
Parallelizing The Data Cube

Frank Dehne1, Todd Eavis2, Susanne Hambrusch3, and Andrew Rau-Chaplin2

1 Carleton University, Ottawa, Canada

frank@dehne.net, http://www.dehne.net
2 Dalhousie University, Halifax, Canada

eavis@cs.dal.ca, arc@cs.dal.ca, http://www.cs.dal.ca/~arc
3 Purdue University, West Lafayette, Indiana, USA

seh@cs.purdue.edu, http://www.cs.purdue.edu/people/seh

Abstract. This paper presents a general methodology for the e�cient

parallelization of existing data cube construction algorithms. We describe

two di�erent partitioning strategies, one for top-down and one for bottom-

up cube algorithms. Both partitioning strategies assign subcubes to in-

dividual processors in such a way that the loads assigned to the proces-

sors are balanced. Our methods reduce inter-processor communication

overhead by partitioning the load in advance instead of computing each

individual group-by in parallel as is done in previous parallel approaches.

In fact, after the initial load distribution phase, each processor can com-

pute its assigned subcube without any communication with the other

processors. Our methods enable code reuse by permitting the use of ex-

isting sequential (external memory) data cube algorithms for the subcube

computations on each processor. This supports the transfer of optimized

sequential data cube code to a parallel setting.

The bottom-up partitioning strategy balances the number of single at-

tribute external memory sorts made by each processor. The top-down

strategy partitions a weighted tree in which weights reect algorithm

speci�c cost measures like estimated group-by sizes. Both partitioning

approaches can be implemented on any shared disk type parallel ma-

chine composed of p processors connected via an interconnection fabric

and with access to a shared parallel disk array. Experimental results pre-

sented show that our partitioning strategies generate a close to optimal

load balance between processors.

1 Introduction

Data cube queries represent an important class of On-Line Analytical Process-

ing (OLAP) queries in decision support systems. The precomputation of the

di�erent group-bys of a data cube (i.e., the forming of aggregates for every com-

bination of GROUP BY attributes) is critical to improving the response time

of the queries [16]. Numerous solutions for generating the data cube have been

proposed. One of the main di�erences between the many solutions is whether

they are aimed at sparse or dense relations [4, 17, 20, 21, 27]. Solutions within a

category can also di�er considerably. For example, top-down data cube compu-

tations for dense relations based on sorting have di�erent characteristics from

those based on hashing.

To meet the need for improved performance and to e�ectively handle the

increase in data sizes, parallel solutions for generating the data cube are needed.

In this paper we present a general framework for the e�cient parallelization

of existing data cube construction algorithms. We present load balanced and

communication e�cient partitioning strategies which generate a subcube com-

putation for every processor. Subcube computations are then carried out using

existing sequential, external memory data cube algorithms.

Balancing the load assigned to di�erent processors and minimizing the com-

munication overhead are the core problems in achieving high performance on

parallel systems. The heart of this paper are two partitioning strategies, one for

top-down and one for bottom-up data cube construction algorithms. Good load

balancing approaches generally make use of application speci�c characteristics.

Our partitioning strategies assign loads to processors by using metrics known to

be crucial to the performance of data cube algorithms [1, 4, 21]. The bottom-up

partitioning strategy balances the number of single attribute external sorts made

by each processor [4]. The top-down strategy partitions a weighted tree in which

weights reect algorithm speci�c cost measures such as estimated group-by sizes

[1, 21].

The advantages of our load balancing methods compared to the previously

published parallel data cube construction methods [13, 14] are:

{ Our methods reduce inter-processor communication overhead by partition-

ing the load in advance instead of computing each individual group-by in

parallel (as proposed in [13, 14]). In fact, after our load distribution phase,

each processor can compute its assigned subcube without any inter-processor

communication.
{ Our methods maximize code reuse from existing sequential data cube imple-

mentations by using existing sequential (external memory) data cube algo-

rithms for the subcube computations on each processor. This supports the

transfer of optimized sequential data cube code to the parallel setting.

Our partitioning approaches are designed for standard, shared disk type, par-

allel machines: p processors connected via an interconnection fabric where the

processors have standard-size local memories and access to a shared disk array.

We have implemented our top-down partitioning strategy in MPI and tested it

on a multiprocessor cluster. We also tested our bottom-up partitioning strategy

through a simulation. Our experimental results indicate that our partitioning

strategies generate close to optimal load balancing. Our tests on the multipro-

cessor cluster showed close to optimal (linear) speedup.

The paper is organized as follows. Section 2 describes the parallel machine

model underlying our partitioning approaches as well as the input and the output

con�guration for our algorithms. Section 3 presents our partitioning approach

for parallel bottom-up data cube generation and Section 4 outlines our method

for parallel top-down data cube generation. In Section 5 we indicate how our

top-down cube parallelization can be easily modi�ed to obtain an e�cient par-

allelization of the ArrayCube method [27]. Section 6 presents the performance

analysis of our partitioning approaches. Section 7 concludes the paper and dis-

cusses possible extensions of our methods.

2 Parallel Computing Model

We use the standard shared disk parallel machine model. That is, we assume p

processors connected via an interconnection fabric where processors have stan-

dard size local memories and concurrent access to a shared disk array. For the

purpose of parallel algorithm design, we use the Coarse Grained Multicomputer

(CGM) model [5, 8, 15, 18, 23]. More precisely, we use the EM-CGM model [6, 7,

9] which is a multi-processor version of Vitter's Parallel Disk Model [24{26].

For our parallel data cube construction methods we assume that the d-

dimensional input data set R of size N is stored on the shared disk array. The

output, i.e. the group-bys comprising the data cube, will be written to the shared

disk array. For the choice of output �le format, it is important to consider the

way in which the data cube will be used in subsequent applications. For example,

if we assume that a visualization application will require fast access to individual

group-bys then we may want to store each group-by in striped format over the

entire disk array.

3 Parallel Bottom-Up Data Cube Construction

In many data cube applications, the underlying data set R is sparse; i.e., N

is much smaller than the number of possible values in the given d-dimensional

space. Bottom-up data cube construction methods aim at computing the data

cube for such cases. Bottom-up methods like BUC [4] and PartitionCube [part of

[20]] calculate the group-bys in an order which emphasizes the reuse of previously

computed sort orders and in-memory sorts through data locality. If the data has

previously been sorted by attribute A then, creating an AB sort order does not

require a complete resorting. A local resorting of A-blocks (blocks of consecutive

elements that have the same attribute A) can be used instead. The sorting of

such A-blocks can often be performed in local memory and, hence, instead of

another external memory sort, the AB order can be created in one single scan

through the disk. Bottom-up methods [4, 20] attempt to break the problem into

a sequence of single attribute sorts which share pre�xes of attributes and can

be performed in local memory with a single disk scan. As outlined in [4, 20], the

total computation time of these methods is dominated by the number of such

single attribute sorts.

In this section we describe a partitioning of the group-by computations into p

independent subproblems. Our goal is to balance the number of single attribute

sorts required to solve each subproblem and to ensure that each subproblem

has overlapping sort sequences in the same way as for the sequential methods

(thereby avoiding additional work).

Let A1, ..., Ad be the attributes of the data cube such that jA1j � jA2j � ...

� jAdj where jAij is the number of di�erent possible values for attribute Ai. As

observed in [20], the set of all groups-bys of the data cube can be partitioned

into those that contain A1 and those that do not contain A1. In our partition-

ing approach, the groups-bys containing A1 will be sorted by A1. We indicate

this by saying that they contain A1 as a pre�x. The group-bys not containing

A1 (i.e., A1 is projected out) contain A1 as a post�x. We then recurse with the

same scheme on the remaining attributes. We shall utilize this property to parti-

tion the computation of all group-bys into independent subproblems computing

group-bys. The load between subproblems will be balanced and they will have

overlapping sort sequences in the same way as for the sequential methods. In the

following we give the details of our partitioning method.

Let x, y, z be sequences of attributes representing sort orders and let A be

an arbitrary single attribute. We introduce the following de�nition of sets of

attribute sequences representing sort orders (and their respective group-bys):

B1(x;A; z) = fx; xAg (1)

Bi(x;Ay; z) = Bi�1(xA; y; z) [Bi�1(x; y; Az); 2 � i � log p+ 1 (2)

The entire data cube construction corresponds to the set Bd(;; A1 : : : Ad; ;) of
sort orders and respective group-bys, where d is the dimension of the the data

cube. We refer to i as the rank of Bi(: : :). The set Bd(;; A1 : : : Ad; ;) is the union
of two subsets of rank d � 1: Bd�1(A1; A2 : : : Ad; ;) and Bd�1(;; A2 : : : Ad; A1).

These, in turn, are the union of four subsets of rank d� 2. A complete example

for a 4-dimensional data cube with attributes A, B, C, D is shown in Figure 1.

B4(;; ABCD; ;) B3(;; BCD;A) B2(;; CD;BA) B1(;; D; CBA) = f;; Dg
B1(C;D;BA) = fC; CDg

B2(B;CD;A) B1(B;D; CA) = fB;BDg
B1(BC;D;A) = fBC;BCDg

B3(A;BCD; ;) B2(A;CD;B) B1(A;D;CB) = fA;ADg
B1(AC;D;B) = fAC;ACDg

B2(AB;CD; ;) B1(AB;D;C) = fAB;ABDg
B1(ABC;D; ;) = fABC;ABCDg

Fig. 1. Partitioning For A 4-Dimensional Data Cube With Attributes A, B, C, D.

For the sake of simplifying the discussion, we assume that p is a power of

2. Consider the 2p B-sets of rank d � log2(p) � 1. Let � = (B1
; B

2
; : : : B

2p) be

these 2p sets in the order de�ned by Equation (2). De�ne

Shu�e(�) =< B
1 [B

2p
; B

2 [B
2p�1

; B
3 [B

2p�2
; : : : ; B

p [B
p+1

>

=< �1; : : : ; �p >

We assign set �i = B
i [B

2p�i+1 to processor Pi, 1 � i � p. Observe that

from the construction of all group-bys in each �i it follows that every processor

performs the same number of single attribute sorts.

Algorithm 1 Parallel Bottom-Up Cube Construction.

Each processor Pi, 1 � i � p, performs the following steps, independently

and in parallel:

(1) Calculate �i as described above.

(2) Compute all group-bys in �i using a sequential (external-memory)

bottom-up cube construction method.

| End of Algorithm |

Algorithm 1 can easily be generalized to values of p which are not powers

of 2. We also note that Algorithm 1 requires p � 2d�1. This is usually the case

in practice. However, if a parallel algorithm is needed for larger values of p,

the partitioning strategy needs to be augmented. Such an augmentation could,

for example, be a partitioning strategy based on the number of data items for

a particular attribute. This would be applied after partitioning based on the

number of attributes has been done. Since the range p 2 f20 : : : 2d�1g covers

current needs with respect to machine and dimension sizes, we do not further

discuss such augmentations in this paper.

Algorithm 1 exhibits the following properties:

(a) The computation of each group-by is assigned to a unique processor.

(b) The calculation of the group-bys in �i, assigned to processor Pi, requires the

same number of single attribute sorts for all 1 � i � p.

(c) The sorts performed at processor Pi share pre�xes of attributes in the same

way as in [4, 20] and can be performed with disk scans in the same manner

as in [4, 20].

(d) The algorithm requires no inter-processor communication.

These four properties are the basis of our argument that our partitioning ap-

proach is load balanced and communication e�cient. In Section 6, we will also

present an experimental analysis of the performance of our method.

4 Parallel Top-Down Data Cube Construction

Top-down approaches for computing the data cube, like the sequential PipeSort,

Pipe Hash, and Overlap methods [1, 10, 21], use more detailed group-bys to com-

pute less detailed ones that contain a subset of the attributes of the former. They

apply to data sets where the number of data items in a group-by can shrink con-

siderably as the number of attributes decreases (data reduction). A group-by

is called a child of some parent group-by if the child can be computed from

the parent by aggregating some of its attributes. This induces a partial order-

ing of the group-bys, called the lattice. An example of a 4-dimensional lattice

is shown in Figure 2, where A, B, C, and D are the four di�erent attributes.

The PipeSort, PipeHash, and Overlap methods select a spanning tree T of the

lattice, rooted at the group-by containing all attributes. PipeSort considers two

cases of parent-child relationships. If the ordered attributes of the child are a

pre�x of the ordered attributes of the parent (e.g., ABCD ! ABC) then a sim-

ple scan is su�cient to create the child from the parent. Otherwise, a sort is

required to create the child. PipeSort seeks to minimize the total computation

cost by computing minimum cost matchings between successive layers of the lat-

tice. PipeHash uses hash tables instead of sorting. Overlap attempts to reduce

sort time by utilizing the fact that overlapping sort orders do not always require

a complete new sort. For example, the ABC group-by has A partitions that can

be sorted independently on C to produce the AC sort order. This may allow to

perform these independent sorts in memory rather than using external memory

sort.

ABCD

ABC ABD ACD BCD

AB AC AD BC BD CD

A B C D

all

Fig. 2. A 4-Dimensional Lattice.

Next, we outline a partitioning approach which generates p independent

subproblems, each of which can be solved by one processor using an existing

external-memory top-down cube algorithm. The �rst step of our algorithm de-

termines a spanning tree T of the lattice by using one of the existing approaches

like PipeSort, PipeHash, and Overlap, respectively. To balance the load between

the di�erent processors we next perform a storage estimation to determine ap-

proximate sizes of the group-bys in T . This can be done, for example, by using

methods described in [11] and [22]. We now work with a weighted tree. The

most crucial part of our solution is the partitioning of the tree. The partition-

ing of T into subtrees induces a partitioning of the data cube problem into p

subproblems (subsets of group-bys). Determining an optimal partitioning of the

weighted tree is easily shown to be an NP-complete problem (by making, for

example, a reduction to p processor scheduling). Since the weights of the tree

represent estimates, a heuristic approach which generates p subproblems with

\some control" over the sizes of the subproblems holds the most promise. While

we want the sizes of the p subproblems balanced, we also want to minimize the

number of subtrees assigned to a processor. Every subtree may require a scan-

ning of the entire data set R and thus too many subtrees can result in poor IO

performance. The solution we develop balances these two considerations.

Our heuristics makes use of a related partitioning problem on trees for which

e�cient algorithms exist, the min-max tree k-partitioning problem [3].

De�nition 1. Min-max tree k-partitioning: Given a tree T with n vertices and

a positive weight assigned to each vertex, delete k edges in the tree such that the

largest total weight of a resulting subtree is minimized.

The min-max tree k-partitioning problem has been studied in [3, 12, 19], and

an O(n) time algorithm has been presented in [12]. A min-max k-partitioning

does not necessarily compute a partitioning of T into subtrees of equal size and

it does not address tradeo�s arising from the number of subtrees assigned to

a processor. We use tree-partitioning as a preprocessing step for our partition-

ing. To achieve a better distribution of the load we apply an over partitioning

strategy: instead of partitioning the tree T into p subtrees, we partition it into

s� p subtrees, where s is an integer, s � 1. Then, we use a \packing heuristic"

to determine which subtrees belong to which processors, assigning s subtrees

to every processor. Our packing heuristic considers the weights of the subtrees

and pairs subtrees by weights to control the number of subtrees. It consists of s

matching phases in which the p largest subtrees (or groups of subtrees) and the

p smallest subtrees (or groups of subtrees) are matched up. Details are described

in Step 2b of Algorithm 2.

Algorithm 2 Sequential Tree-partition(T , s, p).

Input: A spanning tree T of the lattice with positive weights assigned to the

nodes (representing the cost to build each node from it's ancestor in T). Integer

parameters s (oversampling ratio) and p (number of processors).

Output: A partitioning of T into p subsets �1; : : : ; �p of s subtrees each.

(1) Compute a min-max tree s � p -partitioning of T into s � p subtrees

T1; : : : ; Ts�p.

(2) Distribute subtrees T1; : : : ; Ts�p among the p subsets �1; : : : ; �p, s subtrees

per subset, as follows:
(2a) Create s � p sets of trees named �i, 1 � i � sp, where initially

�i = fTig. The weight of �i is de�ned as the total weight of the trees

in �i.
(2b) For j = 1 to s� 1

� Sort the � -sets by weight, in increasing order. W.l.o.g., let �1 ,

: : : , �sp�(j�1)p be the resulting sequence.
� Set �i := �i [�sp�(j�1)p�i+1, 1 � i � p.
� Remove �sp�(j�1)p�i+1 , 1 � i � p.

(2c) Set �i = �i, 1 � i � p.

| End of Algorithm |

The above tree partition algorithm is embedded into our parallel top-down

data cube construction algorithm. Our method provides a framework for paral-

lelizing any sequential top-down data cube algorithm. An outline of our approach

is given in the following Algorithm 3.

Algorithm 3 Parallel Top-Down Cube Construction.

Each processor Pi, 1 � i � p, performs the following steps independently

and in parallel:

(1) Select a sequential top-down cube construction method (e.g., PipeSort,

PipeHash, or Overlap) and compute the spanning tree T of the lattice

as used by this method.

(2) Apply the storage estimation method in [22] and [11] to determine the

approximate sizes of all group-bys in T . Compute the weight of each

node of T ; i.e., the cost to build each node from it's ancestor in T .

(3) Execute Algorithm Tree-partition(T , s, p) as shown above, creating

p sets �1, : : :, �p. Each set �i contains s subtrees of T .

(4) Compute all group-bys in subset �i using the sequential top-down

cube construction method chosen in Step 1.

| End of Algorithm |

Our performance results described in Section 6 show that an over partitioning

with s = 2 or 3 achieves very good results with respect to balancing the loads

assigned to the processors. This is an important result since a small value of s

is crucial for optimizing performance.

5 Parallel Array-Based Data Cube Construction

Our method in Section 4 can be easily modi�ed to obtain an e�cient paral-

lelization of the ArrayCube method presented in [27]. The ArrayCube method is

aimed at dense data cubes and structures the raw data set in a d-dimensional

array stored on disk as a sequence of \chunks". Chunking is a way to divide the

d-dimensional array into small size d-dimensional chunks where each chunk is a

portion containing a data set that �ts into a disk block. When a �xed sequence

of such chunks is stored on disk, the calculation of each group-by requires a cer-

tain amount of bu�er space [27]. The ArrayCube method calculates a minimum

memory spanning tree of group-bys, MMST, which is a spanning tree of the

lattice such that the total amount of bu�er space required is minimized. The

total number of disk scans required for the computation of all group-bys is the

total amount of bu�er space required divided by the memory space available.

The ArrayCube method can now be parallelized by simply applying Algorithm 3

with T being the MMST. More details will be given in the full version of this

paper.

6 Experimental Performance Analysis

We have implemented and tested our parallel top-down data cube construction

method presented in Section 4. We implemented sequential pipesort [1] in C++,

and our parallel top-down data cube construction method (Section 4) in C++

with MPI [2]. As parallel hardware platform, we use a 9-node cluster. One node

is used as the root node, to partition the lattice and distribute the work among

the other 8 machines which we refer to as compute nodes. The root is an IBM

Net�nity server with two 9-G scsi disks, 512 MB of Ram and a 550-MHZ Pentium

processor. The compute nodes are 133 MHZ Pentium processors, with 2G IDE

hard drives and 32 MB of RAM. The processors run LINUX and are connected

via a 100 Mbit Fast Ethernet switch with full wire speed on all ports.

1 2 3 4 5 6 7 8
0

200

400

600

800

1000

1200

1400

max_time

optimal

avg_time

t/s

compute nodes (processors)

Fig. 3. Running Time (in seconds) As A Function Of The Number of Compute Nodes

(Processors)

Figure 3 shows the running time observed (in seconds) as a function of the

number of compute nodes used. For the same data set, we measured the sequen-

tial time (sequential pipesort [1]) and the parallel time obtained through our

parallel top-down data cube construction method (Section 4), using an oversam-

pling ratio of s = 2. The data set consisted of 100,000 records with dimension

6. The attribute cardinalities for dimensions 1 to 6 where 5, 15, 500, 20, 1000,

and 2, respectively. Our test data values were sparse and uniformly distributed.

Figure 3 shows the running times (in seconds) of the algorithm as we increase

the number of compute nodes. There are three curves shown. Max-time is the

time taken by the slowest compute node (i.e. the node that received the largest

workload). Avg-time is the average time taken by the compute nodes. The time

taken by the root node, to partition the lattice and distribute the work among

the compute nodes, was insigni�cant. The optimal time shown in Figure 3 is the

sequential pipesort time divided by the number of compute nodes (processors)

used.

We observe that the max-time and optimal curves are essentially identical.

That is, for an oversampling ratio of s = 2, the speedup observed is very close

to optimal.

Note that, the di�erence between max-time and avg-time represents the load

imbalance created by our partitioning method. As expected, the di�erence grows

with increasing number of processors. However, we observed that a good part

of this growth can be attributed to the estimation of the cube sizes used in

the tree partitioning. We are currently experimenting with improved estimators

which appear to improve the result. Interestingly, the avg-time curve is below

the optimal curve, while the max-time and optimal curves are essentially identi-

cal. One would have expected that the optimal and avg-time curves are similar

and that the max-time curve is slightly above. We believe that this is caused by

another e�ect which bene�ts our parallel method: improved I/O. When sequen-

tial pipesort is applied to a 10 dimensional data set, the lattice is partitioned

into pipes of length up to 10. In order to process a pipe of length 10, pipesort

needs to write to 10 open �les at the same time. It appears that the number of

open �les can have a considerable impact on performance. For 100,000 records,

writing them to 4 �les took 8 seconds on our system. Writing them to 6 �les

took 23 seconds, not 12, and writing them to 8 �les took 48 seconds, not 16. This

bene�ts our parallel method, since we partition the lattice �rst and then apply

pipesort to each part. Therefore, the pipes generated in the parallel method are

considerably shorter.

0 100 200 300 400 500 600 700 800 900 1000
1

10

100

1000

10000

max_time

avg_time

t/s

data size (number of rows / 1000)

Fig. 4. Running Time (in seconds) As A Function Of The Size Of The Data Set

(number of rows / 1000)

Figure 4 shows the running times (in seconds) of our top-down data cube

parallelization as we increase the data size from 100,000 to 1,000,000 rows. Note

that, the scale is logarithmic. The main observation is that the parallel running

time (max-time) increases essentially linear with respect to the data size.

Figure 5 shows the running times as a function of the oversampling ratio s.

We observe that the parallel running time (i.e., max � time) is best for s = 3.

This is due to the following tradeo�. Clearly, the workload balance improves as

s increases. However, as the total number of subtrees, s � p, generated in the

tree partitioning algorithm increases, we need to perform more sorts for the root

nodes of these subtrees. The optimal tradeo� point for our test case is s = 3.

1 2 3 4

0

25

50

75

100

125

150

175

200

225

max_time

avg_time

t/s

oversampling ratio (s)

Fig. 5. Running Time (in seconds) As A Function Of The Oversampling Ratio (s)

Figure 6 shows the running times (in seconds) of our top-down data cube

parallelization as we increase the dimension of the data set from 2 to 10. Note

that, the number of group-bys to be computed grows exponentially with respect

to the dimension of the data set. In Figure 6, we observe that the parallel running

time grows essentially linear with respect to the output. We also executed our

parallel algorithm for a 15-dimensional data set of 10,000 rows, and the resulting

data cube was of size more than 1G.

2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

3000

3500

4000

4500

t/s

dimensions

Fig. 6. Running Time (in seconds) As A Function Of The Number Of Dimensions Of

The Data Set.

Simulation results for our bottom-up data cube parallelization in Section 3 are

shown in Figure 7. For this method we have so far measured its load balancing

characteristics through simulation only. As indicated in [4, 20], the main indicator

for the load generated by a bottom-up data cube computation is the number

of single attribute sorts. Our partitioning method in Section 3 for bottom-up

data cube parallelization does in fact guarantee that the subcube computations

assigned to the individual processor do all require exactly the same number

of single attribute sorts. There are no heuristics (like oversampling) involved.

Therefore, what we have measured in our simulation is whether the output sizes

of the subcube computations assigned to the processors are balanced as well. The

results are shown in Figure 7. The x-axis represents the number of processors

p 2 f2; : : : ; 64g and the y-axis represents the largest output size as a percentage

of the total data cube size. The two curves shown are the largest output size

measured for a processor and the optimal value (total data cube size / number of

processors). Five experiments were used to generate each data point. We observe

that the actual values are very close to the optimal values. The main result is

that our partitioning method in Section 3 not only balances the number of single

attribute sorts but also the sizes of the subcubes generated on each processor.

0

50%

2 4 8 16 32 64 128

Number of processors

M
ax

 s
iz

e

Optimal Size
Actual Size

25%

Fig. 7. Bottom-Up Cube. Maximum Output Size For One Processor As Percentage Of

Total Data Cube Size.

7 Conclusion

We presented two di�erent, partitioning based, data cube parallelizations for

standard shared disk type parallel machines. Our partitioning strategies for

bottom-up and top-down data cube parallelization balance the loads assigned to

the individual processors, where the loads are measured as de�ned by the origi-

nal proponents of the respective sequential methods. Subcube computations are

carried out using existing sequential data cube algorithms. Our top-down parti-

tioning strategy can also be easily extended to parallelize the ArrayCube method.

Experimental results indicate that our partitioning methods produce well bal-

anced data cube parallelizations. Compared to existing parallel data cube meth-

ods, our parallelization approach brings a signi�cant reduction in inter-processor

communication and has the important practical bene�t of enabling the re-use of

existing sequential data cube code.

A possible extension of our data cube parallelization methods is to consider

a shared nothing parallel machine model. If it is possible to store a duplicate of

the input data set R on each processor's disk, then our method can be easily

adapted for such an architecture. This is clearly not always possible. It does solve

most of those cases where the total output size is considerably larger than the

input data set; for example sparse data cube computations. In fact, we applied

this strategy for our implementation presented in Section 6. As reported in [20],

the data cube can be several hundred times as large as R. Su�cient total disk

space is necessary to store the output (as one single copy distributed over the

di�erent disks) and a p times duplication of R may be smaller than the output.

Our data cube paralelization method would then partition the problem in the

same way as described in Sections 3 and 4, and subcube computations would be

assigned to processors in the same way as well. When computing its subcube,

each processor would read R from its local disk. For the output, there are two

alternatives. Since the output data sizes are well balanced, each processor could

simply write the subcubes generated to its local disk. This could, however, create

a bottleneck if there is, for example, a visualization application following the data

cube construction which needs to read a single group-by. In such a case, each

group-by should be distributed over all disks, for example in striped format. To

obtain such a data distribution, all processors would not write their subcubes

directly to their local disks but bu�er their output. Whenever the bu�ers are

full, they would be permuted over the network. In summary we observe that,

while our approach is aimed at shared disk parallel machines, its applicability

to shared nothing parallel machines depends mainly on the distribution and

availability of the input data set R. We are currently considering the problem

of identifying the \ideal" distribution of input R among the p processors when

a �xed amount of replication of the input data is allowed (i.e., R can be copied

r times, 1 � r < p).

8 Acknowledgements

The authors would like to thank Steven Blimkie, Khoi Manh Nguyen, and Sug-

anthan Sivagnanasundaram for their contributions towards the implementation

described in Section 6. The �rst, second, and fourth author's research was par-

tially supported by the Natural Sciences and Engineering Research Council of

Canada. The third author's research was partially supported by the National

Science Foundation under Grant 9988339-CCR.

References

1. S. Agarwal, R. Agarwal, P.M. Deshpande, A. Gupta, J.F. Naughton, R. Ramakr-

ishnan, and S. Srawagi. On the computation of multi-dimensional aggregates. In

Proc. 22nd VLDB Conf., pages 506{521, 1996.

2. Argonne National Laboratory, http://www-unix.mcs.anl.gov/mpi/index.html. The

Message Passing Interface (MPI) standard.

3. R.I. Becker, Y. Perl, and S.R. Schach. A shifting algorithm for min-max tree

partitioning. J. ACM, (29):58{67, 1982.

4. K. Beyer and R. Ramakrishnan. Bottom-up computation of sparse and iceberg

cubes. In Proc. of 1999 ACM SIGMOD Conference on Management of data, pages

359{370, 1999.

5. T. Cheatham, A. Fahmy, D. C. Stefanescu, and L. G. Valiant. Bulk synchronous

parallel computing - A paradigm for transportable software. In Proc. of the 28th

Hawaii International Conference on System Sciences. Vol. 2: Software Technology,

pages 268{275, 1995.

6. F. Dehne, W. Dittrich, and D. Hutchinson. E�cient external memory algorithms

by simulating coarse-grained parallel algorithms. In Proc. 9th ACM Symposium

on Parallel Algorithms and Architectures (SPAA'97), pages 106{115, 1997.

7. F. Dehne, W. Dittrich, D. Hutchinson, and A. Maheshwari. Parallel virtual mem-

ory. In Proc. 10th Annual ACM-SIAM Symposium on Discrete Algorithms, pages

889{890, 1999.

8. F. Dehne, A. Fabri, and A. Rau-Chaplin. Scalable parallel computational geometry

for coarse grained multicomputers. In ACM Symp. Computational Geometry, pages

298{307, 1993.

9. F. Dehne, D. Hutchinson, and A. Maheshwari. Reducing i/o complexity by sim-

ulating coarse grained parallel algorithms. In Proc. 13th International Parallel

Processing Symposium (IPPS'99), pages 14{20, 1999.

10. P.M. Deshpande, S. Agarwal, J.F. Naughton, and R Ramakrishnan. Computation

of multidimensional aggregates. Technical Report 1314, University of Wisconsin,

Madison, 1996.

11. P. Flajolet and G.N. Martin. Probablistic counting algorithms for database appli-

cations. Journal of Computer and System Sciences, 31(2):182{209, 1985.

12. G.N. Frederickson. Optimal algorithms for tree partitioning. In Proc. ACM-SIAM

Symposium on Discrete Algorithms (SODA), pages 168{177, 1991.

13. S. Goil and A. Choudhary. High performance OLAP and data mining on parallel

computers. Journal of Data Mining and Knowledge Discovery, 1(4), 1997.
14. S. Goil and A. Choudhary. A parallel scalable infrastructure for OLAP and data

mining. In Proc. International Data Engineering and Applications Symposium

(IDEAS'99), Montreal, August 1999.

15. M. Goudreau, K. Lang, S. Rao, T. Suel, and T. Tsantilas. Towards e�ciency and

portability: Programming with the BSP model. In Proc. 8th ACM Symposium on

Parallel Algorithms and Architectures (SPAA '96), pages 1{12, 1996.

16. J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pel-

low, and H. Pirahesh. Data cube: A relational aggregation operator generalizing

group-by, cross-tab, and sub-totals. J. Data Mining and Knowledge Discovery,

1(1):29{53, April 1997.

17. V. Harinarayan, A. Rajaraman, and J.D. Ullman. Implementing data cubes e�-

ciently. SIGMOD Record (ACM Special Interest Group on Management of Data),

25(2):205{216, 1996.

18. J. Hill, B. McColl, D. Stefanescu, M. Goudreau, K. Lang, S. Rao, T. Suel, T. Tsan-

tilas, and R. Bisseling. BSPlib: The BSP programming library. Parallel Computing,

24(14):1947{1980, December 1998.

19. Y. Perl and U. Vishkin. E�cient implementation of a shifting algorithm. Disc.

Appl. Math., (12):71{80, 1985.

20. K.A. Ross and D. Srivastava. Fast computation of sparse datacubes. In Proc. 23rd

VLDB Conference, pages 116{125, 1997.

21. S. Sarawagi, R. Agrawal, and A. Gupta. On computing the data cube. Technical

Report RJ10026, IBM Almaden Research Center, San Jose, CA, 1996.

22. A. Shukla, P. Deshpende, J.F. Naughton, and K. Ramasamy. Storage estimation

for mutlidimensional aggregates in the presence of hierarchies. In Proc. 22nd VLDB

Conference, pages 522{531, 1996.

23. J.F. Sibeyn and M. Kaufmann. BSP-like external-memory computation. In Proc.

of 3rd Italian Conf. on Algorithms and Complexity (CIAC-97), volume LNCS 1203,

pages 229{240. Springer, 1997.

24. D.E. Vengro� and J.S. Vitter. I/o-e�cient scienti�c computation using tpie. In

Proc. Goddard Conference on Mass Storage Systems and Technologies, pages 553{

570, 1996.

25. J.S. Vitter. External memory algorithms. In Proc. 17th ACM Symp. on Principles

of Database Systems (PODS '98), pages 119{128, 1998.

26. J.S. Vitter and E.A.M. Shriver. Algorithms for parallel memory. i: Two-level mem-

ories. Algorithmica, 12(2-3):110{147, 1994.

27. Y. Zhao, P.M. Deshpande, and J.F.Naughton. An array-based algorithm for si-

multaneous multidimensional aggregates. In Proc. ACM SIGMOD Conf., pages

159{170, 1997.

