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Abstract

The LaHave House Project explores the creation of an
automated architectural design service based on an
industrial design approach to architecture in which
Architects design families of similarly structured objects,
rather than individual ones.

Our current system consists of three software
components. 1) A design engine that uses shape grammars
to generate a library of preliminary level house designs, 2)
A design development tool that permits end-users to
selected, customize and visualize designs drawn from the
libraryand 3) A building systems configuration tool that
transforms customized designs into working/assembly
drawings.

Our aim is to generate modern realizable houses that
combine beautiful forms with a modern approach to oace
planning. We are currently completing an integrated on-
line prototype that allows end-users to select, customize
and visualization generated house designs over the Internet
in 3D, using a Java/VRML based design development
tool.
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Shape Grammars, Generative Expert  Systems,
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1. Introduction

The LaHave House project is an ongoing research
project of the Faculties of Architecture and Computer
Scienceat the Technical University of Nova Scotia,
Canada. The goal of the project isexplorethe potential
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for anindustrial design approach to architecturaldesignin

which Architects designfamilies of similarly structured
objects, rather thaimdividual objects,therebyamortizing
design costs.

Currentlyin North Americaarchitectsare involved in
the designof only about5% percentof the total new
house market. Whereascustom architecturaldesignwill
alwayshave a premierrole to play, we believe that an
industrial designapproachto architecturecanbring much
of the designquality andvariety of customdesignto the
other 95% of the market, at an affordable price.

At the heartof the projectis the use of generative

grammars to build design libraries.
We are interested in exploring the creation ofatomated
architectural design service basedon suchdesignlibraries.
The LaHave Housgrammaris derivedfrom on the work
of Brian MacKay-Lyons [2,4] and is inspired by the
vernacular architecture of the LaHave river valleyNova
Scotia. It usesabstractversionsof archetypalforms of
buildingsin this regionand focuseson simple detailing
and efficient construction.

We are interested in generating modern realizable
houses. Housesthat combine beautiful forms with a
modern approach to space planning. Furthermore, we want
the generatedepresentationt be at the level of detailed
preliminary design,in that functional issuesconcerning
bathrooms, closets, door swings etc. have been addressed.

To supportour vision of an automatedarchitectural
design service, we have developed a protopAD tool
that enablesa end-usetto select,customizeand visualize
designs drawn from our design library. We everentlyin
the processof constructinga single integratedprototype
that is capable of running on-line over the Internet using
Java and VRML enabled World Wide Web browser.
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Figure 1. Components of

2. Overview

The LaHave House System consists of three major
software components (see Figure 1):

1) A Design Enginethat generatesa library of house
designs.

2) A Design Development Tool that allows an end-user
Select, Customize and Visualize designs.

3) Building Systems Configuration software that
transforms developed house designs into sets of
working/assembly drawings.

In this paperwe will focuson our approachto design
generation and thdesigndevelopmentool. The building
systems configuration software is currently in a very
preliminary form and will be discussed elsewhere.

2.1 Thedesign engine

The roleof the designenginein the LaHave house
projectis to generatea library of “base housedesigns”
which can be usedas a starting point for an end-user
driven design developmeptocessOne canthink of this
library asthe digital analogto the patternbooks of the

LaHave House System

19th century inthat both containhouseorganizationsas
much as they contain individual house designs. The
generateddesign library contains houses that differ
radically from each other in form, organization, size,
amenity level, and “style”, bullespitethis diversity share
an underlying deepstructure.This shareddeep structure
results from them all being productions of the same Shape
Grammar[5,10] and is intrinsic to the systemsas a
whole, becauset is preciselythis shareddeepstructure
that allows us to createan effective designdevelopment
tool. Each base house designhouse schema consistsof
a completedescriptionof the geometryof the houseand
the layout of each floor. The design of individual spaces in
the house, for examplethe layout of the kitchen or
bathrooms s not currently generatedather pre-designed
room arrangements;alledtiles, areallocatedfrom a tile
library. Our current tile library consistsf over 500 room
tiles and 200 wall tiles.

The LaHave housdesignengineand grammarwill be
described in more detail in Section 3.

2.2 Thedesign development tool

In order to support our goal of an automated
architecturaldesign service we neededto build a user
interfacethat was appropriatefor end-userswith little or
no design experience. On the dmand,the tool neededo
be powerful enough to givend-userghe ability to create



highly idiosyncratic designs.While on the other hand
restrictiveenoughto ensurethat neither the architectural
nor structural integrity of the house design was
compromised. Clearly the usability of the design
developmentool hinges on striking the right balance
betweenthesetwo opposingdesigngoals. Our approach
to date has been to combine “design by selectionivj&}
a powerful, but restrictedprm of usercustomizationand
to provide tools to help the user visualize the
consequences of their desidacisions.Our currentdesign
developmentool consistsof a shareduser interface and
three software components supporting Selection,
Customization and Visualizationespectively(seeFigure
1).

Selection. Our approachto determining the user's
requirementsis modeled largely on a typical “first
meeting” between Architect and Client. In order to
determinethe usersprogram (requirements)the user is
asked to complete a “questionnaire” consisting of
approximatelytwenty questionsconcerningBudget, Site,
Space,and Style issues.In keepingwith the ideaof a
design service eadluestionis accompaniedby a window
of “Architectural Advice” which attempts to explain tioe
user the ramifications and tradeoffs inherent in each
decision.

TheBudget questions address the issues of budgatge
and level of interior finish. The Ste questions address
issuessuchasthe site’s width, relationshipto the road,
slope and orientationwith respectto the sun. The Space
guestions concernthe numberof various rooms required
(i.e. # of bedroomspathrooms.etc.) andissuesof space
planning. The Style questions concerna range of issues
from roof shape,to the degree of symmetry and
articulationof form. Somestyle questiongake the form
of a text-basedjuestion,while othersrequire the userto
select images that they particularly like or disligetting
at a userslikes and dislikes is not always easyis this
straight question and answer format. We hope in the future
to explore other approachesto eliciting qualitative
requirements perhaps along the lines described in [7].

Having answeredhesequestionsthe useris presented
with a matrix of external 3¥iews of basehousedesigns
that satisfy their requirements accordiagtheir responses
to the questionnaire Associatedwith each base house
designis a “digital brochure”consistingof a set of floor
plans andsummaryinformation (i.e. squarefootage,# of
bathroomsetc.) in the form of a typical “real estatecut
sheet”.

By a process of examination and elimination the user is
expectedo decideon a single basehousedesignwhich
best satisfies their needs/dreams.This design then
becomes the starting point for customization.

Customization. The task of the Customization
componentis to allow the userto modify/evolve their
basehousedesigninto one that more fully meetstheir
needs. The current customization tool is a consttzised
editor that allows theiserto performthe following basic
actions:

1) Replaceone tile (room organization)with another -
provided the new tile is “compatible” with its
neighbor, has associated wall typkat are compatible
with its neighbors,and maintainsthe connectivity of
the house’s underlying circulation graph.

2) Add a secondanform (“bump”) to the housedesign-
provided it is compatible with its neighbors (as
determined by information computed by the grammar at
generatiortime) andthat it doesnot violate any of a
set of important 3D constraints(e.g., secondstory
secondary forms must be over first story ones).

The userinterfaceis basedon the idea of replacement
(seeFigure 2). The useris presentedvith one window
containing a floor plan and another that will display
possiblereplacementiles. Whenthe userselectsa room
or wall tile in the plan window the interface computes,
basedon the constraints,a set of possiblereplacements
that are then displayedin the replacemenwindow. The
user can then browse tiset of possiblereplacementsnd
select one to effect the replacement.

EiApplet Viewer: DMApplet.class !Elm
Applet
Save Floor
1st Floor
2nd Floor
3rd Floor
Floor Plan: First.
There are 35 compatible tiles! Click on the image to replace!
ﬂ [ Current Image: image #1
1 %l D Tile name:BCU-3Q-6.til
applet started

Figure 2: Customization Applet

Addition of secondaryforms is handledin the same

way, with the user selectinga “glue line” in the plan



window which is a specialtype of tile that is created
during generationto expressthe potential for adding
various kinds of secondafgrms to a particularregion of

a plan. Secondanforms currently include bay windows,
small rooms (study, den, sun-roometc.), balconies,and
decks. We have focused on the addition of secorfdamys
asthey arefar lesslikely to adverselyeffectthe massing
and proportionsof the houseas carefully constructedby

the designengine.The customizationtool also supports
the modification of internal partitions and the editing of

fenestration.

It is interestingto note that both the simplicity and
power of the customizationtool aredirectly derivedfrom
the fact that the designsto be edited were createdby a
shapegrammar. The underlying deep structure in the
designs allows individual parts of the design to be
reworked relatively independently.The constraints that
maintain the geometry, circulation and servant/served
relationshipsbetweenspacesan be effectively expressed
in terms of relationshipsthat the grammar createsand
records in the house schema data structure.

Although we have come a long way there are still
many challengesto be addressedn customization.The
issue of how to handle overly constrained planning
situationsis particularly challenging.Also, althoughthe
customization tool maintains important physical
constraints, it does not maintadrfreasonableplan” from
the perspective of function planning. Fetample,it will
permit a userto placethe dinning room and kitchen at
extremeoppositeendsof a floor plan without comment.
The issue here isne of locus of control, andin the case
of function planning we feel it is best to redn the users
superior knowledge of their needad commonsense We
are currently examining whether the use of a “design
critic” [8] might not aid the user in functional issues,
without directly constraining them. It would also be
interestingto explore a more cooperativeapproach like
the one describedin [1], in which the locus of control
moves back-and-forthbetweenend-userand the design
development tool.

Visualization. At any point during customizing the
user may need to visualizbeir evolving housedesignin

3D in order to really understandit. The task of the
Visualizationcomponents to transforma houseschema
into a complete3D model. TheVisualizationcomponent
consistsof two programs.The first is a compiler that
parsesa house schemaand, using a 3D kit of pre-
manufacturedparts/models(analogousto the 2D tile

library), constructs on-the-fly a complete 3fibdel of the
house. The secondprogramis a 3D user interface or

browser that allows an end-userto view and “walk-

through” the completed 3D model.

{ EMBED Word.Picture.6}
Figure 3: Generated 3D View of an
Example House

Our initial implementation of the Visualization
componentwas prototyped in a programmable CAD
package with basic renderifigatures(seeFigure 3). This
allowed us to explore the challengesof on-the-fly 3D
model constructionin an environment richin primitive
geometric operations, but was much too skowd required
each user have an expensive CAD package.

We are currently completingan on-line Internet based
version of the Visualization componentthat uses the
World Wide Web basedVRML format to describethe
models. Thesemodelscan then be viewed and “walk-
through” using any of severalwidely available VRML
broswers.VRML appearsto be a good platform for
supporting on-line user-driven walk-throughs, but
currentlyis ratherlimited in its renderingand interactive
facilities.

Again there remain many interesting open questions
concerning visualization. In particulare are interestedn
the architectural presentation issues of how beptdsent
3D representation®f structuresto end-users.We are
exploring how abstract 3D models that convey the
underlying structure ofaHavehousedesigns ratherthan
presentingrealistic models, might be used to better
“reveal” the design to users.

Our current designdevelopmentool is very much a
prototype;an environmentin which to explore design
developmentby watching an end-userat work. After
constructing initial prototypes of various padfthe tool
using a diverse range of tools from PrograpitwoCAD
we are now in the processof constructinga single
integratedprototypethat is capableof running on-line
over the Internetusing a JavaandVRML enabledWorld
Wide Web browser.

3. Generating the design library

3.1 The grammar

The LaHaveHousegrammaris basedon a systematic
approachto housedesigndevelopedby Brian MacKay-
Lyons in over fifteeryearsof customarchitecturaldesign
practice[2,4] The forms generatecby the grammarhave
been inspired by the vernacukarchitectureof the LaHave
river valley of Nova Scotia, Canada. Using shape
grammars to capture the desigpaceof a living architect
is in many waysdifferentto much of the existing shape



grammar work [3,9]. The goas not so muchto createa
grammarthat generatesn existing corpusof design,but
ratherto work with the Architect to extract from their
existing design corpus a robust set of generation
principles.

Onefeatureof the grammaris its tendencyto produce
dense corefor servicesand sparseopenspacedor living
in. The grammaris constructedn termsof a set of five
elementary components: Rooms, Tartans, Machines,
Bays, and Totems. Thomsarethe principle placesfor

human action, the tartans provide space for circulation, the
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machines (bathrooms, kitchens, laundry, entry etc.) are the

denseservicespacesthe Bays provide outlook spaceand

secondary living space, and the totems (heasth&cases,

cabinetry etc.) provide focus for the rooms.
The grammarmakesmuch use of the idea of Served
Vs. Servantspacesadvancedn [6]. This tendsto be a

three level hierarchy in which rooms are served by primary
machines,which may in turn be servedby secondary

machines. For example, a dinning room mayséeedby
a kitchen, which is in turn served by a pantry.

Although we are interestedin generating complete
functional modern houses, (i.e. we care where the
bathroomsand closetsgo), the grammaris driven purely
by issues of form. The function plan is derivaudy when
the form has been completely generated.

The grammarwe are currently working with has a
single longitudinalaxis of growth, with a densemachine
zone flanking a body zone, which is in tlsarroundedoy
a bayzone(seeFigure 4). The machinezonetendsto be
contiguousand completelyfilled, particularly in smaller
houses,while the bay zonetendsto be more sparsely
populated.

00y

N A
Body Zone
>Growth

Bay Zong

duys freuel

dins

Figure 4: Space Zoning

3.2 A three phase approach

Tile
Allocation

House
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Figure 5: Phases of Generation

A hierarchicalset of ShapeGrammarsas popularized
by Stiny and Mitchell [5,10] are usedto generateboth
plan and section schema. A set of backwarahainingrules
are then usedto identify/recognizewithin plan schema
possible groupings of individual spacesinto abstract
functional zones denoting Public, Private and Semi-
private spaces. Given compatible plan and section schema,
a form schema cannow be created.This entails creating
floor plans (from the plan schema),dimensioningthese
plans, creating wallso define/enclosehe interior spaces,
adding roofs and generally computing all of the 3D
information requiredto define a completeform. Finally,
form schema are transformed into completed house designs
(house schema) by a rule based system that first assigns to
eachspaceunit within the form schemaa function (i.e.
kitchen, bedroom,entry, study etc.) and then assignsa
room organizationérom a library of room level designs.

We call these pre-designed room organizatites andthe
problemof assigningtiles to spaceunits, in a pleasing
and functional arrangement, ttike assignment problem.

The current design engine is implemented SWI-
PROLOG and, whereassome attempt has beenmadeto
create a generaldesign generationtool, much of the
structureof the currentsystemis specificour underlying
grammar.

A difficult question,one which we haveyet to answer
to our own complete satisfaction is, “when are two houses
sufficiently different to warrant botbeingincludedin the
library?” Currently we take a pragmaticapproachto this
issue.At the level of form schema,we excludesimple

Our current design engine is based on a hybrid approachyjrror imagesand rotationsfrom the library, also minor

to the generation of designs.



variationsin secondanforms or roof shapeare excluded,
except wherghey havesignificant effect on the available
floor space.At the level of tile allocation we only
generatemultiple house schemafrom a single form
schemawhen the tile allocation process has led to
significantly different circulation/living patterns. Just
switching the position of the living room with the
dinning room doesnot warrantthe productionof a new
house design!

Currently the design engine generatesover 100,000
different housedesignsand whereassome of them are

“duplicate designs” arrived at by different paths, we believe

that overall they strike a reasonablebalance between
variety andneedleswariation. Thereare many interesting
problems within this context still to be investigated.

3.3 Issuesin generation

The principlechallengethat must be addressedn the
mass generationof houseforms is how to avoid the
inherentcombinatorialexplosion. In our current section
grammar,for example,the bay and body zonescome in
three widths each, the machinenein two. Therecanbe
up to threestoriesin the body zone,andtwo in each of
the machine and bagones.Thereare nine roof styles for
primary roofs and five for secondary roofdus, thereare
nearlyfifty thousanddifferent fundamentalcross-sections
of which less that 10% are valid.

The central challengaa addressinghis combinatorial
explosion arel) How canyou dealwith a spacethat can
increase n-foldvith the addition of a single new factor?
and?2) How can you be surethat all the schemabeing
generatedaretruly valid whenthere are far too many to
manually examine?After all, perhapsa certain casehas
been neglected, or worse, poorly programmed.

As we seeit, therearetwo opposingapproachego
generatingvalid schema. Thefirst is to generateall
possible combinations of all the elemerasdthen prune
away all those which prove invalid using a system of
validationrules. The basicadvantageof this approachis
simplicity. The generatiorrules arerelatively simple and
regular and each completpdoductioncan be validatedby
a equally simple andregular set of rules. There are two
primary disadvantageto this approach.Firstly, it is
unlikely that one has enough time or sp&zgenerateall
possible configurations before testing for validity.
Secondly,if a generatedschemais invalid for more than

primary form it connectsto, andthe roof of the primary
form is too shallow to support a second story:

Figure 6 - An Invalid Section Schema.

The rules which prevent these features from occurring
are given below.

invalid_section
if roof is not flatand
stories in body < stories in bump.

invalid_section
if distance from roof-peak to next floor < 8'.

If the secondrule is statedincorrectly, allowing the
primary form to be created with twsiories,then the first
rule (which is correct) will allow the secondary fotmbe
added. After all, there are two storiesthe primary form,
but only onein the secondaryform. By correcting the
second rule, théwo story versionwill be rejectedby the
second rule, anthe one story versionwill be rejectedby
the first one.

An approachat the other end of the spectrumis to
generate only validchemaHere,the ideais to write the
generatiorrules so craftily that invalid schemaare never
generatedUnfortunately,this approachis impossibleto
realize for anything but very trivial classesprbductions.
There are justoo many designissuesto be considerecdat
every choice point to make this approach workable.

The approach whavetakenis an attemptto combine
the advantage®f both extremeswhile minimizing the
disadvantages. In the generatmneachschemawe build-
up structurehierarchically (See Figure 7). A complete
structure iscomprisedof substructureswhich in turn are
comprised of their own substructures.The atomic
elements, likeroof shapewall sizes,androom typesare
combined into intermediate elements like trays, zmukes.
These substructures have their osetsof rulesto insure
their validity in-and-of themselves.

one reason, (i.e. it has features A, B, and C which are each

invalid by themselves) theit is possible(andasit turns
out quite likely) that the combinationof invalid features
arejointly consistentenoughto slip pastthe validation
rules. For example, in thieigure 6, therearetwo invalid
features. The left hand second#éoym is too largefor the
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Figure 7 A Hierarchical Approach.

Another technique for controlling combinatorial
explosionis basedon the idea of generatingwithin
equivalenceclassesOncesubstructurefiave beercreated
they must be combined, and the combined structure
checkedfor validity. For example,a plan and section

schema must be combined to create a form scheme. Rather

than try to combine all section schemewith all plan

schemagsuchschemaare generatedn equivalenceclasses
suchthat any planin classX canbe combinedwith any

sectionin classY to resultin a form schemathat has a

high probability of being valid. These equivalertasses
are definedn termsof the critical factorsthat governthe

intersectionof plan and section, like for example,the

width of zones, the number of stories in each zamithe

amountof usablespaceon the top story etc. Any factor

which always makesa section-planpair invalid as a

schemais includedin the definition of the equivalence
classes.

Our current desigengineusestwo different classeof
rules to check the validity afchemaAestheticrules, and
Pragmatic rules.

Aesthetic rules are those concerned with the
architecturalaesthetioof the generatedorms. Theserules
check everything from roof shapeto plan symmetry.
Figure 8 for example,illustrates a section schemain
which roof angleschange,but not sharply enoughto
warrantthe breakin “symmetry”. The current grammar
contains aesthetic rules to invalidate such schema.

A ¥

Figure 8 An Example Aesthetic Rules:
Weak Roof Angles.

Pragmaticrules arethoseconcernedvith the physical
realizability and reasonabilityof the form describedby a
schemalFor examplethe sectionschemain Figure 9 is
not valid for pragmaticreasons. Therimary form has
only one story, there is nitoor on the samelevel asthe
balcony. Thus this section schema is rejected for
pragmatic reasons.

L

Figure 9 An Example Pragmatic Rule:
Inaccessible Spaces

4. Concluding remarks

In this paperwe havegiven a high level overview of
the LaHave House Project. The goal of which is to
investigate that application of an industrial design
approach to architectural design practice.

To datewe havedevelopeda prototype designengine
and a generativegrammarthat togetherproduce modern
realizablehouses.The sophisticationof these generated
representationss gradually approachingthat of detailed
preliminary design. We havealso developeda prototype
designdevelopmentool for end-users. This tool allows
an end-userto Select, Customize and Visualize house
designs.

Although we have come a long way there are many
interesting fundamental questions still to be addressed.
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