
Parallel Computation on Interval Graphs
Using PC Clusters: Algorithms and Experiments

A. Ferreira 1, I. Gu~rin Lassous 2, K. Marcus 3 and A. Rau-Chapl in 4

1 CNRS, INRIA, Projet SLOOP, BP 93, 06902 Sophia Antipolis, France.
f e r r e i r a~soph ia , i n r i a . f r .

2 LIAFA - Universit~ Paris 7, Case 7014, 2, place Jussieu, F-75251 Paris Cedex 05.
gue r in r juss ieu , f r .

3 Eurecom, 2229, route des Cretes - BP 193, 06901 Sophia Antipolis cedex - France.
marcus@eurecom, f r .

4 Faculty of Computer Science, Dalhousie University, P.O. Box 1000, Halifax, NS,
Canada B3J 2X4. arc~lcs.dal, ca.

Abs t r ac t . The use of PC clusters interconnected by high performance
local networks is one of the major current trends in parallel/distributed
computing. We give coarse-grained, BSP-like, parallel algorithms to solve
many problems arising in the context of interval graphs, namely con-
nected components, maximum weighted clique, BFS and DFS trees, min-
imum interval covering, maximum independent set and minimum dom-
inating set. All of the described p-processor parallel algorithms require
only constant or O(logp) number of communication rounds and are effi-
cient in practice, as demonstrated by our experimental results obtained
on a Fast Ethernet based PC cluster.

1 I n t r o d u c t i o n

The use of PC clusters interconnected by high performance local networks with
raw throughput close to 1Gb/s and latency smaller than 10#s is one of the
major current trends in paral lel /distr ibuted computing. The local networks are
either realized with off-the-shelf hardware (e.g. Myrinet and Fast Ethernet) , or
application-driven devices, in which case additional functionalities are built-in,
mainly at the memory access level. Such cluster-based machines (called hence-
forth PCC's) typically utilize some flavour of Unix and any number of widely
available software packages that support multi- threading, collective communi-
cation, au tomat ic load-balance, and others. Note that such packages typically
simplify the programmers task by both providing new functionality and by pro-
mot ing a view of the cluster as a single virtual machine. Clusters based on
off-the-shelf hardware can yield effective parallel systems for a fraction of the
price of machines using special purpose hardware. This kind of progress may
thus be the key to a much wider acceptance of parallel computing, tha t has been
postponed so far, perhaps primarily due to issues of cost and complexity.

Although a great deal of effort has been undertaken on system-level and pro-
g ramming environment issues as described above, little at tention has been paid
to methodologies for the design of algorithms for this kind of parallel systems.

876

Despite the availability of a large number of built-in and/or highly optimized
procedures, algorithms are still designed at the machine level and claims to
portability lay only on the fact that they are implemented using communication
libraries such as PVM or MPI.

In this paper we show that theoretical (BSP-like) coarse-grained models are
well adapted to PCC's. In particular, algorithms designed for such models are
portable and their theoretical and practical performance are closely related. Fur-
thermore, they allow a reduction on the costs associated with software develop-
ment since the main design paradigm is the use of existing sequential algorithms
and communication sub-routines, usually provided with the systems.

Our approach will be to study a class of problems from the start of the
algorithm design task until the implementation of the algorithms on a PCC.
The class of problems will be those arising on a family of intervals on the real
line which can model a number of applications in scheduling, circuit design,
traffic control, genetics, and others [16].

P r e v i o u s W o r k

This class of problems has been studied extensively in the parallel setting and
many work-optimal fine-grained PRAM algorithms have been described in the
literature [3, 14, 15, 16]. Their sequential complexity is O(n log n) in all cases.

Whereas fine-grained PRAM algorithms are likely to be efficient on fine-
grained shared memory architectures, it is common knowledge that they tend to
be impractical on PCC's due to their failure to exploit locality. Therefore, there
has been a recent growth of interest in coarse-grained computational models
[4, 5, 18] and the design of coarse-grained algorithms [5, 6, 8, 10, 13].

The BSP model, described by Valiant [18], uses slackness in the number of
processors and memory mapping via hash functions to hide communication la-
tency and provide for the efficient execution of fine grained PRAM algorithms
on coarse-grained hardware. Culler et. al. introduced the LogP model which, us-
ing Valiant's BSP model as a starting point, focuses on the technological trend
from fine grained parallel machines towards coarse-grained systems and advo-
cates portable parallel algorithm design [4]. Other coarse grained models focus
more on utilizing local computation and minimizing global operations. These
include the Coarse-Grained Multicomputer (CGM(n,p)) model used in this pa-
per [5], where n is the input size and p the number of processing elements. In
this mixed sequential/parallel setting, there are three important measures of any
coarse-grained algorithm, namely, the amount of local computation required, the
number and type of global communication phases required and the scalability of
the algorithm, that is, the range of values for the ratio p for which the algorithm
is efficient and applicable. We refer to [5, 9, 10] for more details on this model.

Recently, Cgceres et al. [2] showed that many problems in general graphs,
such as list ranking, connected components and others, can be solved in O(logp)
communication rounds in BSP and CGM. However, unlike general graphs, inter-
val graphs can be more easily partitioned and treated in the distributed memory
setting. Since each interval is given by its two extreme points, they can be sorted

877

by left and/or right endpoints and distributed according to this ordering. This
partit ioning allows us to design less complex parallel algorithms; moreover, the
derived algorithms are easier to implement and faster both in theory and in
practice.

The following result will be used in the remaining to achieve a constant
number of communication rounds in the solution of many problems.

T h e o r e m l . [13] Given a set S of n items stored O(n/p) per processor on a
CGM(n,p) , n / p >_ p, sorting S takes a constant number of communication
rounds. []

The algorithms proposed for the CGM are independent of the communica-
tion network. Moreover, it was proved that the main collective communication
operations can be implemented by a constant number of calls to global sort ([5]).
Hence, by Theorem 1, these operations take a constant number of communica-
tion rounds. However, in practice these operations will be implemented through
built-in, optimized system-level routines. In the remainder, let Ts (n ,p) denote
the time complexity of a global sort in the CGM.

O u r W o r k

We describe constant communication round coarse-grained parallel algorithms to
solve a set of the standard problems arising in the context of interval graphs [16],
namely connected components [3], maximum weighted clique [15] and breadth-
first-search (BFS) and depth-first-search (I)FS) trees [14]. We also propose O(log p)
communication round algorithms for optimization problems as minimum interval
covering, maximum independent set [15] and minimum dominating set [17].

In order to demonstrate the practicability of our approach, we implemented
three of the above algorithms on a PCC interconnected by a Fast Ethernet back-
bone. Because of the paradigms used, the programs were easy to develop and are
quite portable. The results presented in this paper show that high performance
can be achieved with off-the-shelf PCC's along with the right model for algo-
r i thm design. Interestingly, super-linear speedups were observed in some cases
due to memory swapping effects. Using multiple processors allows us to effec-
tively utilize more RAM and therefore Mlows computat ion on data sets that are
simply too large to be effectively processed on single processor machines.

In Section 2 the required basic operations are described. Then, in Section 3,
chosen problems in interval family model are presented, and solutions are pro-
posed using the basic operations from Section 2. In Section 4, we describe exper-
iments on a Fast Ethernet based PCC. We close the paper with some conclusions
and directions for further research.

2 Basic Operations

In the CGM model, any parallel prefix (suffix) associative function to be per-
formed in an array of elements can be done in O(1) communication steps, since

878

each processor can compute locally the function, and then with a total exchange
all the processors get to know the partial result of all the other processors and
can compute the final result for each element in the array.

We will i s o use the pointer-jump operation, to identify the elements in a
linked list. This operation can be easily done in O(logp) communication steps,
at each step each processor keeps track of the pointers of its elements.

2.1 Interval Operations

In the following algorithms two functions will be widely used, the Ominright
and Omaxright [1]. Given an interval I, Omaxvight([) (Ominright(I)) denotes,
among all intervals that intersect I, the one whose right endpoint is the furthest
right (left). The formal definition is the following.

Ornaxright(Ii) = f / j ' if bj = max{bk[ak < bi < bk}
[nil, otherwise�9

The function Omaxright can be computed with time complexity O(Ts (n, p)),
as follows.

I. Sort the left endpoints of the interval in ascending order as
I ! . . a!

2. Compute t h e p r e f i x maxima of t h e c o r r e s p o n d i n g s equence b~,b2,.' .. ,b,~' of
H H H r i g h t e n d p o i n t s and l e t t he r e s u l t be b i , b 2 , . . . , b ~ .

(b" = a _ _ ' k In X l < i < k { b i } .)
3. For eve ry i (1 < i _< n) compute t h e r a n k r(i) of bi w i t h r e s p e c t to

!

a ~ , 4 ,aN
H 4. For eve ry i (1 < i < n) , s e t O m a x r i g h t (I i) = I j , such t h a t bj = br(i) and

H . bl :~ b~(~), o t h e r w i s e s e t Omaxright (I~) = n i l .

We define also the parameter First(Z) as the segment I which "ends first",
that is, whose right endpoint is the furthest left:

First(Z) = / j , with bj = min{b~ll < i < n}.

To compute it, we need only to compute the minimum of the sequence of
right endpoints of intervals in the family Z.

Finally, we will use the function next(I) : Z --+ Z defined as

f 6 , if bj = min{bk]bi < ak}, next (Ii) [nil, otherwise.

Tha t is, nezt(I i) is the interval that ends farthest to the left among all the
intervals beginning after the end of Ii. To compute next(/ /) , 1 < i < n, we use
the same algorithm used for Omaxright(Ii), with a new step 2.

i. Sort the left endpoints of the interval in ascending order as
a~,a '2 , . . '

�9 ~a n .

879

bl, b2, �9 �9 of 2. Compute the suffix minima of the corresponding sequence ' ' .,b"

bl ,b2, . . . ,b~. right endpoints and let the result be " " "

(b~ = mink_<i<n{b~}.)
3. For every i (1 _< i _< n) compute the rank r(i) of bi with respec t to

! ! !

(II~C~2~...~a n
4. For every i (I < i < n), set Ncxt(li) = Ij, such that bj = b'r'(,) and bi

hi(i) ; otherwise set Next(Ii) -~ rtil.

It is easy to see that the above procedure implements the definition of
next(I/) , with the same complexity as for computing Omaxright(Ii).

3 I n t e r v a l G r a p h P r o b l e m s a n d A l g o r i t h m s

Formally, given a set n of intervals Z = {I1, I 2 , . . . , IN} on a line, the correspond-
ing interval graph G = (V, E) has the set of nodes V = {Vl , . . . , v~}, and there
is an edge in E between nodes vi, vj if and only if Ii f3 Ij 7k ~.

In this section, solutions for some important problems in interval graphs are
proposed for the CGM model. Some of these algorithms use techniques derived
from their corresponding PRAM algorithms while others require different meth-
ods, e.g. to compute the connected components, as shown below.

3.1 M a x i m u m W e i g h t e d C l ique

A clique is a set of nodes that are mutuMly adjacent. In the maximum weighted
clique problem for an interval graph, we want to know the maximum weight of
such a set, given weights p(I 0 > 0 on the intervals, and identify a maximum
weighted clique by marking its nodes. The CGM algorithm is as follows:

I. Sort the endpoints of the segments such that each processor receives

2n/p endpoint s.

2. Assign to each endpoint ci a weight wi defined by

f p (t j) , i f ci = a j , f o r some 1 _<j < n ,
w, = [_ p (5) , i f c i=bj , fo r some l_< j < n ,

3. Compute the prefix sum of the resulting weighted sequence - the

maximum obtained is the cardinality of a maximum clique; let

dl,...,d2n denote the resulting sequence.

4. Consider the sequence el,...,v2n obtained by replacing every dj corre-

sponding to a right endpoint of an interval with -I and compute the

rightmost maximum of the resulting sequence; this occurs at ak.

5. Broadcast ak. Every interval Iu such that au < ak < bu is marked to be

in the final maximum weighted clique.

Due to space limitations, the correctness and the complexity of the algorithm
can be found in [7].

T h e o r e m 2. The maximum weighted clique problem in an interval graph of size
n can be solved on a CGM(n,p) in O(Ts(n,p) + n/p) time, with a constant
number of communication rounds. []

880

3.2 C o n n e c t e d C o m p o n e n t s

The connected components of a graph G are the maximal connected subgraphs
of G. The connected components problem consists of assigning to each node the
label of the connected component that contains it. For the CGM(n,p) we have
the following algorithm:

I. Sort the intervals by left endpoints distributing n/p elements to
each processor.

2. Each processor Pi computes the connected components for the subgraph

corresponding to its n/p intervals, giving labels to the components

and associating the labels to the nodes.

3. Each processor detects the farthest right segment amongst its n/p in-
tervals - tail ti - and broadcasts it (with its label) to all other

processors.

4. Each processor checks if any of the tails intersects its components,

and updates its local labels using in each case the smallest such new

label.

5. Each processor Pi records the pair (ti, new label) and sends it to

processor P0.

6. Processor Po performs a connected components algorithm on the tails

and updates the tail labels using the smallest such new labels and

sends

the tails and their new labels to all processors.

7. Each processor updates the labeling accordingly.

Due to space limitations, the correctness and the complexity of the Mgorithm
can be found in [7].

T h e o r e m 3. The connected components problem in interval graphs can be solved
on a CaM(n,p) in O(Ts(n,p) + n/p) time, with a constant number of commu-
nication rounds. []

3.3 B F S a n d D F S Tree

The problem of finding a Breadth First Search Tree in an interval graph reduces
to the problem of computing the function Omaxright described earlier. The tree
given by the edges (Ii,Omaxright(Ii)) is a BFS tree [14]. And the tree formed by
the edges (I~, Ominright(I~)) is a DFS tree [14]. The algorithm is the following:

1. Compute Omaxright(Ii), f o r 1 < i < n .

2 . L e t]ather(Ii)= Omaxright(I~).
3. The e d g e s (/ , ,]ather(Ii)) f o r m a BFS t r e e .

With the appropriate modifications, this algorithm may be used to find a
DFS tree. The obtained BFS and DFS trees have their roots in the segments
ending farthest to the right in each connected component. With respect to its
complexity, the algorithm takes a constant number of communication steps and
requires a total running time of O(Ts (n, p) + n/p).

881

T h e o r e m 4. Given an interval graph G, BFS and DFS trees can be found using
a CGM(n,p) in O(Ts(n,p)+ n/p) time, with a constant number of communica-
tion rounds. []

3.4 M i n i m u m Interval Covering

Given a family Z of intervals and a special interval J = (J~, Jb), the problem of
the minimum interval covering is to find a subset J C_ 7? such that Y C_ U (J) ,
and [J[is minimum; i.e., to find the minimum number of intervals in Z needed to
cover J . To solve this problem we may only consider the intervals Ii = (ai, bi) E
(Z) such that bi __> J~ and ai < Jb. Let Z j be the family of the intervals in
satisfying this condition.

An algorithm to solve this problem is as follows:

1. Compute Omaxright(l), I E fJ.
2. Find the i n t e rva l I i n i t such tha t b in i t = max{bklak ~Ja}.
3. Mark [i n i t and a l l the i n t e r v a l s in the pa th g iven by Omaxright

pointers beginning at linit"

Due to space limitations, the correctness and the complexity of the algorithm
can be found in [7].

T h e o r e m 5. The minimum interval covering problem in interval graphs can be
solved using a CGM(n,p) in O(Ts(n,p) + logp) time, with O(logp) communi-
cation rounds. [3

3.5 M a x i m u m Independent Set and Min imum Dominat ing Set

The first problem consists of finding a largest set of mutually non-overlapping in-
tervals in the family 5, called the maximum independent set. The second problem
consists of finding a minimum dominating set, i.e., a minimum set of intervals
which are adjacent to all remaining intervals in the family Z. To solve these
problems, we simply show a coarse-grained implementation of the algorithms
proposed in [17]. In fact, it can be shown that both problems can be solved by
building a linked list from First(Z):

MAXIMUM INDEPENDENT SET:

I. Compute First(S)
2. Compute next(li), for i, i < i < n
3. Let father(/0 = next([i), for i, 1 < i < n

4. Using the pointer-jump operation, mark all the intervals in the

linked list given by father and beginning at First(S)

MINIMUM DOMINATING SET:

882

1. Compute F i r s t (l)
2. Compute 0 m a x r i g h t (/ /) , f o r 1 < i < n
3. Compute n e x t (/ /) , f o r 1 < i < n
4. Le t f a t h e r (I i) = 0 m a x r i g h t (n e x t (/ /)) , f o r 1 < i < n

5. Using the pointer-jump operation, mark all the intervals in the

linked list given by father and beginning at Omaxright (First(1))

The number of communication rounds in each of the algorithms is O(logp),
giving us a total time complexity of O(Ts (n, p) + logp) and O(log p) communi-
cation rounds. Their correctness stems from the arguments in [17].

T h e o r e m 6. The maximum independent set and the minimum dominating set
problems in interval graphs can be solved using a CaM(n, p) in O (r s (~, p)+logp)
time, with O(logp) communication rounds. []

4 Experimental Results

This section describes the implementations of three of the algorithms presented
previously. Our aim here is to demonstrate that these algorithms are not only
theoretically efficient but that they lead to simple fast codes in practice. They
were implemented on a Fast Ethernet-PCC platform which consists of a set of
12 Pentium Pro 200 Mhz processors each with 64M of RAM that are linked
by a 100Mb/s Fast Ethernet network. The processors run the Linux Operating
System and the programs are written in C utilizing the P VM communication
library [11] for all interprocessor communications.

Since many of the algorithms rely on sorting, the choice of the sorting method
was critical. In the following we first present the implemented sort and its perfor-
mance before describing the implementation and performance of our algorithms.

4.1 G l o b a l S o r t

The sorting algorithm implemented is described in [12]. The algorithm requires
a constant number of communication steps and its single drawback is that da ta
may not be equally distributed at the end of the sort. Nevertheless, a partial sum
procedure and a routing can be used to redistribute the data with a constant
number of communication rounds so that each processor stores ~- data in its p
memory.

Figure 1 shows the execution time for the global sort on an array of inte-
gers with the data redistributed in comparison to the sequential performance of
quicksort (from the standard C library). The results shown are the average of
ten execution times over ten different inputs generated randomly. The abscissa
represents n the size of the input array and the ordinate the execution t ime in
seconds.

For less than 7,000,000 integers, the achieved speedup is about 2.5 for four
processors and 6 for twelve processors. Beyond the size of 7,000,000 integers, the

90(1 ~ - , , , ,
sequential qutcksort - -

CQM parallel s ~ t ~xlh 4 PCs 8(F,
60~70~ / / CGM parallel sort with 12 PCs

500

400

300

2O0

100

0
0 5e+t,6 le+03 15e+I)7 2e+I)7 2,5e+07 3e+~7 3.5e+ff/ 4e+g7 4.5e+07

Fig. 1. Sorting on the Fast Ethernet-PCC.

8 8 3

memory swapping effects increase significantly the execution time on a single
processor and super-linear speedup is obtained, with 10 for four processors and
35 for twelve processors. Sorting 40,000,000 integers takes less than one minute
with twelve processors.

4 .2 M a x i m u m W e i g h t e d C l ique

The algorithm requires a constant number of communication rounds and
rt 0 O(-~l 9-fi) local operations. Note that only the local computations involved in

the sort require 0(~-1o9 ~-) operations, whereas all the other steps require only p p

0 (~) operations.

6(X)

5IX} [

400 ~-

300

2(I0

100

0

sequentral MWC - -
CGM M W C ",~ ~th 4 PC~

CGM MWC wifl~ 12 PCs

le+06 2e+~6 3e+06 4e+06 5e+06 6e+06 7 e ~ 6

Fig. 2. Maximum Weighted Clique on the Fast Ethernet-PCC.

Figure 2 presents the execution time when the number of intervals ncreases.

884

With a graph having less than 1,000,000 intervals, the speedup is 2.5 with four
processors, whereas it is equal to 7 for twelve processors. Beyond 1,000,000 in-
tervals, the speedup is 10 for four processors and 35 for twelve processors, these
superlinear timings being due to memory swapping effects. Again note that with
this algorithm larger data sets than in the sequential case can be handled in a
reasonable time.

4.3 C o n n e c t e d C o m p o n e n t s

As in the maximum weighted clique algorithm above, here also only the sort
requires O(~log-~) local operations all the other steps being linear in p.

500

450

400

350

300

250

200

15(1

100

50

0

sequential CC - -
C G M C C with d PCs

C G M C C ,,v t th 12 PCs

 iii
/ '

"i

J

2c+06 4e+06 6e+06 8c+06 Ic+07 1.2c+07 1,4e+07

Fig. 3. Connected Components on the Fast Ethernet-PCC.

Figure 3 shows the execution time in seconds as the size of the input increases.
The achieved speedup is approximately 2.5 for four processors and 7 for twelve
processors for a graph having at most 2,000,000 intervals. With more intervals,
the speedup is 8 for four processors and 30 for twelve processors. Also observe
that with one processor, at most 2 million of data can be processed whereas
twelve processors can process 12 million of data reasonably. Beyond 12 million
data items the execution time increases more steeply due to memory swapping
effects, even with twelve processors.

4.4 B F S T r e e

The achieved speedup is 2 for four processors and 6 for twelve processors with
at most 2 million of intervals. Beyond this size, the speedup becomes 7 for four
processors and 20 for twelve processors. The measured times are slower than
those obtained for the previous algorithms, because two steps of the function
Omaxright require. O(~log. p ~p) operations, whereas for the previous problems only
one step reqmred this number of local operations.

400

350]

30~1

250

200

150

I00

5O

0

sequential BFS - -
CGM BFS with 4 PCs

CGM BFS with 12 PCs

/
Y

i . / "

�9 .. t i i i /

2e+06 4e+06 6e+06 8e+06 le+07 L2e+07 1.4e+07

Fig. 4. BFS Tree on the Fast Ethernet-PCC.

885

5 C o n c l u s i o n

In this paper we have shown how to solve many important problems on interval
graphs using a coarse-grained parallel computer such as a cluster of PC's. The
proposed algorithms were shown to be theoretically efficient, easy to implement
and fast in practice. We believe this can largely be attributed to the use of the
CGM model which accounts for distributed memory effects, mixes sequential
and parallel coding, and encourages the use of a constant or very small number
of communication rounds.

Note that the use of the CGM model, which was primarily developed for
algorithm design in the context of interconnection networks, has led to efficient
implementations even in the context of a bus-based network like Ethernet. We
speculate that this is due to several factors including: 1) the model focuses on
sending a small number of large messages rather than a large number of small
ones 2) it relies on standard, and typically well optimized, communications op-
erations and 3) it focuses on reducing the number of communication rounds
and therefore the number on interdependencies between rounds. Of course at
some point such bus-based networks always become saturated and more atten-
tion must be paid to bandwidth and broadcast conflict concerns, particularly as
one scales up. We are currently exploring how such concerns can best be dealt
with within the context of a CGM-like model.

R e f e r e n c e s

1. A.A. Bertossi and M.A. Bonuccelli. Some Parallel Algorithms on Interval Graphs.
Discrete Applied Mathematics, 16:101-111, 1987.

2. E. Caceres, F. Dehne, A. Ferreira, P. Flocchini, I. Rieping, A. Roncato,
N. Santoro, and S. Song. Efficient parallel graph algorithms for coarse grained
multicomputers and BSP. In Proc. of ICALP'9 Z pages 131-143. Lecture Notes in
Computer Science. Springer-Verlag, 1997.

886

3. R. Cole and U. Vishkin. The accelerated centroid decomposition technique for
optimal tree evaluation in logarithmic time. Algorithmica, 3:329-346, 1988.

4. D.E. Culler, R.M. Karp, D.A. Patterson, A. Sahay, K.E. Shacuser, E. Santos,
R. Subramonian, and T. yon Eicken. LogP: Towards a realistic model of paral-
lel computation. In Proc. 4th ACM SIGPLAN Syrup. on Princ. and Practice of
Parallel Programming, pages 1-12, 1993.

5. F. Dehne, A. Fabri, and A. Rau-Chaplin. Scalable parallel geometric algorithms
for coarse grained multicomputers. In Proc. 9th A CM Syrup. on Computational
Geometry, pages 298-307, 1993.

6. M. Diallo, A. Ferreira, and A. Rau-Chaplin. Communication-efficient determin-
istic parallel algorithms for planar point location and 2d Voronoi diagram. In
Proceedin9s of the 15th Symposium on Theoretical Aspects of Computer Science
- STACS'98, Lecture Notes in Computer Science, Paris, France, February 1998.
Springer Verlag.

7. A. Ferreira, I. Guerin-Lassous, K. Marcus, and A. Rau-Chaplin. Parallel compu-
tation of interval graphs on PC clusters: Algorithms and experiments. RR LIAFA
97-30, University of Paris 7, http://www.liafa.jussieu.fr/-guerin/biblio.html, 1997.

8. A. Ferreira, C. Kenyon, A. Ran-Chaplin, and S. Ub~da. d-dimensional range
search on multicomputers. Algorithmica, in press. Special Issue on Coarse Grained
Algorithms.

9. A. Ferreira and M. Morvan. Models for parallel algorithm design: An introduc-
tion. In A. Migdalas, P. Pardalos, and S. Storoy, editors, Parallel Computing in
Optimization, pages 1-26. Kluwer Academic Publisher, Boston (USA), 1997.

10. A. Ferreira, A. Rau-Chaplin, and S. Ub~da. Scalable 2d convex hull and triangu-
lation for coarse grained multicomputers. In Proc. of the 6 th IEEE Symposium
on Parallel and Distributed Processing, San Antonio, USA, pages 561-569. IEEE
Press, October 1995.

11. A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R Manchek, and V. Sunderman.
PVM: Parallel Virtual Machine- A Users' Guide and Tutorial for Networked Par-
allel Computing, 1994.

12. A.V Gerbessiotis and L.G Valiant. Direct bulk-synchronous parallel algorithms.
Journal of Parallel and Distributed Computing, pages 251-267, 1994.

13. M.T. Goodrich. Communication-efficient parallel sorting. In Proc. of 28th Syrup.
on Theory of Computing, 1996.

14. S.K. Kim. Optimal Parallel Algorithms on Sorted Intervals. In Proc. 27th Annual
Allerton Conference Communication, Control and Computing, volume 1, pages
766-775, 1990.

15. A. Moitra and R. Johnson. PT-Optimal Algorithms for Interval Graphs. In Proc.
26th Annual Allerton Conference Communication, Control and Computing, vol-
ume 1, pages 274-282, 1988.

16. S. Olariu. Parallel graph algorithms. In A. Zomaya, editor, Handbook of Parallel
and Distributed Computing, pages 355-403. McGraw-Hill, 1996.

17. S. Olariu, J.L. Schwing, and J. Zhang. Optimal Parallel Algorithms for Problems
Modelled by a Family of Intervals. IEEE Transactions on Parallel and Distributed
Systems, 3(3):364-374, 1992.

18. L.G. Valiant. A bridging model for parallel computation. Communications of the
ACM, 33:103-111, 1990.

