
Parallel Computation on Interval Graphsusing PC Clusters: Algorithms and ExperimentsA. Ferreira1, I. Gu�erin Lassous2, K. Marcus3 and A. Rau-Chaplin41 CNRS, INRIA, Projet SLOOP, BP 93, 06902 Sophia Antipolis, France. E-mail:ferreira@sophia.inria.fr.2 LIAFA { Universit�e Paris 7, Case 7014, 2, place Jussieu, F-75251 Paris Cedex 05.E-mail: guerin@liafa.jussieu.fr.3 Eurecom, 2229, route des Cretes - BP 193, 06901 Sophia Antipolis cedex - France.E-mail: marcus@eurecom.fr.4 Faculty of Computer Science, Dalhousie University, P.O. Box 1000, Halifax, NS,Canada B3J 2X4. E-mail: arc@cs.dal.ca.Abstract. The use of PC clusters interconnected by high performancelocal networks is one of the major current trends in parallel/distributedcomputing. These clusters can yield e�ective parallel systems for a frac-tion of the price of machines using special purpose hardware. Althoughsigni�cant e�ort has been undertaken on system-level and programmingenvironment issues for such clusters, much less attention has been paidto some of the algorithmic issues. In this paper we show that theoretical(BSP-like) coarse-grained models are well adapted to solve importantclasses of problems on PC clusters. We give coarse-grained parallel algo-rithms to solve many problems arising in the context of interval graphs,namely connected components, maximum weighted clique, BFS and DFStrees, minimum interval covering, maximum independent set and mini-mum dominating set. All of the described p-processor parallel algorithmsrequire only constant or O(log p) number of communication rounds andare e�cient in practice as demonstrated by our experimental results ob-tained on a Fast Ethernet based cluster. In an interesting interplay be-tween theory and practice we note that super-linear speedups occurredfor large data because of swapping factors.1 IntroductionThe use of PC clusters interconnected by high performance local networks withraw throughput close to 1Gb/s and latency smaller than 10�s is one of themajor current trends in parallel/distributed computing. The local networks areeither realized with o�-the-shelf hardware (e.g. Myrinet and Fast Ethernet), orapplication-driven devices, in which case additional functionalities are built-in,mainly at the memory access level. Such cluster-based machines (called hence-forth PCC's) typically utilize some avour of Unix and any number of widelyavailable software packages that support multi-threading, collective communi-cation, automatic load-balance, and others. Note that such packages typicallysimplify the programmers task by both providing new functionality and by pro-moting a view of the cluster as a single virtual machine. Clusters based on



o�-the-shelf hardware can yield e�ective parallel systems for a fraction of theprice of machines using special purpose hardware. This kind of progress maythus be the key to a much wider acceptance of parallel computing, that has beenpostponed so far, perhaps primarily due to issues of cost and complexity.Although a great deal of e�ort has been undertaken on system-level and pro-gramming environment issues as described above, little attention has been paidto methodologies for the design of algorithms for this kind of parallel systems.Despite the availability of a large number of built-in and/or highly optimizedprocedures, algorithms are still designed at the machine level and claims toportability lay only on the fact that they are implemented using communicationlibraries such as PVM or MPI.In this paper we show that theoretical (BSP-like) coarse-grained models arewell adapted to PCC's. In particular, algorithms designed for such models areportable and their theoretical and practical performance are closely related. Fur-thermore, they allow a reduction on the costs associated with software develop-ment since the main design paradigm is the use of existing sequential algorithmsand communication sub-routines, usually provided with the systems.Our approach will be to study a class of problems from the start of thealgorithm design task until the implementation of the algorithms on a PCC.The class of problems will be those arising on a family of intervals on the realline which can model a number of applications in scheduling, circuit design,tra�c control, genetics, and others [1, 15, 20].Previous workThis class of problems provides a useful abstraction of many practical problems.Hence, it has been studied extensively in the parallel setting and many �ne-grained PRAM algorithms have been described [20], as shown in Table 1.Problem TimeMaximum weighted clique [19] O(log(n))Maximum independent set [19] O(log(n))Minimum clique cover [19, 21] O(log(n))Minimum dominating set [19, 21] O(log(n))Depth-�rst spanning tree [5, 17] O(log(n))Breadth-�rst spanning tree [5, 17] O(log(n))Connected components (PRAM CRCW) [3] O(log(n))(using f[m+ n]�(m;n)]= log ng processors,where �(m;n) is the inverse of the Ackerman function)Table 1. Interval graph problems and the required time for PRAM algorithms withn processors, unless stated otherwise. The sequential complexity is �(n log n) in allcases.Whereas �ne-grained PRAM algorithms are likely to be e�cient on �ne-



grained shared memory architectures, it is common knowledge that they tend tobe impractical on PCC's due to their failure to exploit locality. Therefore, therehas been a recent growth of interest in coarse-grained computational models[4, 8, 16, 22] and the design of coarse-grained algorithms [6, 7, 8, 10, 11, 14, 18].The BSP model, described by Valiant [14], uses slackness in the number ofprocessors and memory mapping via hash functions to hide communication la-tency and provide for the e�cient execution of �ne grained PRAM algorithmson coarse-grained hardware. Culler et. al. introduced the LogP model which, us-ing Valiant's BSP model as a starting point, focuses on the technological trendfrom �ne grained parallel machines towards coarse-grained systems and advo-cates portable parallel algorithm design [4]. Other coarse grained models focusmore on utilizing local computation and minimizing global operations. Theseinclude the Coarse-Grained Multicomputer (CGM) model used in this paper [8].In this mixed sequential/parallel setting, there are three important measures ofany coarse-grained algorithm, namely, the amount of local computation required,the number and type of global communication phases required and the scalabil-ity of the algorithm, that is, the range of values for the ratio np for which thealgorithm is e�cient and applicable.Recently, C�aceres et al. [2] showed that many problems in general graphs,such as list ranking, connected components and others, can be solved in O(log p)communication rounds in BSP and CGM. Note that while this work is of signi�-cant theoretical interest, these algorithms involve simulation of their correspond-ing PRAM algorithm for logn communication phases which is both complexto implement and computationally expensive in practice. So whereas in theorythese results yield algorithms in interval graphs for coarse-grained machines, inpractice a di�erent approach is called for. Unlike general graphs, interval graphscan be more easily partitioned and treated in the distributed memory setting.Since each interval is given by its two extreme points, they can be sorted by leftand/or right endpoints and distributed according to this ordering. This partition-ing allows us to design less complex parallel algorithms; moreover, the derivedalgorithms are easier to implement and faster both in theory and in practice.Our workWe describe constant communication round coarse-grained parallel algorithms tosolve a set of the standard problems arising in the context of interval graphs [20],namely connected components [3], maximum weighted clique [19] and breadth-�rst-search (BFS) and depth-�rst-search (DFS) trees [5, 17]. We also proposeO(logp) communication round algorithms for optimization problems as mini-mum interval covering, maximumindependent set [19] and minimumdominatingset [21].In order to demonstrate the practicability of our approach, we implementedthree of the above algorithms on a PCC interconnected by a Fast Ethernet back-bone. Because of the paradigms used, the programs were easy to develop and arequite portable. The results presented in this paper show that high performance



can be achieved with o�-the-shelf PCC's along with the right model for algo-rithm design. Interestingly, super-linear speedups were observed in some casesdue to memory swapping e�ects. Using multiple processors allows us to e�ec-tively utilize more RAM and therefore allows computation on data sets that aresimply too large to be e�ectively processed on single processor machines.In Section 2 we review the coarse-grained model adopted in this paper. InSection 3 the basic operations are described. Then, in Section 4, chosen problemsin interval family model are presented, and solutions are proposed using thebasic operations from Section 3. In Section 5, we describe experiments on a FastEthernet based PCC. We close the paper with some conclusions and directionsfor further research.2 The coarse-grained modelIn a \bulk synchronous" processing model, an input of size n is distributedevenly across a p-processor parallel computer. In a single computation round orsuperstep each processor may send and receive h messages and then perform aninternal computation on its internal memory cells using the messages it has justreceived. To avoid conicts that might be caused by asynchronies in the network(whose topology is left unde�ned) the messages sent out in a round t by someprocessor cannot depend upon any messages that the processor receives in roundt. In this paper we use the Coarse-Grained Multicomputer model, or CGM(n; p)for short, introduced in [8]. The CGM(n; p) is a BSP model consisting of a setof p processors with O(np ) local memory each. The term \coarse grained" refersto the fact that (as in practice) O(np ) is de�ned to be \considerably larger" thanO(1). The de�nition of \considerably larger" is np � p�, where � depends on theproposed algorithms; in this paper � = 1.The following result will be used in the remaining to achieve a constantnumber of communication rounds in the solution of many problems.Theorem1. [14] Given a set S of n items stored O(n=p) per processor on aCGM(n; p), n=p � p, sorting S takes a constant number of communicationrounds. utThe algorithms proposed for the CGM are independent of the communica-tion network. Moreover, it was proved that the main collective communicationoperations can be implemented by a constant number of calls to global sort ([8]).Hence, by Theorem 1, these operations take a constant number of communica-tion rounds. However, in practice these operations will be implemented throughbuilt-in, optimized system-level routines. In the remainder, let TS(n; p) denotethe time complexity of a global sort in the CGM.



3 Basic operationsIn the CGM model, any parallel pre�x (su�x) associative function to be per-formed in an array of elements can be done in O(1) communication steps, sinceeach processor can compute locally the function, and then with a total exchangeall the processors get to know the partial result of all the other processors andcan compute the �nal result for each element in the array.We will also use the pointer-jump operation, to identify the elements in alinked list. This operation can be easily done in O(logp) communication steps,at each step each processor keeps track of the pointers of its elements.3.1 Interval operationsDue to space limitations, the algorithms of the functions described in this sectioncan be found in the annex of this paper.In the following algorithms two functions will be widely used, the Ominrightand Omaxright [1]. Given an interval I, Omaxright(I) (Ominright(I)) denotes,among all intervals that intersect I, the one whose right endpoint is the furthestright (left). The formal de�nition is the following.Omaxright(Ii) = � Ij ; if bj = maxfbkjak � bi < bkgnil; otherwise.The function Omaxright can be computed with time complexity O(TS(n; p)).We de�ne also the parameter First(I) as the segment I which \ends �rst",that is, whose right endpoint is the furthest left:First(I) = Ij ; with bj = minfbij1 � i � ng:To compute it, we need only to compute the minimum of the sequence ofright endpoints of intervals in the family I.We will also use the function next(I) : I ! I de�ned asnext(Ii) = � Ij; if bj = minfbkjbi < akg,nil; otherwise.That is, next(Ii) is the interval that ends farthest to the left among all theintervals beginning after the end of Ii (see Fig.1). To compute next(Ii), 1 � i � n,we use a slightly di�erent version the algorithm used for Omaxright(Ii).4 Interval graph problems and algorithmsFormally, given a set n of intervals I = fI1; I2; : : : ; Ing on a line, the correspond-ing interval graph G = (V;E) has the set of nodes V = fv1; : : : ; vng, and thereis an edge in E between nodes vi; vj if and only if Ii \ Ij 6= ;.In this section, solutions for some important problems in interval graphs areproposed for the CGM model. Some of these algorithms use techniques derivedfrom their corresponding PRAM algorithms while others require di�erent meth-ods, e.g. to compute the connected components, as shown below.



1

2

3

4

5

next(1) = 5, next(2) = 4, next(3) = next(4) = next(5) = nilFig. 1. Example of the next function.4.1 Maximum weighted cliqueA clique is a set of nodes that are mutually adjacent. In the maximum weightedclique problem for an interval graph, we want to know the maximum weight ofsuch a set, given weights p(Ii) � 0 on the intervals, and identify a maximumweighted clique by marking its nodes. The CGM algorithm is as follows:1. Sort the endpoints of the segments such that each processor receives2n=p endpoints.2. Assign to each endpoint ci a weight wi defined bywi = � p(Ij); if ci = aj, for some 1 � j � n,�p(Ij); if ci = bj, for some 1 � j � n,3. Compute the prefix sum of the resulting weighted sequence - themaximum obtained is the cardinality of a maximum clique; let d1; : : : ; d2ndenote the resulting sequence.4. Consider the sequence e1; : : : ; e2n obtained by replacing every dj corre-sponding to a right endpoint of an interval with -1 and compute therightmost maximum of the resulting sequence; this occurs at ak.5. Broadcast ak. Every interval Iu such that au � ak < bu is marked to bein the final maximum weighted clique.Due to space limitations, the correctness and the complexity of the algorithmcan be found in the annex of this paper.Theorem2. The maximum weighted clique problem in an interval graph of sizen can be solved on a CGM(n; p) in O(TS(n; p) + n=p) time, with a constantnumber of communication rounds. ut4.2 Connected componentsThe connected components of a graph G are the maximal connected subgraphsof G. The connected components problem consists of assigning to each node thelabel of the connected component that contains it. For the CGM(n; p) we havethe following algorithm:



1. Sort the intervals by left endpoints distributing n=p elements to eachprocessor.2. Each processor Pi computes the connected components for the subgraphcorresponding to its n=p intervals, giving labels to the componentsand associating the labels to the nodes.3. Each processor detects the farthest right segment amongst its n=p in-tervals - tail ti - and broadcasts it (with its label) to all otherprocessors.4. Each processor checks if any of the tails intersects its components,and updates its local labels using in each case the smallest such newlabel.5. Each processor Pi records the pair (ti, new label) and sends it toprocessor P0.6. Processor P0 performs a connected components algorithm on the tailsand updates the tail labels using the smallest such new labels andsends the tails and their new labels to all processors.7. Each processor updates the labeling accordingly.Due to space limitations, the correctness and the complexity of the algorithmcan be found in the annex of this paper.Theorem3. The connected components problem in interval graphs can be solvedon a CGM(n; p) in O(TS (n; p) + n=p) time, with a constant number of commu-nication rounds. ut4.3 BFS and DFS treeThe problem of �nding a Breadth First Search Tree in an interval graph reducesto the problem of computing the function Omaxright described earlier. The treegiven by the edges (Ii;Omaxright(Ii)) is a BFS tree [17]. And the tree formed bythe edges (Ii;Ominright(Ii)) is a DFS tree [17]. The algorithm is the following:1. Compute Omaxright(Ii), for 1 � i � n.2. Let father(Ii) = Omaxright(Ii).3. The edges (Ii; father(Ii)) form a BFS tree.With the appropriate modi�cations, this algorithm may be used to �nd aDFS tree. The obtained BFS and DFS trees have their roots in the segmentsending farthest to the right in each connected component. With respect to itscomplexity, the algorithm takes a constant number of communication steps andrequires a total running time of O(TS(n; p) + n=p).Theorem4. Given an interval graph G, BFS and DFS trees can be found usinga CGM(n; p) in O(TS(n; p)+ n=p) time, with a constant number of communica-tion rounds. ut



4.4 Minimum interval coveringGiven a family I of intervals and a special interval J = (Ja; Jb), the problem ofthe minimum interval covering is to �nd a subset J � I such that J � [(J ),and jJ j is minimum; i.e., to �nd the minimumnumber of intervals in I needed tocover J . To solve this problem we may only consider the intervals Ii = (ai; bi) 2(I) such that bi � Ja and ai � Jb. Let IJ be the family of the intervals in Isatisfying this condition.An algorithm to solve this problem is as follows:1. Compute Omaxright(I), I 2 IJ.2. Find the interval Iinit such that binit = maxfbkjak � Jag.3. Mark Iinit and all the intervals in the path given by Omaxright pointersbeginning at Iinit.Due to space limitations, the correctness and the complexity of the algorithmcan be found in the annex of this paper.Theorem5. The minimum interval covering problem in interval graphs can besolved using a CGM(n; p) in O(TS(n; p) + logp) time, with O(logp) communi-cation rounds. ut4.5 Maximum independent set and Minimum dominating setThe �rst problem consists of �nding a largest set of mutually non-overlapping in-tervals in the family I, called the maximum independent set. The second problemconsists of �nding a minimum dominating set, i.e., a minimum set of intervalswhich are adjacent to all remaining intervals in the family I. To solve these prob-lem, we simply show a coarse-grained implementation of the algorithms proposedin [21]. In fact, it can be shown that both problems can be solved by building alinked list from First(I). Due to space limitations, the corresponding algorithmsare presented in the annex of this paper.The number of communication rounds in each of the algorithms is O(log p),giving us a total time complexity of O(TS(n; p) + logp) and O(log p) communi-cation rounds. Their correctness stems from the arguments in [21].Theorem6. The maximum independent set and the minimum dominating setproblems in interval graphs can be solved using a CGM(n; p) in O(TS(n; p)+logp)time, with O(logp) communication rounds. ut5 Experimental resultsThis section describes the implementations of three of the algorithms presentedpreviously. Our aim here is to demonstrate that these algorithms are not onlytheoretically e�cient but that they lead to simple fast codes in practice.



We will describe the implementation of our connected components, maximalweighted clique, and breadth �rst search algorithms for interval graphs. Theywere implemented on a Fast Ethernet-PCC platform which consists of a set of12 Pentium Pro 200 Mhz processors each with 64M of RAM that are linkedby a 100Mb/s Fast Ethernet network. The processors run the Linux OperatingSystem and the programs are written in C utilizing the PVM communicationlibrary [12] for all interprocessor communications.Since many of the algorithms rely on sorting, the choice of the sorting methodwas critical. In the following we �rst present the implemented sort and its perfor-mance before describing the implementation and performance of our algorithms.5.1 Global sortThe sorting algorithm implemented is described in [13]. It was selected due toits e�ciency and the ease with which it can be implemented. The algorithmrequires a constant number of communication steps and its single drawback isthat data may not be equally distributed at the end of the sort. Nevertheless, apartial sum procedure and a routing can be used to redistribute the data with aconstant number of communication rounds so that each processor stores np datain its memory.Figure 2 shows the execution time for the global sort on an array of inte-gers with the data redistributed in comparison to the sequential performance ofquicksort (from the standard C library). The results shown are the average often execution times over ten di�erent inputs generated randomly. The abscissarepresents n the size of the input array (which varies from 100,000 to 45,000,000integers) and the ordinate the execution time in seconds.
0

100

200

300

400

500

600

700

800

900

0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07 3.5e+07 4e+07 4.5e+07

sequential quicksort
CGM parallel sort with 4 PCs

CGM parallel sort with 12 PCs

Fig. 2. Sorting on the Fast Ethernet-PCC.For less than 7,000,000 integers, the achieved speedup is about 2.5 for fourprocessors and 6 for twelve processors. Beyond the size of 7,000,000 integers, the



memory swapping e�ects increase signi�cantly the execution time on a singleprocessor and super-linear speedup is obtained, with 10 for four processors and35 for twelve processors. Sorting 40,000,000 integers takes less than one minutewith twelve processors.5.2 Maximum weighted cliqueThe algorithm requires a constant number of communication rounds andO(np lognp )local operations. Note that only the local computations involved in the sort re-quire O(np lognp ) operations, whereas all the other steps require only O(np ) oper-ations.
0

100

200

300

400

500

600

700

0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06

sequential MWC
CGM MWC with 4 PCs

CGM MWC with 12 PCs

Fig. 3. Maximum Weighted Clique on the Fast Ethernet-PCC.Figure 3 presents the execution time when the number of intervals increases.With a graph having less than 1,000,000 intervals, the speedup is 2.5 with fourprocessors, whereas it is equal to 7 for twelve processors. Beyond 1,000,000 in-tervals, the speedup is 10 for four processors and 35 for twelve processors, thesesuperlinear timings being due to memory swapping e�ects. Again note that withthis algorithm larger data sets than in the sequential case can be handled in areasonable time.5.3 Connected componentsAs in the maximum weighted clique algorithm above, here also only the sortrequires O(np lognp ) local operations, all the other steps being linear in np .Figure 4 shows the execution time in seconds as the size of the input increases.The achieved speedup is approximately 2.5 for four processors and 7 for twelveprocessors for a graph having at most 2,000,000 intervals. With more intervals,the speedup is 8 for four processors and 30 for twelve processors. Also observethat with one processor, at most 2 million of data can be processed whereas



0

50

100

150

200

250

300

350

400

450

500

0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07 1.4e+07

sequential CC
CGM CC with 4 PCs

CGM CC with 12 PCs

Fig. 4. Connected Components on the Fast Ethernet-PCC.twelve processors can process 12 million of data reasonably. Beyond 12 milliondata items the execution time increases more steeply due to memory swappinge�ects, even with twelve processors.5.4 BFS treeThe achieved speedup is 2 for four processors and 6 for twelve processors withat most 2 million of intervals. Beyond this size, the speedup becomes 7 for fourprocessors and 20 for twelve processors. The measured times are slower thanthose obtained for the previous algorithms, because two steps of the functionOmaxright require O(np lognp ) operations, whereas for the previous problems onlyone step required this number of local operations.
0

50

100

150

200

250

300

350

400

0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07 1.4e+07

sequential BFS
CGM BFS with 4 PCs

CGM BFS with 12 PCs

Fig. 5. BFS Tree on the Fast Ethernet-PCC.



6 ConclusionIn this paper we have shown how to solve many important problems on intervalgraphs using a coarse-grained parallel computer such as a cluster of PC's. Theproposed algorithms were shown to be theoretically e�cient, easy to implementand fast in practice. We believe this can largely be attributed to the use of theCGM model which accounts for distributed memory e�ects, mixes sequentialand parallel coding, and encourages the use of a constant or very small numberof communication rounds.Note that the use of the CGM model, which was primarily developed foralgorithm design in the context of interconnection networks, has led to e�cientimplementations even in the context of a bus-based network like Ethernet. Wespeculate that this is due to several factors including: 1) the model focuses onsending a small number of large messages rather than a large number of smallones 2) it relies on standard, and typically well optimized, communications op-erations and 3) it focuses on reducing the number of communication roundsand therefore the number on interdependencies between rounds. Of course atsome point such bus-based networks always become saturated and more atten-tion must be paid to bandwidth and broadcast conict concerns, particularly asone scales up. We are currently exploring how such concerns can best be dealtwith within the context of a CGM-like model.References1. A.A. Bertossi and M.A. Bonuccelli. Some Parallel Algorithms on Interval Graphs.Discrete Applied Mathematics, 16:101{111, 1987.2. E. Caceres, F. Dehne, A. Ferreira, P. Flocchini, I. Rieping, A. Roncato,N. Santoro, and S. Song. E�cient parallel graph algorithms for coarse grainedmulticomputers and BSP. In Proc. of ICALP'97, pages 131{143. Lecture Notes inComputer Science. Springer-Verlag, 1997.3. R. Cole and U. Vishkin. The accelerated centroid decomposition technique foroptimal tree evaluation in logarithmic time. Algorithmica, 3:329{346, 1988.4. Culler, R. Karp, D. Patterson, A. Sahay, K. Schauser, E. Santos, R. Subrarnonian,and T. von Eicken. LogP: Towards a realistic model of parallel computation. InFifth ACM SIGPLAN Symposium on the Principles and Practice of Parallel Pro-gramming, 1993.5. S.K. Das and C.C.-Y. Chen. E�cient Parallel Algorithms on Interval Graphs. InProc. 4th International PARLE Conference, pages 131{143, 1992.6. F. Dehne, X. Deng, P. Dymond, A. Fabri, and A. Khokhar. A randomized parallel3d convex hull algorithm for coarse grained multicomputers. In Proc. 7th ACMSymp. on Parallel Algorithms and Architectures, pages 27{33, 1995.7. F. Dehne, A. Fabri, and C. Kenyon. Scalable and archtecture independent parallelgeometric algorithms with high probability optimal time. In Proceedings of the 6thIEEE SPDP, pages 586{593. IEEE Press, 1994.8. F. Dehne, A. Fabri, and A. Rau-Chaplin. Scalable parallel geometric algorithmsfor coarse grained multicomputers. In Proc. 9th ACM Symp. on ComputationalGeometry, pages 298{307, 1993.



9. E. Dekel and S. Sahni. Parallel Scheduling Algorithms. Operations Research,31(1):24{49, 1983.10. X. Deng and N. Gu. Good algorithm design style for multiprocessors. In Proc.of the 6th IEEE Symposium on Parallel and Distributed Processing, Dallas, USA,pages 538{543, October 1994.11. A. Ferreira, A. Rau-Chaplin, and S. Ub�eda. Scalable 2d convex hull and triangu-lation for coarse grained multicomputers. In Proc. of the 6th IEEE Symposiumon Parallel and Distributed Processing, San Antonio, USA, pages 561{569. IEEEPress, October 1995.12. A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R Manchek, and V. Sunderman.PVM: Parallel Virtual Machine - A Users' Guide and Tutorial for Networked Par-allel Computing, 1994.13. A.V Gerbessiotis and L.G Valiant. Direct bulk-synchronous parallel algorithms.Journal of Parallel and Distributed Computing, pages 251{267, 1994.14. M.T. Goodrich. Communication-e�cient parallel sorting. In Proc. of 28th Symp.on Theory of Computing, 1996.15. U.I. Gupta, D.T. Lee, and J.Y.-T. Leung. An Optimal Solution for the Channel-Assignment Problem. IEEE Transaction on Computers, C-28:807{810, 1979.16. S. Hambrusch and A. Khokhar. C3: An architecture-independent model for coarse-grained parallel machines. In Proc. of the 6th IEEE Symposium on Parallel andDistributed Processing, October, Dallas, USA, 1994.17. S.K. Kim. Optimal Parallel Algorithms on Sorted Intervals. In Proc. 27th AnnualAllerton Conference Communication, Control and Computing, volume 1, pages766{775, 1990.18. H. Li and K. Sevick. Parallel sorting by overpartitioning. In Proc. of the ACMSymposium on Parallel Algorithms and Architectures, pages 46{56, 1994.19. A. Moitra and R. Johnson. PT-Optimal Algorithms for Interval Graphs. In Proc.26th Annual Allerton Conference Communication, Control and Computing, vol-ume 1, pages 274{282, 1988.20. S. Olariu. Parallel graph algorithms. In A. Zomaya, editor, Handbook of Paralleland Distributed Computing, pages 355{403. McGraw-Hill, 1996.21. S. Olariu, J.L. Schwing, and J. Zhang. Optimal Parallel Algorithms for ProblemsModelled by a Family of Intervals. IEEE Transactions on Parallel and DistributedSystems, 3(3):364{374, 1992.22. L.G. Valiant. A bridging model for parallel computation. Communications of theACM, 33:103{111, 1990.



AnnexA Interval graph operationsA.1 OmaxrightOne way to compute the function Omaxright is as follows:1. Sort the left endpoints of the interval in ascending order as a01; a02; : : : ; a0n.2. Compute the prefix maxima of the corresponding sequence b01; b02; : : : ; b0n of rightendpoints and let the result be b001 ; b002 ; : : : ; b00n. (b00k = max1�i�kfb0ig.)3. For every i (1 � i � n) compute the rank r(i) of bi with respect to a01; a02; : : : ; a0n4. For every i (1 � i � n), set Omaxright(Ii) = Ij, such that bj = b00r(i) andbi 6= b00r(i); otherwise set Omaxright(Ii) = nil.A.2 NextTo compute next(Ii), 1 � i � n, we use the same algorithmused forOmaxright(Ii),with a new step 2:1. Sort the left endpoints of the interval in ascending order as a01; a02; : : : ; a0n.2. Compute the suffix minima of the corresponding sequence b01; b02; : : : ; b0n of rightendpoints and let the result be b001 ; b002 ; : : : ; b00n. (b00k = mink�i�nfb0ig.)3. For every i (1 � i � n) compute the rank r(i) of bi with respect to a01; a02; : : : ; a0n4. For every i (1 � i � n), set Next(Ii) = Ij, such that bj = b00r(i) and bi 6=b00r(i); otherwise set Next(Ii) = nil.It is easy to see that the given procedure implements the de�nition of next(Ii),with the same complexity as for computing Omaxright(Ii).B Maximum weighted cliqueThe correctness of the algorithm described in Section 4.1 follows immediatelyfrom the correctness of the algorithm in [9]. Steps 1 and 2 require timeO(TS(n; p)),Step 3 requires time O(n=p), and Steps 4, 5 and 6 require O(TS(n; p) + n=p).To summarize we have a running time of O(TS(n; p) + n=p), with a constantnumber of communication rounds.C Connected ComponentsTo con�rm that the algorithm described in Section 4.2 is correct, it is enoughto check that the farthest right segment that starts in a processor to the leftof processor i has all the information necessary to correctly update the labelsof nodes stored on processor i. As soon as this information is available at theend of Step 3, locally each processor can update the labels and assign to its tail



its corresponding label. Processor P0 will then update, at Step 6, the tail labelsdepending on whether they belong to the same components. At the last step,the �nal labeling is obtained.With respect to the time complexity, the above algorithm requires O(TS(n; p))in Steps 1, 2 and 6, O(n=p+ TS(n; p)) in Steps 4 and 7, and O(n=p) in Steps 3,5 and 8. In total we have O(TS(n; p)+n=p), with a constant number of commu-nication steps.D Minimum interval coveringTo con�rm the correctness of the algorithm presented in Section 4.4, supposethat there is another family J 0 � IJ such that J � [(J 0), and jJ 0j < jJ j.Choose such a family where J \ J 0 is maximum. Let J = fJ1; : : : ; Jmg andJ 0 = f J 01; : : : ; J 0m0g, where m > m0.Let Jk be the �rst interval in J which is not in J 0, i.e., k is such thatk = minfijJl = J 0l ; 1 � l < i; and Jk 2 J n J 0g:By de�nition, Jk\Jk�1 6= ; and J 0k\Jk�1 6= ;. Hence, since Omaxright(Jk�1) =Jk, the right endpoint of J 0k is to the left of the right endpoint of Jk (if k = 1,then by de�nition of Iinit we get the same conclusion). Note that we can nowreplace J 0k with Jk in J 0, which is a contradiction to the hypothesis that jJ \J 0jis maximum.Note that Step 1 requires O(Ts(n; p)) time, Step 2 requires O(TS(n; p)) timeand Step 3 uses pointer jumping and therefore O(log p) communication rounds.The total time is thus O(Ts(N; p) + logp) with O(log p) communication rounds.E Maximum independent set and Minimum dominatingsetMaximum independent set:1. Compute First(I)2. Compute next(Ii), for i, 1 � i � n3. Let father(Ii) = next(Ii), for i, 1 � i � n4. Using the pointer-jump operation, mark all the intervals in the linkedlist given by father and beginning at First(I)Minimum dominating set:1. Compute First(I)2. Compute Omaxright(Ii), for 1 � i � n3. Compute next(Ii), for 1 � i � n4. Let father(Ii) = Omaxright(next(Ii)), for 1 � i � n5. Using the pointer-jump operation, mark all the intervals in the linkedlist given by father and beginning at Omaxright(First(I))This article was processed using the LATEX macro package with LLNCS style


