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Abs t r ac t .  The use of PC clusters interconnected by high performance 
local networks is one of the major current trends in parallel/distributed 
computing. We give coarse-grained, BSP-like, parallel algorithms to solve 
many problems arising in the context of interval graphs, namely con- 
nected components, maximum weighted clique, BFS and DFS trees, min- 
imum interval covering, maximum independent set and minimum dom- 
inating set. All of the described p-processor parallel algorithms require 
only constant or O(logp) number of communication rounds and are effi- 
cient in practice, as demonstrated by our experimental results obtained 
on a Fast Ethernet based PC cluster. 

1 I n t r o d u c t i o n  

The use of PC clusters interconnected by high performance local networks with 
raw throughput  close to 1Gb/s  and latency smaller than 10#s is one of the 
major  current trends in paral lel /distr ibuted computing.  The local networks are 
either realized with off-the-shelf hardware (e.g. Myrinet and Fast Ethernet) ,  or 
application-driven devices, in which case additional functionalities are built-in, 
mainly  at the memory  access level. Such cluster-based machines (called hence- 
forth PCC's)  typically utilize some flavour of Unix and any number  of widely 
available software packages that  support  multi- threading,  collective communi-  
cation, au tomat ic  load-balance, and others. Note that  such packages typically 
simplify the programmers  task by both providing new functionality and by pro- 
mot ing a view of the cluster as a single virtual machine. Clusters based on 
off-the-shelf hardware can yield effective parallel systems for a fraction of the 
price of machines using special purpose hardware. This kind of progress may  
thus be the key to a much wider acceptance of parallel computing,  tha t  has been 
postponed so far, perhaps primarily due to issues of cost and complexity. 

Although a great deal of effort has been undertaken on system-level and pro- 
g ramming  environment issues as described above, little at tention has been paid 
to methodologies for the design of algorithms for this kind of parallel systems. 
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Despite the availability of a large number of built-in and/or highly optimized 
procedures, algorithms are still designed at the machine level and claims to 
portability lay only on the fact that  they are implemented using communication 
libraries such as PVM or MPI. 

In this paper we show that theoretical (BSP-like) coarse-grained models are 
well adapted to PCC's. In particular, algorithms designed for such models are 
portable and their theoretical and practical performance are closely related. Fur- 
thermore, they allow a reduction on the costs associated with software develop- 
ment since the main design paradigm is the use of existing sequential algorithms 
and communication sub-routines, usually provided with the systems. 

Our approach will be to study a class of problems from the start of the 
algorithm design task until the implementation of the algorithms on a PCC. 
The class of problems will be those arising on a family of intervals on the real 
line which can model a number of applications in scheduling, circuit design, 
traffic control, genetics, and others [16]. 

P r e v i o u s  W o r k  

This class of problems has been studied extensively in the parallel setting and 
many work-optimal fine-grained PRAM algorithms have been described in the 
literature [3, 14, 15, 16]. Their sequential complexity is O(n log n) in all cases. 

Whereas fine-grained PRAM algorithms are likely to be efficient on fine- 
grained shared memory architectures, it is common knowledge that  they tend to 
be impractical on PCC's due to their failure to exploit locality. Therefore, there 
has been a recent growth of interest in coarse-grained computational models 
[4, 5, 18] and the design of coarse-grained algorithms [5, 6, 8, 10, 13]. 

The BSP model, described by Valiant [18], uses slackness in the number of 
processors and memory mapping via hash functions to hide communication la- 
tency and provide for the efficient execution of fine grained PRAM algorithms 
on coarse-grained hardware. Culler et. al. introduced the LogP model which, us- 
ing Valiant's BSP model as a starting point, focuses on the technological trend 
from fine grained parallel machines towards coarse-grained systems and advo- 
cates portable parallel algorithm design [4]. Other coarse grained models focus 
more on utilizing local computation and minimizing global operations. These 
include the Coarse-Grained Multicomputer (CGM(n,p)) model used in this pa- 
per [5], where n is the input size and p the number of processing elements. In 
this mixed sequential/parallel setting, there are three important  measures of any 
coarse-grained algorithm, namely, the amount of local computation required, the 
number and type of global communication phases required and the scalability of 
the algorithm, that  is, the range of values for the ratio p for which the algorithm 
is efficient and applicable. We refer to [5, 9, 10] for more details on this model. 

Recently, Cgceres et al. [2] showed that  many problems in general graphs, 
such as list ranking, connected components and others, can be solved in O(logp) 
communication rounds in BSP and CGM. However, unlike general graphs, inter- 
val graphs can be more easily partitioned and treated in the distributed memory 
setting. Since each interval is given by its two extreme points, they can be sorted 
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by left and/or  right endpoints and distributed according to this ordering. This 
partit ioning allows us to design less complex parallel algorithms; moreover, the 
derived algorithms are easier to implement and faster both in theory and in 
practice. 

The following result will be used in the remaining to achieve a constant 
number of communication rounds in the solution of many problems. 

T h e o r e m l .  [13] Given a set S of n items stored O(n/p)  per processor on a 
CGM(n,p) ,  n / p  >_ p, sorting S takes a constant number of communication 
rounds. [] 

The algorithms proposed for the CGM are independent of the communica- 
tion network. Moreover, it was proved that  the main collective communication 
operations can be implemented by a constant number of calls to global sort ([5]). 
Hence, by Theorem 1, these operations take a constant number of communica- 
tion rounds. However, in practice these operations will be implemented through 
built-in, optimized system-level routines. In the remainder, let Ts (n ,p )  denote 
the time complexity of a global sort in the CGM. 

O u r  W o r k  

We describe constant communication round coarse-grained parallel algorithms to 
solve a set of the standard problems arising in the context of interval graphs [16], 
namely connected components [3], maximum weighted clique [15] and breadth- 
first-search (BFS) and depth-first-search (I)FS) trees [14]. We also propose O(log p) 
communication round algorithms for optimization problems as minimum interval 
covering, maximum independent set [15] and minimum dominating set [17]. 

In order to demonstrate the practicability of our approach, we implemented 
three of the above algorithms on a PCC interconnected by a Fast Ethernet  back- 
bone. Because of the paradigms used, the programs were easy to develop and are 
quite portable. The results presented in this paper show that  high performance 
can be achieved with off-the-shelf PCC's along with the right model for algo- 
r i thm design. Interestingly, super-linear speedups were observed in some cases 
due to memory swapping effects. Using multiple processors allows us to effec- 
tively utilize more RAM and therefore Mlows computat ion on data  sets that  are 
simply too large to be effectively processed on single processor machines. 

In Section 2 the required basic operations are described. Then, in Section 3, 
chosen problems in interval family model are presented, and solutions are pro- 
posed using the basic operations from Section 2. In Section 4, we describe exper- 
iments on a Fast Ethernet based PCC. We close the paper with some conclusions 
and directions for further research. 

2 Basic Operations 

In the CGM model, any parallel prefix (suffix) associative function to be per- 
formed in an array of elements can be done in O(1) communication steps, since 
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each processor can compute locally the function, and then with a total  exchange 
all the processors get to know the partial result of all the other processors and 
can compute the final result for each element in the array. 

We will i s o  use the pointer-jump operation, to identify the elements in a 
linked list. This operation can be easily done in O(logp) communication steps, 
at each step each processor keeps track of the pointers of its elements. 

2.1 Interval Operations 

In the following algorithms two functions will be widely used, the Ominright 
and Omaxright [1]. Given an interval I, Omaxvight([) (Ominright(I)) denotes, 
among all intervals that intersect I, the one whose right endpoint is the furthest 
right (left). The formal definition is the following. 

Ornaxright(Ii) = f / j '  if bj = max{bk[ak < bi < bk} 
[ nil, otherwise�9 

The function Omaxright can be computed with time complexity O(Ts (n, p)), 
as follows. 

I. Sort the left endpoints of the interval in ascending order as 
I ! . .  a! 

2. Compute t h e  p r e f i x  maxima of t h e  c o r r e s p o n d i n g  s equence  b~,b2,.' .. ,b,~' of  
H H H r i g h t  e n d p o i n t s  and l e t  t he  r e s u l t  be b i , b 2 , . . . , b ~ .  

(b" = a _ _ ' k In X l < i < k { b i } . )  
3. For  eve ry  i (1 < i _< n) compute t h e  r a n k  r( i )  of bi w i t h  r e s p e c t  to  

! 

a ~ , 4  . . . .  ,aN 
H 4. For  eve ry  i (1 < i < n ) ,  s e t  O m a x r i g h t ( I i )  = I j ,  such  t h a t  bj = br(i) and 

H . bl :~ b~(~), o t h e r w i s e  s e t  Omaxright ( I~)  = n i l .  

We define also the parameter First(Z) as the segment I which "ends first", 
that  is, whose right endpoint is the furthest left: 

First(Z) = / j ,  with bj = min{b~ll < i < n}. 

To compute it, we need only to compute the minimum of the sequence of 
right endpoints of intervals in the family Z. 

Finally, we will use the function next(I)  : Z --+ Z defined as 

f 6 ,  if bj = min{bk]bi < ak}, next (Ii) [ nil, otherwise. 

Tha t  is, nezt(I i)  is the interval that  ends farthest to the left among all the 
intervals beginning after the end of Ii. To compute next( / / ) ,  1 < i < n, we use 
the same algorithm used for Omaxright(Ii), with a new step 2. 

i. Sort the left endpoints of the interval in ascending order as 
a~,a '2 , . .  ' 

�9 ~a n . 
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bl, b2, �9 �9 of 2. Compute the suffix minima of the corresponding sequence ' ' .,b" 

bl ,b2, . . . ,b~.  right endpoints and let the result be " " " 

(b~ = mink_<i<n{b~}. ) 
3. For every i (1 _< i _< n) compute the rank r(i) of bi with respec t  to  

! ! ! 

(II~C~2~...~a n 
4. For every i (I < i < n), set Ncxt(li) = Ij, such that bj = b'r'(, ) and bi 

hi(i) ; otherwise set Next(Ii) -~ rtil. 

It is easy to see that  the above procedure implements the definition of 
next(I/) ,  with the same complexity as for computing Omaxright(Ii). 

3 I n t e r v a l  G r a p h  P r o b l e m s  a n d  A l g o r i t h m s  

Formally, given a set n of intervals Z = {I1, I 2 , . . . ,  IN} on a line, the correspond- 
ing interval graph G = (V, E) has the set of nodes V = {Vl , . . . ,  v~}, and there 
is an edge in E between nodes vi, vj if and only if Ii f3 Ij 7k ~. 

In this section, solutions for some important  problems in interval graphs are 
proposed for the CGM model. Some of these algorithms use techniques derived 
from their corresponding PRAM algorithms while others require different meth- 
ods, e.g. to compute the connected components, as shown below. 

3.1 M a x i m u m  W e i g h t e d  C l ique  

A clique is a set of nodes that  are mutuMly adjacent. In the maximum weighted 
clique problem for an interval graph, we want to know the maximum weight of 
such a set, given weights p(I 0 > 0 on the intervals, and identify a maximum 
weighted clique by marking its nodes. The CGM algorithm is as follows: 

I. Sort the endpoints of the segments such that each processor receives 

2n/p endpoint s. 

2. Assign to each endpoint ci a weight wi defined by 

f p ( t j ) ,  i f  ci = a j ,  f o r  some 1 _<j < n ,  
w, = [ _ p ( 5 ) ,  i f  c i=bj ,  fo r  some l_< j  < n ,  

3. Compute the prefix sum of the resulting weighted sequence - the 

maximum obtained is the cardinality of a maximum clique; let 

dl,...,d2n denote the resulting sequence. 

4. Consider the sequence el,...,v2n obtained by replacing every dj corre- 

sponding to a right endpoint of an interval with -I and compute the 

rightmost maximum of the resulting sequence; this occurs at ak. 

5. Broadcast ak. Every interval Iu such that au < ak < bu is marked to be 

in the final maximum weighted clique. 

Due to space limitations, the correctness and the complexity of the algorithm 
can be found in [7]. 

T h e o r e m  2. The maximum weighted clique problem in an interval graph of size 
n can be solved on a CGM(n,p) in O(Ts(n,p)  + n/p) time, with a constant 
number of communication rounds. [] 
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3.2 C o n n e c t e d  C o m p o n e n t s  

The connected components of a graph G are the maximal connected subgraphs 
of G. The connected components problem consists of assigning to each node the 
label of the connected component that  contains it. For the CGM(n,p) we have 
the following algorithm: 

I. Sort the intervals by left endpoints distributing n/p elements to 
each processor. 

2. Each processor Pi computes the connected components for the subgraph 

corresponding to its n/p intervals, giving labels to the components 

and associating the labels to the nodes. 

3. Each processor detects the farthest right segment amongst its n/p in- 
tervals - tail ti - and broadcasts it (with its label) to all other 

processors. 

4. Each processor checks if any of the tails intersects its components, 

and updates its local labels using in each case the smallest such new 

label. 

5. Each processor Pi records the pair (ti, new label) and sends it to 

processor P0. 

6. Processor Po performs a connected components algorithm on the tails 

and updates the tail labels using the smallest such new labels and 

sends 

the tails and their new labels to all processors. 

7. Each processor updates the labeling accordingly. 

Due to space limitations, the correctness and the complexity of the Mgorithm 
can be found in [7]. 

T h e o r e m  3. The connected components problem in interval graphs can be solved 
on a CaM(n,p)  in O(Ts(n,p)  + n/p) time, with a constant number of commu- 
nication rounds. [] 

3.3  B F S  a n d  D F S  Tree  

The problem of finding a Breadth First Search Tree in an interval graph reduces 
to the problem of computing the function Omaxright described earlier. The tree 
given by the edges (Ii,Omaxright(Ii)) is a BFS tree [14]. And the tree formed by 
the edges (I~, Ominright(I~)) is a DFS tree [14]. The algorithm is the following: 

1. Compute  Omaxright(Ii), f o r  1 < i < n .  

2 .  L e t  ]ather(Ii)= Omaxright(I~). 
3.  The e d g e s  ( / , ,  ]ather(Ii)) f o r m  a BFS t r e e .  

With the appropriate modifications, this algorithm may be used to find a 
DFS tree. The obtained BFS and DFS trees have their roots in the segments 
ending farthest to the right in each connected component.  With respect to its 
complexity, the algorithm takes a constant number of communication steps and 
requires a total  running time of O(Ts (n, p) + n/p). 
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T h e o r e m  4. Given an interval graph G, BFS and DFS trees can be found using 
a CGM(n,p) in O(Ts(n,p)+ n/p) time, with a constant number of communica- 
tion rounds. [] 

3.4 M i n i m u m  Interval Covering 

Given a family Z of intervals and a special interval J = (J~, Jb), the problem of 
the minimum interval covering is to find a subset J C_ 7? such that  Y C_ U ( J ) ,  
and [J[  is minimum; i.e., to find the minimum number of intervals in Z needed to 
cover J .  To solve this problem we may only consider the intervals Ii = (ai, bi) E 
(Z) such that  bi __> J~ and ai < Jb. Let Z j  be the family of the intervals in 
satisfying this condition. 

An algorithm to solve this problem is as follows: 

1. Compute Omaxright(l), I E fJ.  
2. Find the i n t e rva l  I i n i t  such tha t  b in i t  = max{bklak ~Ja}.  
3. Mark [ i n i t  and a l l  the  i n t e r v a l s  in the  pa th  g iven  by Omaxright 

pointers beginning at linit" 

Due to space limitations, the correctness and the complexity of the algorithm 
can be found in [7]. 

T h e o r e m  5. The minimum interval covering problem in interval graphs can be 
solved using a CGM(n,p) in O(Ts(n,p) + logp) time, with O(logp) communi- 
cation rounds. [3 

3.5 M a x i m u m  Independent  Set and Min imum Dominat ing  Set 

The first problem consists of finding a largest set of mutually non-overlapping in- 
tervals in the family 5, called the maximum independent set. The second problem 
consists of finding a minimum dominating set, i.e., a minimum set of intervals 
which are adjacent to all remaining intervals in the family Z. To solve these 
problems, we simply show a coarse-grained implementation of the algorithms 
proposed in [17]. In fact, it can be shown that  both problems can be solved by 
building a linked list from First(Z): 

MAXIMUM INDEPENDENT SET: 

I. Compute First(S) 
2. Compute next(li), for i, i < i < n 
3. Let father(/0 = next([i), for i, 1 < i < n 

4. Using the pointer-jump operation, mark all the intervals in the 

linked list given by father and beginning at First(S) 

MINIMUM DOMINATING SET: 
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1. Compute F i r s t ( l )  
2.  Compute 0 m a x r i g h t ( / / ) ,  f o r  1 < i < n 
3.  Compute n e x t ( / / ) ,  f o r  1 < i < n 
4.  Le t  f a t h e r ( I i )  = 0 m a x r i g h t  ( n e x t ( / / ) ) ,  f o r  1 < i < n 

5. Using the pointer-jump operation, mark all the intervals in the 

linked list given by father and beginning at Omaxright (First(1)) 

The number of communication rounds in each of the algorithms is O(logp), 
giving us a total time complexity of O(Ts (n, p) + logp) and O(log p) communi- 
cation rounds. Their correctness stems from the arguments in [17]. 

T h e o r e m  6. The maximum independent set and the minimum dominating set 
problems in interval graphs can be solved using a CaM(n, p) in O ( r s (  ~, p)+logp)  
time, with O(logp) communication rounds. [] 

4 Experimental Results 

This section describes the implementations of three of the algorithms presented 
previously. Our aim here is to demonstrate that  these algorithms are not only 
theoretically efficient but that  they lead to simple fast codes in practice. They 
were implemented on a Fast Ethernet-PCC platform which consists of a set of 
12 Pentium Pro 200 Mhz processors each with 64M of RAM that  are linked 
by a 100Mb/s Fast Ethernet network. The processors run the Linux Operating 
System and the programs are written in C utilizing the P VM communication 
library [11] for all interprocessor communications. 

Since many of the algorithms rely on sorting, the choice of the sorting method 
was critical. In the following we first present the implemented sort and its perfor- 
mance before describing the implementation and performance of our algorithms. 

4.1 G l o b a l  S o r t  

The sorting algorithm implemented is described in [12]. The algorithm requires 
a constant number of communication steps and its single drawback is that  da ta  
may not be equally distributed at the end of the sort. Nevertheless, a partial sum 
procedure and a routing can be used to redistribute the data  with a constant 
number of communication rounds so that  each processor stores ~- data  in its p 
memory. 

Figure 1 shows the execution time for the global sort on an array of inte- 
gers with the data  redistributed in comparison to the sequential performance of 
quicksort (from the standard C library). The results shown are the average of 
ten execution times over ten different inputs generated randomly. The abscissa 
represents n the size of the input array and the ordinate the execution t ime in 
seconds. 

For less than 7,000,000 integers, the achieved speedup is about 2.5 for four 
processors and 6 for twelve processors. Beyond the size of 7,000,000 integers, the 
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Fig. 1. Sorting on the Fast Ethernet-PCC. 
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memory swapping effects increase significantly the execution time on a single 
processor and super-linear speedup is obtained, with 10 for four processors and 
35 for twelve processors. Sorting 40,000,000 integers takes less than one minute 
with twelve processors. 

4 .2  M a x i m u m  W e i g h t e d  C l ique  

The algorithm requires a constant number of communication rounds and 
rt 0 O(-~l 9-fi) local operations. Note that only the local computations involved in 

the sort require 0(~-1o9 ~-) operations, whereas all the other steps require only p p 

0 ( ~ )  operations. 

6(X) 

5IX} [ 
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0 

sequentral MWC - -  
CGM M W C  ",~ ~th 4 PC~ . . . . .  

CGM MWC wifl~ 12 PCs . . . . . .  

le+06 2e+~6 3e+06 4e+06 5e+06 6e+06 7 e ~ 6  

Fig. 2. Maximum Weighted Clique on the Fast Ethernet-PCC. 

Figure 2 presents the execution time when the number of intervals ncreases. 
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With a graph having less than 1,000,000 intervals, the speedup is 2.5 with four 
processors, whereas it is equal to 7 for twelve processors. Beyond 1,000,000 in- 
tervals, the speedup is 10 for four processors and 35 for twelve processors, these 
superlinear timings being due to memory swapping effects. Again note that  with 
this algorithm larger data sets than in the sequential case can be handled in a 
reasonable time. 

4.3 C o n n e c t e d  C o m p o n e n t s  

As in the maximum weighted clique algorithm above, here also only the sort 
requires O(~log-~) local operations all the other steps being linear in p. 
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 iii ............ .................. .... 
/ '  

"i ......... 

J 

2c+06 4e+06 6e+06 8c+06 Ic+07 1.2c+07 1,4e+07 

Fig. 3. Connected Components on the Fast Ethernet-PCC. 

Figure 3 shows the execution time in seconds as the size of the input increases. 
The achieved speedup is approximately 2.5 for four processors and 7 for twelve 
processors for a graph having at most 2,000,000 intervals. With more intervals, 
the speedup is 8 for four processors and 30 for twelve processors. Also observe 
that  with one processor, at most 2 million of data  can be processed whereas 
twelve processors can process 12 million of data  reasonably. Beyond 12 million 
data  items the execution time increases more steeply due to memory swapping 
effects, even with twelve processors. 

4.4 B F S  T r e e  

The achieved speedup is 2 for four processors and 6 for twelve processors with 
at most 2 million of intervals. Beyond this size, the speedup becomes 7 for four 
processors and 20 for twelve processors. The measured times are slower than 
those obtained for the previous algorithms, because two steps of the function 
Omaxright require. O(~log. p ~p) operations, whereas for the previous problems only 
one step reqmred this number of local operations. 
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5 C o n c l u s i o n  

In this paper we have shown how to solve many important  problems on interval 
graphs using a coarse-grained parallel computer such as a cluster of PC's. The 
proposed algorithms were shown to be theoretically efficient, easy to implement 
and fast in practice. We believe this can largely be attributed to the use of the 
CGM model which accounts for distributed memory effects, mixes sequential 
and parallel coding, and encourages the use of a constant or very small number 
of communication rounds. 

Note that  the use of the CGM model, which was primarily developed for 
algorithm design in the context of interconnection networks, has led to efficient 
implementations even in the context of a bus-based network like Ethernet. We 
speculate that this is due to several factors including: 1) the model focuses on 
sending a small number of large messages rather than a large number of small 
ones 2) it relies on standard, and typically well optimized, communications op- 
erations and 3) it focuses on reducing the number of communication rounds 
and therefore the number on interdependencies between rounds. Of course at 
some point such bus-based networks always become saturated and more atten- 
tion must be paid to bandwidth and broadcast conflict concerns, particularly as 
one scales up. We are currently exploring how such concerns can best be dealt 
with within the context of a CGM-like model. 
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