
Communication-Efficient Deterministic Parallel
Algorithms for Planar Point Location and

2d Voronoi Diagram*

Mohamadou Diallo 1, Afonso Ferreira 2 and Andrew Rau-Chaplin 3

1 LIMOS, IFMA, Campus des C6zeanx, BP 265, F-63175 Aubi~re Cedex, France.
E-maih mdiallo@ifma.fr.

2 CNRS, INRIA, Projet SLOOP, BP 93, 06902 Sophia Antipolis, France.
E-maih ferreira~sophia.inria, fr.

3 Faculty of Computer Science, Dalhousie University, P.O. Box 1000, Halifax, Nova
Scotia, Canada B3J 2X4. E-mail: arc@tuns.ca. Partially supported by NSERC.

Abstract . In this paper we describe deterministic parallel algorithms
for planar point location and for building the Voronoi Diagram of n
co-planar points. These algorithms are designed for BSP-like models
of computation, where p processors, with O(~) ~> O(1) local mem-
ory each, communicate through some arbitrary interconnection network.
They axe communication-efficient since they require, respectively, O(1)
and O(logp) communication steps and O(v) local computation per
step. Both algorithms require O(~) ---- Y2(p) local memory.

1 I n t r o d u c t i o n

High performance computing systems nowadays, be either multicomputers or
networks of workstations, consist of a set of p state-of-the-art processors, each
with considerable local memory, connected to some interconnection network.
These systems are usually coarse grained, i.e. the size of each local memory is
"considerably larger" than O(1).

Recently, there has been a growing interest in coarse grained computational
models [4, 7, 16] and the design of coarse grained algorithms [10, 5, 8, 6, 9]. The
work on computational models has tended to be motivated by the observation
that '~fast algorithms" for fine-grained models rarely translate to fast code run-
ning oil coarse grained machines. The BSP model ([16]) was proposed in order
to benefit from slackness in the number of processors and memory mapping via
hash functions to hide communication latency and provide for the efficient execu-
tion of fine grained PRAM algorithms on coarse grained hardware. Other coarse
grained models focus more on utilizing existing sequential code and minimizing
global communication operations. These include the Coarse Grained Multicom-
puter (CGM) from [7] used in this paper and to be described below. In this

* Part of this work was done while the second author was with the LIP at the ENS
Lyon and while the authors visited each other in Lyon and in Halifax. Support from
the respective Institutions is acknowledged.

400

mixed sequential/parallel setting, there are three important measures of any
coarse grained algorithm, namely, the amount of local computation, the number
and type of global communication phases required and the scalability of the al-
gorithm, that is, the range of values for the ratio p for which the algorithm is
efficient and applicable.

This paper describes efficient scalable parallel algorithms for the planar point
location and the 2d Voronoi diagram problems within the coarse grained mul-
ticomputer context. The planar point location algorithm requires local storage
~ -= (0(p)) a n d v f2(p) and is optimal with respect to local computation
communication phases (O(1)). This algorithm is then used as a procedure in
the Voronoi Diagram algorithm, which also requires local storage ~ = f2(p), but

uses [log p] communication phases with O(p) local computation per phase.

T h e M o d e l

The Coarse Grained Multicomputer model, or CGM(n,p) for short, can be seen
as a weak-CREW BSP machine ([7, 10]). On a CGM(n,p) a problem of size
n is solved using p processors each with a local memory of size O(~-). The

P
processors communicate through some arbitrary interconnection network or a
shared memory. The term "coarse grained' refers to the fact that (as in practice)

O ~ the number of words of each local memory (7) is defined to be "considerably
larger" than O(1). This is dearly true for all currently available coarse grained
parallel machines. In the following, when determining time complexities both
local computation time and inter-processor communication time are considered
in the standard way. Also note that we assume, for clarity of explanation, that
p = 2 k for some fixed integer k.

In this model, all global communications axe performed by a small set of
standard communications operations - Segmented broadcast, Segmented gather,
All-to-All broadcast, Personalized All-to-All broadcast, Partial sum and Sort,
which are typically efficiently realized in hardware or system level code. If a
parallel machine does not provide these operations they can be, in the worst
case, implemented in terms of a constant number of sorting operations [7].

Furthermore, it was shown that, given n l -~ > p (c > 1), sorting O(n) ele-
ments distributed evenly over p processors in the CGM, BSP or LogP models
can be achieved in O(log n~ log(h + t)) communication rounds and O(n log n/p)

O ~ local computation time, for h = (7), i.e. with optimal local computation and
O(1) h-relations, when p -- f2(p) [10]. Therefore, using this sort, the communi-
cation operations of the CGM(s,p) can be realized in the BSP or LogP models
in a constant number of h-relations, where h = O(p).

Hence, finding an optimal algorithm in the CGM model is equivalent to
minimizing the number of global communication rounds as well as the local
computation time. It has also been shown that minimizing the number of rounds
also results in improved portability across different parallel architectures [16].

401

Prev ious Work

Many algorithms (sequential or parallel) have been proposed for solving the
multi-planar point location problem [1, 13], where O(n) query points are located
in a planar convex subdivision with n vertices. The sequential complexity of the
problem is ~9(n log n) time with O(n) space. In the fine grained parallel setting,
algorithms have been described for many architectures including the CREW
PRAM [3], the Hypercube [15] and the Mesh [12]. Except for the PI~AM, these
algorithms are not work-optimal (time in O(v~) and O(log 2 n) for the Mesh and
the Hypercube, respectively).

For the Voronoi diagram (see Figure 1), whose sequential complexity is
O(n log n), the only time-optimal parallel algorithm (although not work-optimal
since it runs in O(v~) time with n processors) was proposed in [12] for the
Mesh. The same technique (to be explored further in this text) was used in [15]
to design a O(log 3 n) time algorithm for the Hypercube. Finally, the best exist-
ing PRAM algorithm requires O(log n log log n) time. With respect to the CGM,
no efficient deterministic algorithm exist. The randomized algorithm from [5]
builds the Voronoi diagram in time O(~log~h p j, with high probability, and requires

n/V = O(p2).

Fig. 1. Voronoi diagram of a set of points.

Our Results

In this paper we first describe a scalable coarse-grained de te rmin is t ic algorithm
for the Convex Planar Multi-Point Location problem. Our algorithm requires
t. ~ , ~ lo_/e. ~ , ime ¢)(p) in the worst case. Furthermore, it requires only a constant number
of global communication rounds and local memory space p = f2(p) to locate
O(n) query points in a planar convex subdivision with n vertices.

Using this algorithm as a subprocedure, we propose an algorithm for solving
the Voronoi diagram problem for points in T~ 2 for the same model, with the same
space complexity, rlogp] commumcatlon rounds, and O(p) local computa-
tion per round. Our algorithm is deterministic and is also more scalable than

402

the algorithm given in [5] in that it is efficient and applicable for a larger range
of values for the ratio n/p.

Our approach (which is very different from the one presented in [2, 11])
presents two particular strengths. First, all inter-processor communications axe
restricted to usages of a small set of simple communication operations. This has
the effect of making the algorithms both easy to implement, in that all commu-
nications are performed by calls to a standard highly optimized communication
library, and very fast in practice. Second, most of the local computation is done
through well known algorithms designed for the very same problems. Therefore,
costs associated with software development are largely reduced.

2 P l a n a r P o i n t L o c a t i o n

The problem of planar multi-point location on a convex subdivision is stated
as follows: Locate O(n) points in a planar convex subdivision defined by O(n)
edges. Each edge is labeled with the regions to its left and its right, and regions
are defined by coordinates of one interior point (called the center of the region).

To locate a point in the planar subdivision, we design a coarse-grained algo-
rithm based on the chain method originally described in the sequential setting
([13]) and then utilized in the fine-grained parallel setting for MCC ([12]) and
hypercubes ([15]). The idea is to perform planar point location via a binary
search on a balanced binary tree whose nodes represent a chain of edges of the
planar subdivision. The tree is built as follows.

First the regions are sorted by x-coordinate of their centers. There is a chain
of edges which share half regions to left and half to right (left and right regions
correspond to centers lying to left or right of the chain). The same is applied to
left and right half of regions recursively and a monotone complete set of chains
is obtained (i.e. the set of chains so that for any two chains cl and c2 the vertices
of cl that are not on c2 are on the same side of c2). These chains are the nodes
of the balanced binary tree mentioned above.

_ t A ~" " 4 li- , _ ~

2 • o ~ *,,,. x

% 4 % 4

leve l 0 - - - level l - - level 2 - - - level 3 - -

Fig. 2. Construction of the chains.

403

The leaves of this tree correspond to regions of the subdivision (see Figure 2).
Chains may share common edges. If an edge e belongs to more than one chain
then it belongs to all members of a set of consecutive chains. There is a unique
member c of this set which, in the binary search tree, is a common ascendant of
all the other members of the set (the highest chain, in the hierarchy, to which e
belongs). In order to avoid duplication of edges, we assign e to such a member
c. By O(log n) discriminations (deciding on which side of chain c a query point
lies) each query point can be located.

Each chain has a level and an index. The level of a chain is the height were
the chain is located in the tree (the root has the highest level). The index is the
rank of the chain in the chains of a given level, ranked from left to right. And
as described above, each edge is assigned to exactly one chain. The level and
the index of an edge are those of the chain to which it belongs to. The levels
and indices of the edges can be determined in constant time using the rules
described in [12]: for a given edge e, find the "bit exclusive or", say ¢, of the
binary indices of centers of e. The level of e, say 4, is 4 = [logCJ. The index of
e is ((2's complement(2 t~-) - 2 t~-) A (index of center of e))/2 t~+] .

2.1 Coarse-Gra ined P lanar Mul t i -Poin t Locat ion

We describe in this subsection a planar multi-point location algorithm that re-
quires a constant number of communication rounds. The entire data for a given
problem is assumed to be initially distributed across the local memories and
remains there until the problem is solved. Given a set Q of n query points, a
planar convex subdivision of the plane into n regions (e.g. a Voronoi diagram)
and a p processor coarse grained multicomputer we show how to locate the query
points into the subdivision. The basic approach is as follows:

1. Divide the plane into the p regions or vertical slabs (Figure. 3) V1, V2,... Vp
defined by the p - 1 highest level chains.

2. For each point q C Q determine vs(q) E {Vt,V2,... Vp} the vertical slab
q is located in. This is done by forming horizontal slabs (Figure. 3) from
the chains computed in Step 1 and performing a point location within these
horizontal slabs after first having load balanced the points and slabs.

3. Finally, load balance the vertical slabs and the points such that each pro-
cessor stores O(1) vertical slabs of total size O(n/p) and O(n/p) points that
must be located in them. Locally execute planar multi-point location on all
processors.

The main challenge ties in computing for each point which vertical stab it
is in (Step 2) in a constant number of communication phases and under the
constraint given by the memory size. The idea will be to partition the vertical
slabs into p horizontal slabs that are bounded by lines rather than polygonal
chains. Our Planar Multi-Point Location algorithm is described in detail below.

404

C G M ' s P l a n a r M u l t i - P o i n t Loca t ion (Q , Vor(S))

I n p u t : A set Q of O(n) query points and a planar subdivision defined by O(n) edges.
O u t p u t : The O(n) query points labeled by the center of the region to which they
belong.

1. For each edge, determine to which chain it belongs using the method by Jeong [12].
The method involves sorting the regions' centers by their x-coordinate. Recall that
using this method, each edge belongs to only one chain. Note that we are only
interested in the p - 1 higher level chains, these chains partition the plane into p
"vertical" slabs V1, V2,... Vp (Figure. 3). Let C denotes the set of the edges that
define the p - 1 chains.

2. Sort the edges in C by their largest y-coordinates. Each processor i receives O(n/p)
edges denoted Hi and can determine a horizontal line that defines its upper b o u n d -
ary by looking for the largest received y-coordinate (Figure. 3). Perform an all-
to-all broadcast of these horizontal lines so that every processor stores a copy of
H, the set of these p horizontal lines.

3. Each processor determines for each edge c E C it stores the elements of H it inter-
sects, denoted range(c). Note that, because the chains are y-monotonic, range(c)
is a (contiguous) interval that can be computed by binary search in H, each edge is
intersected by at most p horizontal lines and each element of H intersects at most
p elements of C. Perform a personalized all-to-all broadcast such that each edge
c, for which range(c) = [i,j] is not empty, is broadcast to processors i through j .

4. For each point q E Q determine hs(q) E {H1, H2,... Hp} the horizontal slab q is
located in and for each horizontal slab H~, compute C(H~) = [l{qeQ:h~(q)=~}l],

p

for 1 < i < p. Create C(HI) copies of H~ and distribute them such that each
processor stores at most two horizontal slabs. Redistribute Q such that each point
q • Q is stored on a processor that also stores a copy of hs(q).

5. Each processor locally executes Kirkpatrick's planar multi-point location algo-
rithm ([14]). When a point is located to the right or the left of an edge, the
vertical slab to which it belongs, vs(q) is obtained by consulting the rank of the
center of the region associated to the edge, in the sorted list.

6. For each vertical slab V~, compute C(V~) = rl{qeQ:,~(q)=~}l]~ , for 1 < i < p.
p

Create C (~) copies of l~ and distribute them such that each processor stores at
most two vertical slabs. Redistribute Q such that each point q E Q is stored on a
processor that also stores a copy of vs(q)

7. All processors now locally execute Kirkpatrick's planar multi-point location ([14]).
The location is done in the vertical slab into which the points are located and each
point is now precisely located.

T h e o r e m 1. Algorithm C G M ' s P l a n a r M u l t i - P o i n t L o c a t i o n () locates O(n)
O (~ o g ~ l query points in a planar convex subdivision defined by O(n) edges in . p

time. It requires ~ = ~(p) local memory space and a constant number of com-
munication rounds.

Proof. The correctness follows from the correctness of the chain m e t h o d de-
scribed in [12], the correctness of Kirkpatr ick 's sequential p lanar mult i -point

405

V1 V 2 3 4 V 4

12 14

w

P = 4
. horizontal cutting

vertical cutting

H~ = ~dses 0.-.,6}
H a = edges {7...,12}

H 3 =edges {13,...,17}

H4 = edges { 18.. .22}

Fig. 3. Horizontal and vertical cuttings.

location method [14, pages 56-58], and the following observations. (1) Both the
vertical and horizontal slabs have a size of O(n/p). (2) The total mlmber of
slabs created in Steps 4 and 6 is O(p). (3) The total number of queries moved

O ~ in steps 4 and 6 is O(n/p). The space requirement is thus (~- +p) = O(p) per
processor. In each step, the local computation time is at most O(~logn). The
global communication in each step reduces to a constant number~global sorts
and communications operations.

3 B u i l d i n g a 2 D - V o r o n o i D i a g r a m o n a C G M

In this section, we first present an algorithm for merging two Voronoi diagrams
on a CGM(n,p) which requires only 0(1) communication phases and then show
how this algorithm can be used to help build the Voronoi diagram of a set of
2d-points through a divide-and-conquer approach. The merge algorithm in turn
uses the planar multi-point location algorithm described in the previous section
as a basic subprocedure.

e

Vo

. . . . Vo<Q) /

' , ~ divldiag chain

Fig. 4. The dividing chain.

Let a set S of n points (the center of each region) in the plane be given and

406

P and Q be two disjoint subsets of S, of size ~ each, such that all points of P are
located to the left of all points of Q. Suppose that the Voronoi diagrams of P and
Q are known and denoted by Vor(P) and Vor(Q), respectively. Finally, suppose
that Vor(P) and Vor(Q) are each represented by a set of edges distributed
evenly over p/2 processors.

Our merging algorithm follows the scheme described in [12] in which a divid-
ing chain between two Voronoi diagrams is computed (see Figure 4). Since the
problem is analogous with respect to P or Q, we will describe the details of the
merging from only the point of view of P. The following are the main steps of
the algorithm.

Two-Way Merg ing(Vor (e) ,Vor(Q))

Input : A distributed representation of Vor(P) and Vor(Q) , each over ~ processors.
Output : A distributed representation of Vor(P U Q) over p processors.

1. Partition the edges of Vor(P) into three sets:
(a) PP, those that have both their endpoints closer to P than to Q,
(b) PQ, those that have one of their endpoints closer to P than to Q, and the

other one closer to Q than to P.
(c) QQ those that have both their endpoints closer to Q than to P.

2. For each of the sets found above, decide which edges are intersected by the di-
viding chain (actually the problem is just for QQ).

3. Compute the new endpoints for the edges that are intersected by the dividing
chain (intersection point with the dividing chain) and discard the portion of the
edge laying in the wrong side.

4. Globally sort all the newly generated endpoints (of the edges of Vor(P) and
Vor(Q)) in order to obtain the edges of the dividing chain (for the infinite rays,
it suffices to look at the two points, one in P and the other one in Q, that are
closer to their finite endpoint to find their slope).

5. Perform Steps 1 through 4, analogously, with respect to Vor(Q) .
6. All the current edges form Vor(S) . Distribute them over the p processors.

T h e o r e m 2. Given two sets P and Q of -~ points in the plane, P u Q = S, such
that all points in P are on the left of al~points in Q, and a distributed repre-
sentation of the two Voronoi diagrams Vor(P) and Vor(Q) , each distributed
over ~ processors, then algorithm T w o - W a y M e r g i n g () merges Vor(P) and
Vor(Q) to form Vor(S) in ~ "~ = ~2(p) local memory O(p) time. It requires -~
space and a constant number of communication rounds.

Proof. We now consider the correctness and complexity of each step of the al-
gorithm T w o - W a y M e r g i n g (V o r (P) ,Vor(Q)).

• Step 1: Partitioning of the edges into the sets PP, PQ and QQ can be com-
puted for the finite edges by performing a planar point location of the end-
points of the edges. For the semi-infinite edges, it has been established [12]

407

that, if all the semi-infinite edges of Vor(Q) are sorted by their slope 5, then
for the infinite endpoint v~ and the semi-infinite edges el of Vor(P) , and
two consecutive semi-infinite edges ej and ej+l of Vor(Q), vi is laying in the
unbounded region bordered by ej and ej+l if and only if 5~j < 5e~ _< 5ej+l.

Using this result, we can find the center of the region, in Vor(Q) , containing
the endpoint at infinity and thus see to which set it is closer to by just
computing the bisector between the closest point in P and the closest one
in Q and then see if the semi-infinite edge crosses this bisector.

Hence, the time complexity of this step is also dominated by calls to the
planar point location algorithm, that is O (p) .

• Step 2: In [12] it was also shown that the edges in PP do not cross the
dividing chain, the edges in PQ cross it once, and for the edges in QQ we
have two cases: if they cross the dividing chain they cross it twice, or else
they do not cross it at all (see Figure 5). A simple technique to distinguish
these two cases involves again a planar point location. The point location
concerns, for each edge of QQ, a unique and precise point X on the concerned
edge. Each edge which is determined to be intersected twice is split into two
edges of type PQ at the point X. For and edge e in QQ, X is the intersection
point between e and the horizontal line passing through one of the centers
of the two regions associated to e. The chosen center is the one with the
greatest x-coordinate. Here again, the time complexity of this step is also
dominated by calls to the planar point location algorithm, that is O (p) .

• Step 3: Compute one intersection point per edge since the edges that are
intersected twice are now split into two edges of type PQ. The computation
of the intersection point can be done in constant time by computing the
bisector between the point in P (the one with the greatest x-coordinate)
closest to the first endpoint and the point in Q closest to the second endpoint,
and then compute the intersection of the edge with this bisector.

• Step 4: A global sort. Once the new endpoints are sorted (using their y-
coordinate as principal key), the dividing chain is built. Recall that this
chain is y-monotonic that it is crossed at most once by all horizontal lines.
The time complexity of this step is thus Ts(n,p).

• Step 5: A communication phase in which the newly built dividing chain is
distributed over the appropriate processors.

Note that all of the steps consist of at most O(~l°g~) local computation and p
a constant number of calls to the planar point location algorithm, therefore the
time complexity follows. The correctness follows from [12].

Using Two-Way Merging() we can now easily describe a CGM algorithm
for building the Voronoi diagram. Recall that p = 2 k for some integer k.

408

/ o°foo°o i , interBected at a l l

Fig. 5. Example of an edge that is intersected twice.

Voronoi d lagram(S)

Inpu t : Each processor stores a set of ~ points drawn arbitrarily from S.
Ou tpu t : A distributed representation of the Voronoi diagram of S.

1. Globally sort the points in S by x-coordinate. Let S~ denote the set of ~ sorted
points now stored on processor i.

2. Independently and in parallel, each processor i computes the Voronoi diagram of
the set S~. Let Vor(S~) denote the result on processor i.

3. For j ---- 1 to log p in parallel do
Vor(S{ +1) ~-- Two-Way Merging(Vor(S~i), Vor(S~,+l)), (i from 0 to ~ -]).

We have therefore proved the second main result of this paper:

T h e o r e m 3. Algorithm V o r o n o i d i a g r a m () computes the Voronoi diagram of
n _ _ a set S of n points in the plane, Vor(S) , on a CGM(n,p). It requires 7 -

~(p) local memory space, ~logp] communication rounds, and O(~l°g~) local p z

computation time per round.

References

1. S. Akl and K. Lyons. Parallel Computational Geometry. Prentice Hall, 1993.
2. M. Atallah and J. Tsay. On the parallel-decomposability of geometric problems.

In Proceedings of the 5th Annual ACM Symposium on Computational Geometry,
pages 104-113, 1989.

3. R. Cole, M. Goodrich~ and C. Dunlaing. Merging free trees in parallel for efficient
vorono'/diagram construction. In 17th ICALP, England, July 1990.

4. D. Culler, R. Karp, D. Patterson, A. Sahay, K. Schauser, E. Santos, P~. Subrarnon-
ian, and T. von Eicken. LogP: Towards a realistic model of parallel computation.
In Fifth ACM SIGPLAN Symposium on the Principles and Practice of Parallel
Programming, 1993.

5. F. Dehne, X. Deng, P. Dymond, A. Fabri, and A. Khokhar. A randomized parallel
3d convex hull algorithm for coarse grained multicomputers. In Proc. 7th A CM
Syrup. on Parallel Algorithms and Architectures, pages 27-33, 1995.

6. F. Dehne, A. Fabri~ and C. Kenyon. Scalable and archtecture independent parallel
geometric algorithms with high probability optimal time. In Proceedings of the 6th
IEEE SPDP, pages 586-593. IEEE Press, 1994.

409

7. F. Dehne, A. Fabri, and A. Ran-Chaplin. Scalable parallel geometric algorithms
for coarse grained multicomputers. In ACM 9th Symposium on Computational
Geometry, pages 298-307, 1993.

8. X. Deng and N. Gu. Good algorithm design style for multiprocessors. In Proc.
of the 6th IEEE Symposium on Parallel and Distributed Processing, Dallas, USA,
pages 538-543, October 1994.

9. A. Ferreira, A. Rau-Chaplin, and S. Ub~da. Scalable 2d convex hull and triangu-
lation for coarse grained multicomputers. In Proc. of the 6th tEEE Symposium
on Parallel and Distributed Processing, San Antonio, USA~ pages 561-569. IEEE
Press, October 1995.

10. M. Goodrich. Communication-efficient parallel sorting. In Proc. of the 28th annual
ACM Symposium On Theory of Computing Philadephia, USA, May 1996.

11. M. Goodrich, J. Tsay, D. Vengroff, and J. Vitter. External-memory computational
geometry. Proceedings of the Symposium on Foundations o/ Computer Science~
1993.

12. C. Jeong. An improved parallel algorithm for constructing vorono~ diagram on a
mesh-connected computer. Parallel Computing, 17:505-514~ 1991.

13. D.T. Lee and F. Preparata. Location of a point in a planar subdivision and its
applications. SIAM Journal on Computing, 6(3):594-606~ 1977.

14. F. Preparata and M. Shamos. Computational Geometry: An Introduction.
Springer Verlag, 1985.

15. I. Stojmenovic. Computational geometry on a hypercube. Technical report, Com-
puter Science Dpt., Washington State University~ Pullman~ Washington 99164-
1210, 1987.

16. L. Valiant. A bridging model for parallel computation. Communication of ACM,
38(8):103-111, 1990.

