical to compute the entire data cube. For such applications it is critical to be able to
compute a select subset of views rather than the entire data cube. The problem of selecting
a subset of views that minimizes the query response time is studied in [10, 11, 12]. However,
once such a subset of views is selected, it is critical to have efficient methods available that
materialize the given set of views. This is the problem addressed in this paper.

Given a relation R of size n and dimension d as well as a subset S of the set of all possible
views in the lattice L, we refer to the problem of computing all views in S as the partial
data cube problem. In this paper, we study the problem of computing the partial data cube
for the case of dense relations, using top-down cube construction methods like Pipesort [19].
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We present, both, sequential and parallel methods for partial data cube construction as well
as an experimental performance evaluation of our methods.

The central problem for top-down partial cube construction is to build a schedule tree
T of minimum cost connecting all views of S and some intermediate nodes (views) chosen
in order to reduce the total cost. This problem has also been discussed in [19]. A particular
challenge for the Pipesort approach is that it builds a schedule tree by proceeding level by
level through the lattice and building minimum cost bipartite matchings between levels.
However, the schedule tree for a partial cube may require edges between nodes at arbitrary
levels of the lattice. To solve this problem, the authors in [19] suggest augmenting the
lattice with Steiner vertices and edges representing all possible orderings of the attributes
of all views and edges between all vertices where the attributes of one vertex are a prefix
of the attributes of the other. See Figure 1 for an illustration. The authors in [19] then
apply a minimum Steiner tree approximation algorithm to the augmented lattice in order to
create a schedule tree. The main problem with this approach, besides the minimum Steiner
tree problem being NP-complete, is that the augmented lattice can become extraordinarily

large. The number of vertices and edges in the original lattice L are
∑d

k=0

(
d
k

)
and

∑d
k=1

(
d
k

)
k, respectively, while the number of vertices and edges in the augmented lattice

with Steiner vertices and edges are
∑d

k=0

(
d
k

)
k!+ |S| and∑d

k=1

[(
d
k

)
k!
∑k

j=1
k!

(j−1)!

]
+

|S|, respectively. Table 1 provides some examples for d = 3, . . . , 10. As indicated, the
number of Steiner edges exceeds 2,000,000,000 for d ≥ 9. This makes such an approach
impractical for relations with more than just a very small number of dimensions. The
examples show that, in order to handle real life data sets, it is important to find approaches
that do not require Steiner vertices and edges in the lattice.

In this paper, we present two methods, Tree Partial Cube(S, PC) and Lattice Partial
Cube(S, PC), which create a schedule tree T without the use of Steiner vertices or edges.
For our method Tree Partial Cube(S, PC), the nodes of the schedule tree T are a sub-
set of the nodes of the Pipesort tree of the complete cube, whereas for our method Lat-
tice Partial Cube(S, PC) the schedule tree T is a subgraph of the lattice L. The heart
of our algorithm is a method Partial Cube Schedule(S, G, T) which builds, in two steps,
the schedule tree T from a guiding graph, G, which is a subgraph of either the Pipesort
tree or lattice L. First, Partial Cube Schedule(S, G, T) organizes the nodes of S into a
tree of minimum total cost, using a greedy approach. Then, it adds intermediate nodes
(from G − T ) to the tree to further minimize the total cost, using a greedy approach as
well. Our algorithm also introduces the use of “plan” variables which represent the best
way for a given node v to be inserted into T . In addition, we present two parallel methods
Parallel Tree Partial Cube(p, S, PC) and Parallel Lattice Partial Cube(p, S, PC) which
parallelize our partial cube generation methods for a p processor shared disk multiproces-
sor, like the SunFire 6800 [15]. Our approach is to generate the schedule tree T using
Partial Cube Schedule(S, G, T), partition T into subtrees representing workloads of equal
size, and then distribute the workloads over the p processors.

We have implemented Tree Partial Cube, Lattice Partial Cube, Parallel Tree Partial
Cube, and Parallel Lattice Partial Cube and tested them on a SunFire 6800 [15]. For
comparison purpose, a practical alternative method for computing a small set of views
might be to compute the directly via separate sorts, whereas computing larger sets of views
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might be done more efficiently by computing the entire cube via Pipesort. Therefore, we
compared the performance of Tree Partial Cube and Lattice Partial Cube with the per-
formance of algorithm Simple Partial Cube consisting of computing either the entire data
cube via Pipesort or, for small subsets S, computing the views in S individually through
separate sorts, whichever is faster. We observed that, when up to 50% of all possible views
are selected, Tree Partial Cube and Lattice Partial Cube show a 30% to 45% performance
improvement in comparison with Simple Partial Cube. For up to 50% of all views selected,
the methods Tree Partial Cube and Lattice Partial Cube exhibit very similar performance.
Beyond that point, the Lattice Partial Cube method appears to perform better. We also
observe that Lattice Partial Cube has approximately the same performance as Pipesort
when all views are selected. For our parallel methods Parallel Tree Partial Cube and Par-
allel Lattice Partial Cube we tested our methods on up to 16 processors of a SunFire 6800
and observed close to linear relative speedup.

Our observations show that Lattice Partial Cube can be used as a general purpose
replacement for Pipesort, one that achieves equivalent performance in the generation of
full cubes and is in addition capable of efficiently generating partial cube. Note that,
Lattice Partial Cube is also considerably easier to implement than Pipesort because it does
not require minimum cost bipartite matching.

The remainder of this paper is organized as follows. In the following Section 2 we present
our sequential methods Tree Partial Cube and Lattice Partial Cube. Section 3 outlines the
parallel methods Parallel Tree Partial Cube(p, S, PC) and Parallel Lattice Partial Cube(p,
S, PC). Section 4 presents the performance evaluation of our methods.

ACBABC BAC BCA CAB CBA

CABA AC BCAB CB

A CB

all

ABC

ACBCAB

A CB

all

(a) (b)

Figure 1: (a) Three-Dimensional Lattice (b) Three-Dimensional Augmented Lattice

2 Sequential Partial Data Cubes

For a given set S of selected view identifiers (i.e. sets of dimensions), we wish to create a
partial cube PC containing the views identified in S. The main task is to create a schedule
tree T which contains all views of S plus some additional intermediate views such that the
total cost for computing all of these views via pipesort is minimized. A schedule tree T is
a tree where the nodes represent views and edge (u, v) from parent u to child v indicate
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Dimensions No. of Nodes, No. of Edges, No. of Nodes, No. of Edges,
Orig. Lattice Orig. Lattice Augm. Lattice Augm. Lattice

3 8 12 16 117
4 16 32 65 1,948
5 32 80 326 47,665
6 64 192 1,957 1,667,286
7 128 448 13,700 79,777,285
8 256 1,024 109,601 718,178,136
9 512 2,304 986,410 N/A
10 1,024 5,120 9,864,101 N/A

Table 1: Number Of Nodes And Edges In The Original Lattice L, and Number Of Nodes
And Edges In The Augmented Lattice With Steiner Vertices And Edges. N/A Denotes An
Integer “Roll-Over” At 2,000,000,000.

that v is created from u. Each edge (u, v) is labelled “scan” or “sort” indicating that v is
created via a “scan” or “sort”, respectively.

We present two methods, Tree Partial Cube(S, PC) and Lattice Partial Cube(S, PC),
which both create a schedule tree T that contains the views in S, and then apply Pipesort
to T in order to create the partial cube PC. As a preprocessing step, we compute the
lattice, L, of all 2d possible views [9] and use a storage estimator [5, 20] to estimate the
approximate sizes of all views.

Procedure 1 Tree Partial Cube(S, PC)
/* Input: set of selected group-bys, S. Output: partial data cube, PC. Variables: A schedule
tree T representing S with added intermediate nodes and scan/sort relationships. */
(1) Compute the Pipesort spanning tree of the lattice L and prune it by deleting all nodes which

have no descendent in S. Let G denote the result.
(2) Partial Cube Schedule(S, G, T)
(3) Fix Pipelines(T)
(4) Build partial data cube PC using Pipesort applied to tree T.

Procedure 2 Lattice Partial Cube(S, PC)
/* Input: set of selected group-bys, S. Output: partial data cube, PC. Variables: A schedule
tree T representing S with added intermediate nodes and scan/sort relationships. */
(1) Prune all nodes in the lattice L which have no descendent in S. Let G denote the result.
(2) Partial Cube Schedule(S, G, T)
(3) Establish Attribute Orderings(T)
(4) Build partial data cube PC using Pipesort applied to tree T.

The difference between the two methods is that, in Tree Partial Cube(S, PC) the
schedule tree T is a subset of the Pipesort tree of the complete cube whereas in Lat-
tice Partial Cube(S, PC) the schedule tree T is a subgraph of the lattice. The heart
of our algorithm is the method Partial Cube Schedule(S, G, T) which builds the sched-
ule tree T . The guiding graph, G, captures the valid relationships between views. For
Tree Partial Cube(S, PC), G is a subgraph of the pipesort tree and for Lattice Partial Cube
(S, PC), G is a subgraph of the lattice. Each vertex of G has an additional label indicating
the estimated size of the respective view.
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For two adjacent nodes v, w in G we require an estimate of the cost involved to create
view w from view v. Let scan cost(v,w) and sort cost(v,w) denote the cost estimates to
create w from v via a scan or complete re-sort, respectively, including the I/O overhead
involved. The estimates scan cost(v,w) and sort cost(v,w) are functions of the number of
rows of v, |v|, where scan cost(v,w) = cdiskcdim(d)|v| and sort cost(v,w) = cdiskcdim(d)|v|+
csort(d)|v| log |v| for machine dependent values cdisk, cdim(d), and csort(d). The constant
cdisk, called disk constant, reflects the ratio between the cost of external disk access and
local memory access. The function cdim(d) ≤ d represents the increased cost associated
with reading/writing d dimensional records in comparison to one dimensional records. The
function csort(d) reflects the overhead incurred when sorting d dimensional records in main
memory.

Let mode(v,w) be “scan” for v,w ∈ G if w can be created from v via a scan, and “sort”
otherwise. Note that, if G is a subgraph of the pipesort tree, where the attribute ordering
has been fixed, a node w can be created from v iff the attributes of w are a prefix of the
attributes of v. If G is a subgraph of the lattice, where the attribute ordering have not
been fixed, a node w can be created from v iff the attributes of w are are a subset of the
attributes of v. Let cost(v,w) be scan cost(v,w) if mode(v,w) = “scan”, and sort cost(v,w)
otherwise. Let RawDataSet denote the original data set and let parent(v, T) be the parent
node of v in a given tree T .

The method Partial Cube Schedule(S, G, T) proceeds in two steps. In Step 1, it orga-
nizes the nodes of S into a tree of minimum total cost, using a greedy approach. In Step 2,
it adds intermediate nodes (from G−T ) to the tree to further minimize the total cost, again
using a greedy approach. Both steps make use of “plan” variables. A plan represents the
best way for a given node v to be inserted into T . More precisely, a plan variable contains
the following fields:

node: the node v considered to be inserted,
parent: the chosen parent of v,
parent mode: the chosen mode (scan or sort) for computing v from its parent,
scan child: the chosen child of v that is computed via scan,
insertion scan child: the chosen scan child of v in the case of scan insertion,
sort children: the chosen children of v that are computed via sort,
benefit: the improvement in total cost obtained by inserting v.

For a plan variable P, the procedure Clear(P) sets P.benefit to −∞ and all other fields to
NIL.

Procedure 3 Partial Cube Schedule(S, G, T)
/* Input: set of selected group-bys, S, and a guiding graph G. Output: A schedule tree T rep-
resenting S with added intermediate nodes and scan/sort relationships. Variables: CP (current
plan) and BP (best plan) of type Plan. */
(1) /* Intialize T with nodes from S */

S’ = S; T = ∅
WHILE S’ not empty

clear(BP)
FOR every v ∈ S’ DO

clear(CP); CP.node = v
Find Best Parent(T, G, CP)
Find Best Children(T, G, CP)
IF CP.benefit > BP.benefit THEN BP = CP
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update T according to BP
remove BP.node from S’

(2) /* Add nodes from G-S to T as long as the total cost improves */

REPEAT
clear(BP)
FOR every v ∈ G-T-{RawDataSet} DO

clear(CP); CP.node = v
Find Best Parent(T, G, CP)
Find Best Children(T, G, CP)
IF CP.benefit > BP.benefit THEN BP = CP

IF BP.benefit > 0 THEN add BP.node to T and update T according to BP
UNTIL BP.benefit <= 0

Both, Step 1 and Step 2 of Partial Cube Schedule(S, G, T) use the two methods
Find Best Parent(T, G, CP) and Find Best Children(T, G, CP). The method Find Best
Parent(T, G, CP) identifies for a given node v the least expensive node w in T from which v
can be computed. We favor the lengthening of scan pipelines by considering first the cases
where v is either added at the end of an existing pipeline or v is inserted into an existing
pipeline. Otherwise we consider using a sort to create v as the start of a new pipeline. Note
that, adding v to T creates a cost (negative benefit) in the first place and that the “real”
benefit will follow from the improved computation of children of v. An illustration of the
three cases in Procedure 4 is given in Figure 2.

Procedure 4 Find Best Parent(T, G, CP)
/* Input: current tree, T, and a guiding graph G. Output: sets the fields CP.parent, CP.parent
mode and CP.benefit to represent best parent of CP.node. Variables: parents scan child. */
(1) /* Intialize best parent to RawDataSet */

CP.parent = RawDataSet
CP.benefit = 0 - cost(RawDataSet, CP.node)
CP.parent mode = mode(RawDataSet, CP.node)

(2) /* Improve best parent, if possible */

FOR all w ∈ T - { RawDataSet } where the attributes of CP.node are a subset of the
attributes of w DO

/* Case 1: CP.node is added at the end of an existing pipeline */
IF w has no scan child AND scan cost(w,CP.node) < abs(CP.benefit) THEN

CP.parent = w
CP.benefit = 0 - scan cost(w,CP.node)
CP.parent mode = “scan”

/* Case 2: CP.node is inserted into an existing pipeline */
ELSE IF w has a scan child w’ AND mode(w, CP.node) = “scan” AND mode(CP.node,
w’) = “scan” AND scan cost(w,CP.node) < abs(CP.benefit) THEN

CP.parent = w; CP.insertion scan child = w’
CP.benefit = 0 - scan cost(w,CP.node)
CP.parent mode = “scan”

/* Case 3: CP.node is made the start of a new pipeline */
ELSE IF sort cost(w,CP.node) < abs(CP.benefit) THEN

CP.parent = w
CP.benefit = 0 - sort cost(w,CP.node)

6



ABC

AB

ABCD

ACD BCD

Case 1

A

ABC

BCAB

Case 2

CBA

AC ABCB

Case 3

CP.node CP.node CP.node

w w w

w'

Figure 2: Illustration Of The Three Cases In Procedure 4.

CP.parent mode = “sort”

The method Find Best Children(T, G, CP) identifies for a given node v the set of children
that would create the largest benefit if they were created from v rather than their current
parents in T . In Step 1, it finds the best scan child, either by the scan insertion indicated
by Find Best Parent(T, G, CP) or by comparing the potential benefit of all possible scan
children. In Step 2, it finds all other potential children that lead to an improvement in total
cost, i.e. can be better computed from v than from their current parent in T .

Procedure 5 Find Best Children(T, G, CP)
/* Input: current tree, T, and a guiding graph G. Output: sets the fields CP.scan child,
CP.sort children and CP.benefit to represent best children of CP.node. Variable: best scan
child, best scan child benefit. */
(1) /* Find either a scan insertion (Case 2) or the best scan child (i.e. the one with largest path

cost), if one exists. */
best scan child = nil; best scan child benefit = −∞
IF CP.insertion scan child != nil THEN

best scan child = CP.insertion scan child
ELSE FOR all w ∈ T where { the attributes of w are a subset of the attributes of CP.node
} DO

IF mode(parent(w, T), w) = “sort” THEN
IF cost(parent(w,T),w) − cost(CP.node,w) > best scan child benefit THEN

best scan child = w
best scan child benefit = cost(parent(w,T),w) − cost(CP.node,w)

IF best scan child != nil THEN

CP.benefit += cost(parent(w,T),w) − cost(CP.node,w)
CP.scan child = best scan child

(2) /* Find other children with positive benefit */
FOR all w ∈ T where { the attributes of w are a subset of the attributes of CP.node
AND w �= best scan child AND mode(parent(w,T),w)=“sort” } DO

IF cost(parent(w,T),w) > cost(CP.node,w) THEN
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CP.benefit += cost(parent(w,T),w) − cost(CP.node,w)
CP.sort children += w

This concludes the description of our method, Partial Cube Schedule(S, G, T). After
Partial Cube Schedule(S, G, T) has generated a schedule tree, both methods, Tree Partial
Cube(S, PC) and Lattice Partial Cube(S, PC), continue with a post-processing method
Fix Pipelines(T) and Establish Attribute Orderings(T), respectively.

The post-processing method Establish Attribute Orderings(T) has the task of identify-
ing pipes of possible scan orderings for Lattice Partial Cube. Note that, while all edges in
T have been identified as either “scan” or “sort” edges, the attribute orderings for the ver-
tices, i.e. views, have yet to be established. The method Establish Attribute Orderings(T)
identifies all leaves in the schedule tree T which are scan children. These leaves mark the
bottoms of existing pipelines. For each such leaf x, a method Fix Attributes(x) is called
which recursively walks up the pipeline, starting at x. As the parent/child scan relation-
ships are examined, the attribute order of the parent is modified to reflect the ordering of
its child. For example, a pathway such as B — CB — CGB — DGBC would be re-ordered
as B — BC — BCG — BCGD; see Figure 3(a).
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(a) (b)
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C

Figure 3: Illustration of Establish Attribute Orderings(T) and Fix Pipelines(T).

The post-processing method Fix Pipelines(T), used in Tree Partial Cube, has the task
of identifying nodes that have no scan child, create a scan child for such nodes, and fix the
attribute orderings. Note that, since in Tree Partial Cube the guiding graph is a subgraph
of the Pipesort tree for the entire cube, the scan child x of a node y in the guiding graph
may not be in T and therefore y may not have a scan child at this point. The method
Tree Partial Cube identifies all nodes y with at least one child but no scan child. For each
such node y, one arbitrary child x is made it’s scan child and Fix Attributes(x) is invoked
to correctly set the attribute orderings; see Figure 3(b).

Following the completion of the schedule tree T both methods, Tree Partial Cube(S,
PC) and Lattice Partial Cube(S, PC), conclude by executing a modified version of pipesort
where the standard pipesort tree is replaced by T .
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3 Parallel Partial Data Cubes

In this section we outline how to parallelize our partial cube generation methods for a
p processor shared disk multiprocessor, like the SunFire 6800 [15]. The following meth-
ods Parallel Tree Partial Cube(p, S, PC) and Parallel Lattice Partial Cube(p, S, PC) de-
scribe parallel versions of Tree Partial Cube and Lattice Partial Cube, respectively. In
both cases, our approach is to generate the schedule tree T using Partial Cube Schedule(S,
G, T), partition T into subtrees representing workloads of equal size, and then distribute
the workload over the p processors P1, . . . , Pp. The following procedures show the structure
of our methods.

Procedure 6 Parallel Tree Partial Cube(p, S, PC)
/* Input: number of processors, p, and set of selected group-bys, S. Output: partial data cube,
PC. Variables: A schedule tree T representing S with added intermediate nodes and scan/sort
relationships. */
(1) Processor P1:

• Compute the Pipesort spanning tree of the lattice L and prune it by deleting all nodes
which have no descendent in S. Let G denote the result.

• Partial Cube Schedule(S, G, T)
• Fix Pipelines(T)
• Tree Partition(T, p, s, Σ1, . . ., Σp).

(2) On each processor Pi, in parallel:

• Compute all group-bys in subset Σi on processor Pi using Pipesort.

Procedure 7 Parallel Lattice Partial Cube(p, S, PC)
/* Input: number of processors, p, and set of selected group-bys, S. Output: partial data cube,
PC. Variables: A schedule tree T representing S with added intermediate nodes and scan/sort
relationships. */
(1) Processor P1:

• Prune all nodes in the lattice L which have no descendent in S. Let G denote the result.
• Partial Cube Schedule(S, G, T)
• Establish Attribute Orderings(T)
• Tree Partition(T, p, s, Σ1, . . ., Σp).

(2) On each processor Pi, in parallel:

• Compute all group-bys in subset Σi using Pipesort.

The challenge is how to partition T into subtrees representing workloads of equal size
because the tree partitioning problem is known to be NP-complete. We apply a tree parti-
tioning heuristic which we had previously developed in [4] for parallelizing the computation
of the full data cube. This approximation method makes use of a related partitioning prob-
lem on trees for which efficient algorithms exist, the min-max tree k-partitioning problem
[2, 6, 17]. Our tree partitioning heuristic developed in [4] adapts the algorithm in [2] to the
partitioning of the schedule tree T . Note that, min-max k-partitioning does not necessarily
result in a partitioning of T into subtrees representing equal workload. To achieve a better
distribution of the workload we apply an over partitioning strategy: instead of partitioning
the tree T into p subtrees, we partition it into s× p subtrees, where s ∈ {1, 2, 3} is a chosen
integer parameter. Then, we use a “packing heuristic” to determine which subtrees belong
to which processors, assigning s subtrees to every processor. Our packing heuristic considers
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the weights of the subtrees and pairs subtrees by weights to control the number of subtrees.
It consists of s matching phases in which the p largest subtrees (or groups of subtrees) and
the p smallest subtrees (or groups of subtrees) are matched up. The above constitutes our
method Tree Partition(T, p, s, Σ1, . . ., Σp) which has as input the schedule tree, T , number
of processors, p, and overpartitioning ratio, s, and creates as output p sets of trees, Σ1, . . .,
Σp, where each set Σi contains the s subtrees of T which will be assigned to processor Pi.
As shown in [4], an overpartitioning ratio of s ≤ 3 is sufficient to obtain a good workload
distribution.

4 Performance Evaluation

In this section we discuss the experimental examination of Tree Partial Cube, Lattice Par-
tial Cube, Parallel Tree Partial Cube, and Parallel Lattice Partial Cube. We first discuss
our setup and methodology and then present the performance results obtained.

4.1 Experimental Setup and Methodology

We have implemented Tree Partial Cube, Lattice Partial Cube, Parallel Tree Partial Cu
be, and Parallel Lattice Partial Cube using C and the MPI communication library [1].
Most of the required graph algorithms, as well as data structures like hash tables and
graph representations, were drawn from the LEDA library [13]. Our experimental platform
consisted of a Sun Fire 6800 with 24x 750MHz (8 MB E-Cache) UltraSPARC-III processors,
24 GB of memory and a Sun Storedge T3 disk storage system. The operating system was
Solaris 8 (HW 04/01) and we used Sun MPI-5.0 as our MPI platform.

All sequential times were measured as wall clock times in seconds, running on one
processor of the Sun Fire 6800. All parallel times were measured as the wall clock time
between the start of the first process and the termination of the last process. We will refer
to the latter as parallel wall clock time. These times include all I/O. Furthermore, all wall
clock times were measured with no other user except us on the Sun Fire 6800.

Without a partial cube algorithm available, there are essentially two possible approaches
to build a partial cube: (1) build the full data cube and then return the selected views only,
or (2) calculate each of the selected views by a separate sort of the raw data set, followed
by a scan. Which of these two approaches is better depends essentially on the percentage
of selected views. For a small number of selected views, the individuals sorts will often
be faster, while building the full data cube is often faster when the percentage of selected
views is high. The following method Simple Partial Cube(S, PC), which always selects the
faster of these two approaches, will be used as a “baseline” against which our algorithms
Tree Partial Cube and Lattice Partial Cube will be compared. Note that, in the remainder
of this section, the wall clock time for Simple Partial Cube(S, PC) will be determined by
simply running both approaches and selecting the wall clock time of the faster one.

Procedure 8 Simple Partial Cube(S, PC)
/* Input: set of selected group-bys, S. Output: partial data cube, PC.*/

Build the partial data cube, PC, for the set of selected group-bys, S, by using either

(1) Pipesort, or
(2) an individual sort and scan of the raw data set for each view in S
which ever is faster.
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We implemented a data generation program which can create data sets of various sizes
and dimensions, with various cardinalities for the individual dimensions and various data
distributions (from uniform to skewed data created via ZIPF distributions). In the re-
mainder, unless otherwise stated, our data sets were generated with uniform distribu-
tion and mixed cardinalities, varying between 2 and 1000 for the different dimensions.
In order to eliminate influence of the storage estimator used on the comparison between
Tree Partial Cube, Lattice Partial Cube and Simple Partial Cube, we used precise stor-
age sizes for the views generated. For each experiment where there was variance in running
times due to variances in input data sets, multiple data sets were run and data points
represent the average over those experiments.

Our experiments proceeded in the following steps:

1. Sequential Experiments: We executed Simple Partial Cube(S, PC), Tree Partial
Cube and Lattice Partial Cube on a single processor of our parallel machine and
measured the sequential wall clock time.

2. Parallel Experiments: We executed Parallel Tree Partial Cube and Parallel Lat-
tice Partial Cube on up to 16 processors of our parallel machine and measured the
parallel wall clock time.

4.2 Performance Results: Sequential Experiments

Figure 4 shows the running time observed for Simple Partial Cube, Tree Partial Cube
and Lattice Partial Cube as a function of the percentage of views from the complete data
cube that are selected at random and generated. The data sets consisted of 200,000 rows
with 8 dimensions and mixed cardinalities, varying between 2 and 1000 for the different
dimensions. We observe that our two new methods are a significant improvement over
Simple Partial Cube. When up to 50% of views are selected, a reduction in time of be-
tween 30% and 45% is observed. Even when as many as 75% of the views are selected an
improvement of 18% is observed. When up to 50% of the views are selected, the meth-
ods Tree Partial Cube and Lattice Partial Cube exhibit very similar performance. Beyond
that point the Lattice Partial Cube method appears to provide better performance.

Figure 5 shows the running time observed for Simple Partial Cube, Tree Partial Cube
and Lattice Partial Cube as a function of the data size when 10% of the views in the
complete data cube are selected at random and generated. The data sets range in size
from 200,000 to 1,000,000 rows. Each data set has 8 dimensions and mixed cardinalities,
varying between 2 and 1000 for the different dimensions. Again we observe that our two
new methods are a significant improvement over Simple Partial Cube. When only 10% of
the views are selected, the new methods achieve an improvement of approximately 30%.

Figure 6 shows the relative improvement in running time observed for Tree Partial Cube
with respect to Simple Partial Cube as a function of the dimensionality of the data sets
when 5%, 10%, 25%, 50% or 75% of the views in the complete data cube are selected. The
data sets consist of 200,000 rows with mixed cardinalities, varying between 2 and 1000 for
the different dimensions. We observe that when the dimensionality of the cube is low (i.e.
5 or 6) there is a lot of variation in the relative improvement. This is likely because in
these cases there are only a small number of views in total (32 or 64) so that the addition
of just a couple of intermediate views can have a very significant effect. As the number
of dimensions grows, the curves become smoother and exhibit a consistent trend of slowly
growing relative improvement.
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Figure 4: Sequential Wall Clock Time In Seconds As A Function Of The Percentage Of
Selected Views. Comparison Between Simple Partial Cube, Tree Partial Cube And Lat-
tice Partial Cube. (Fixed Parameters: No. Of Processors = 1. Data Size = 200,000 Rows.
Dimensions = 8. Skew (ZIPF): α = 0.)

Figure 7 presents the same data as Figure 6 in a different way. Here the relative improve-
ment in running time observed for Tree Partial Cube with respect to Simple Partial Cube
is presented as a function of the percentage of selected views when data sets with between 5
and 10 dimensions are considered. The data sets consist of 200,000 rows with mixed cardi-
nalities, varying between 2 and 1000 for the different dimensions. This figure highlights that
regardless of dimensionality, the performance of Tree Partial Cube is best when between
10% and 50% of the views are selected. There is still some improvement below 10% and
above 50% but it is relatively smaller, although not insignificant.

Figure 8 shows the relative improvement in running time observed for Lattice Partial
Cube with respect to Simple Partial Cube as a function of the dimensionality of the data
sets while Figure 9, using the same data, presents the relative improvement as a function
of the percentage of selected views. The data sets consist of 200,000 rows with mixed
cardinalities, varying between 2 and 1000 for the different dimensions. It is interesting to
observe how similar these curves are to the curves shown in Figure 6 and 7. These results for
Lattice Partial Cube are a slight improvement over the results for Tree Partial Cube but
the general shape of the curves is the same. Again we can observe that beyond 7 dimensions
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Figure 5: Sequential Wall Clock Time In Seconds As A Function Of The Data Size. Compar-
ison Between Simple Partial Cube, Tree Partial Cube And Lattice Partial Cube. (Fixed
Parameters: No. Of Processors = 1. Dimensions = 8. Percentage Of Views Selected =
10%. Skew (ZIPF): α = 0. )

the relative improvement is increasing as the dimensionality of the problem increases.
Figure 10 shows the running time observed for Simple Partial Cube, Tree Partial Cube

and Lattice Partial Cube as a function of skew when 25% of the views in the complete data
cube are selected. Here we used the standard ZIPF distribution in each dimension with
α = 0 (no skew) to α = 2. The data sets consist of 200,000 rows with mixed cardinalities,
varying between 2 and 1000 for the different dimensions. Since data reduction in top-down
generation methods increases with skew, the total time observed is expected to decrease
with skew which is exactly what we observe in Figure 10. One might expect that greedy
methods like our Tree Partial Cube and Lattice Partial Cube might perform poorly in the
presence of skew. However, the main observation of Figure 10 is that our methods appear to
be robust in the presence of skew. In fact, they appear to do relatively better in situations
of high skew.

Although Lattice Partial Cube was designed for generating partial cubes it can of course
also be used to generate full cubes by simply selecting all views. This is an interesting
situation to study because in practice it would be very useful to have a single method (and
code base) that could effectively generate an arbitrary percentage of the views of a complete
data cube. Figure 11 shows the running time observed for Pipesort and Lattice Partial Cube
as a function of the dimensionality of the data sets when the complete data cube is generated.
The data sets consist of 200,000 rows with mixed cardinalities, varying between 2 and 1000
for the different dimensions. Please observe how closely the run time of Lattice Partial Cube
tracks the run time of Pipesort despite the fact that they are based on fundamentally different
schedule tree generation methods. Note that, the two methods share the same code for the
actual generation of views, given those schedule trees. The main observation that can
be drawn from Figure 11 is that Lattice Partial Cube can be used as a general purpose
replacement for Pipesort, one that achieves equivalent performance in the generation of full
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Figure 6: Relative Improvement In Wall Clock Time For Sequential Tree Partial Cube
W.R.T. Simple Partial Cube As A Function Of The Number Of Dimensions, For Different
Percentages Of Selected Views. (Fixed Parameters: No. Of Processors = 1. Data Size =
200,000 Rows. Skew (ZIPF): α = 0. )

cubes and is in addition capable of efficiently generating partial cube.

4.3 Performance Results: Parallel Experiments

For our parallel methods Parallel Tree Partial Cube and Parallel Lattice Partial Cube we
tested our methods on up to 16 processors of a SunFire 6800 and observed close to linear
relative speedup.

Figures 12 and 13 show the parallel wall clock time in seconds for Parallel Tree Partial
Cube and Parallel Lattice Partial Cube, respectively, as a function of the number of pro-
cessors when 5%, 10%, and 25%, of the views in the complete data cube are selected.
(At time of submission, the curves for 50% and 75% were not available due to hardware
problems. They will be included in the final version of this paper.) For both figures,
the data sets consist of 1,000,000 rows with mixed cardinalities, varying between 2 and
1000 for the different dimensions. We observe that both, Parallel Tree Partial Cube and
Parallel Lattice Partial Cube, achieve near linear relative speedup for up to 16 processors.
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Figure 8: Relative Improvement In Wall Clock Time For Sequential Lattice Partial Cube
W.R.T. Simple Partial Cube As A Function Of The Number Of Dimensions, For Different
Percentages Of Selected Views. (Fixed Parameters: No. Of Processors = 1. Data Size =
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Figure 12: Parallel Wall Clock Time In Seconds For Parallel Tree Partial Cube(S, PC) As
A Function Of The Number Of Processors, For Different Percentages Of Selected Views.
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Figure 13: Parallel Wall Clock Time In Seconds For Parallel Lattice Partial Cube(S, PC)
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