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Abstract

The LaHave House Project explores the creation of an
automated architectural design service based on an
industrial design approach to architecture in which
Architects design families of similarly structured objects,
rather than individual ones.

Our current system consists of three software
components: 1) A design engine that uses shape grammars
to generate a library of preliminary level house designs, 2)
A design development tool that permits end-users to
selected, customize and visualize designs drawn from the
library and 3) A building systems configuration tool that
transforms customized designs into working/assembly
drawings.

Our aim is to generate modern realizable houses that
combine beautiful forms with a modern approach to space
planning. We are currently completing an integrated on-
line prototype that allows end-users to select, customize
and visualization generated house designs over the Internet
in 3D, using a Java/VRML based design development
tool.

Keywords: Automated Architectural Design Service,
Shape Grammars, Generative Expert Systems,
Knowledge-based Computer Aided Architectural Design,
Prolog, VRML, Java.

1.  Introduction

The LaHave House project is an ongoing research
project of the Faculties of Architecture and Computer
Science at the Technical University of Nova Scotia,
Canada. The goal of the project is to explore the potential

for an industrial design approach to architectural design in
which Architects design families of similarly structured
objects, rather than individual objects, thereby amortizing
design costs.

Currently in North America architects are involved in
the design of only about 5% percent of the total new
house market. Whereas custom architectural design will
always have a premier role to play, we believe that an
industrial design approach to architecture can bring much
of the design quality and variety of custom design to the
other 95% of the market, at an affordable price.

At the heart of the project is the use of generative
grammars to build design libraries. 
We are interested in exploring the creation of an automated
architectural design service based on such design libraries.
The LaHave House grammar is derived from on the work
of Brian MacKay-Lyons [2,4] and is inspired by the
vernacular architecture of the LaHave river valley in  Nova
Scotia.  It uses abstract versions of archetypal forms of
buildings in this region and focuses on simple detailing
and efficient construction.

We are interested in generating modern realizable
houses.  Houses that combine beautiful forms with a
modern approach to space planning. Furthermore, we want
the generated representations to be at the level of detailed
preliminary design, in that functional issues concerning
bathrooms, closets, door swings etc. have been addressed.

To support our vision of an automated architectural
design service, we have developed a prototype CAAD tool
that enables a end-user to select, customize and visualize
designs drawn from our design library. We are currently in
the process of constructing a single integrated prototype
that is capable of running on-line over the Internet using a
Java and VRML enabled World Wide Web browser.
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Figure 1: Components of LaHave House System

2.  Overview

The LaHave House System consists of three major
software components (see Figure 1):

1) A Design Engine that generates a library of house
designs.

2) A Design Development Tool that allows an end-user to
Select, Customize and Visualize designs.

3) Building Systems Configuration software that
transforms developed house designs into sets of
working/assembly drawings.

In this paper we will focus on our approach to design
generation and the design development tool. The building
systems configuration software is currently in a very
preliminary form and will be discussed elsewhere.

2.1 The design engine

The role of the design engine in the LaHave house
project is to generate a library of “base house designs”
which can be used as a starting point for an end-user
driven design development process. One can think of this
library as the digital analog to the pattern books of the

19th century in that both contain house organizations, as
much as they contain individual house designs. The
generated design library contains houses that differ
radically from each other in form, organization, size,
amenity level, and “style”, but despite this diversity share
an underlying deep structure. This shared deep structure
results from them all being productions of the same Shape
Grammar [5,10] and is intrinsic to the systems as a
whole, because it is precisely this shared deep structure
that allows us to create an effective design development
tool. Each base house design or house schema consists of
a complete description of the geometry of the house and
the layout of each floor. The design of individual spaces in
the house, for example the layout of the kitchen or
bathrooms, is not currently generated rather pre-designed
room arrangements, called tiles, are allocated from a tile
library. Our current tile library consists of over 500 room
tiles and 200 wall tiles.

The LaHave house design engine and grammar will be
described in more detail in Section 3.

2.2 The design development tool

In order to support our goal of an automated
architectural design service we needed to build a user
interface that was appropriate for end-users with little or
no design experience. On the one hand, the tool needed to
be powerful enough to give end-users the ability to create



highly idiosyncratic designs. While on the other hand
restrictive enough to ensure that neither the architectural
nor structural integrity of the house design was
compromised. Clearly the usability of the design
development tool hinges on striking the right balance
between these two opposing design goals. Our approach
to date has been to combine “design by selection” [5] with
a powerful, but restricted, form of user customization and
to provide tools to help the user visualize the
consequences of their design decisions. Our current design
development tool consists of a shared user interface and
three software components supporting Selection,
Customization and Visualization, respectively (see Figure
1).

Selection.  Our approach to determining the user’s
requirements is modeled largely on a typical “first
meeting” between Architect and Client. In order to
determine the users program (requirements), the user is
asked to complete a “questionnaire” consisting of
approximately twenty questions concerning Budget, Site,
Space, and Style issues. In keeping with the idea of a
design service each question is accompanied by a window
of “Architectural Advice” which attempts to explain to the
user the ramifications and tradeoffs inherent in each
decision.

The Budget questions address the issues of budget range
and level of interior finish. The Site questions address
issues such as the site’s width, relationship to the road,
slope and orientation with respect to the sun. The Space
questions concern the number of various rooms required
(i.e. # of bedrooms, bathrooms, etc.) and issues of space
planning. The Style questions concern a range of issues
from roof shape, to the degree of symmetry and
articulation of form. Some style questions take the form
of a text-based question, while others require the user to
select images that they particularly like or dislike. Getting
at a users likes and dislikes is not always easy is this
straight question and answer format. We hope in the future
to explore other approaches to eliciting qualitative
requirements perhaps along the lines described in [7].

Having answered these questions the user is presented
with a matrix of external 3D views of base house designs
that satisfy their requirements according to their responses
to the questionnaire. Associated with each base house
design is a “digital brochure” consisting of a set of floor
plans and summary information (i.e. square footage, # of
bathrooms etc.) in the form of a typical “real estate cut
sheet”.

By a process of examination and elimination the user is
expected to decide on a single base house design which
best satisfies their needs/dreams. This design then
becomes the starting point for customization.

Customization. The task of the Customization
component is to allow the user to modify/evolve their
base house design into one that more fully meets their
needs. The current customization tool is a constraint based
editor that allows the user to perform the following basic
actions:

1) Replace one tile (room organization) with another -
provided the new tile is “compatible” with its
neighbor, has associated wall types that are compatible
with its neighbors, and maintains the connectivity of
the house’s underlying circulation graph.

2) Add a secondary form (“bump”) to the house design -
provided it is compatible with its neighbors (as
determined by information computed by the grammar at
generation time) and that it does not violate any of a
set of important 3D constraints (e.g., second story
secondary forms must be over first story ones).

The user interface is based on the idea of replacement
(see Figure 2). The user is presented with one window
containing a floor plan and another that will display
possible replacement tiles. When the user selects a room
or wall tile in the plan window the interface computes,
based on the constraints, a set of possible replacements
that are then displayed in the replacement window. The
user can then browse the set of possible replacements and
select one to effect the replacement.

Figure 2: Customization Applet

Addition of secondary forms is handled in the same
way, with the user selecting a “glue line” in the plan



window which is a special type of tile that is created
during generation to express the potential for adding
various kinds of secondary forms to a particular region of
a plan. Secondary forms currently include bay windows,
small rooms (study, den, sun-room etc.), balconies, and
decks. We have focused on the addition of secondary forms
as they are far less likely to adversely effect the massing
and proportions of the house as carefully constructed by
the design engine. The customization tool also supports
the modification of internal partitions and the editing of
fenestration.

It is interesting to note that both the simplicity and
power of the customization tool are directly derived from
the fact that the designs to be edited were created by a
shape grammar. The underlying deep structure in the
designs allows individual parts of the design to be
reworked relatively independently. The constraints that
maintain the geometry, circulation and servant/served
relationships between spaces can be effectively expressed
in terms of relationships that the grammar creates and
records in the house schema data structure.

Although we have come a long way there are still
many challenges to be addressed in customization. The
issue of how to handle overly constrained planning
situations is particularly challenging. Also, although the
customization tool maintains important physical
constraints, it does not maintain a “reasonable plan” from
the perspective of function planning. For example, it will
permit a user to place the dinning room and kitchen at
extreme opposite ends of a floor plan without comment.
The issue here is one of locus of control, and in the case
of function planning we feel it is best to rely on the users
superior knowledge of their needs and common sense. We
are currently examining whether the use of a “design
critic” [8] might not aid the user in functional issues,
without directly constraining them. It would also be
interesting to explore a more cooperative approach, like
the one described in [1], in which the locus of control
moves back-and-forth between end-user and the design
development tool.

Visualization. At any point during customizing the
user may need to visualize their evolving house design in
3D in order to really understand it. The task of the
Visualization component is to transform a house schema
into a complete 3D model. The Visualization component
consists of two programs. The first is a compiler that
parses a house schema and, using a 3D kit of pre-
manufactured parts/models (analogous to the 2D tile
library), constructs on-the-fly a complete 3D model of the
house. The second program is a 3D user interface or
browser that allows an end-user to view and “walk-
through” the completed 3D model.

Figure 3: Generated 3D View of an
Example House

Our initial implementation of the Visualization
component was prototyped in a programmable CAD
package with basic rendering features (see Figure 3). This
allowed us to explore the challenges of on-the-fly 3D
model construction in an environment rich in primitive
geometric operations, but was much too slow and required
each user have an expensive CAD package.

We are currently completing an on-line Internet based
version of the Visualization component that uses the
World Wide Web based VRML format to describe the
models.  These models can then be viewed and “walk-
through” using any of several widely available VRML
broswers. VRML appears to be a good platform for
supporting on-line user-driven walk-throughs, but
currently is rather limited in its rendering and interactive
facilities.

Again there remain many interesting open questions
concerning visualization. In particular we are interested in
the architectural presentation issues of how best to present
3D representations of structures to end-users. We are
exploring how abstract 3D models that convey the
underlying structure of LaHave house designs, rather than
presenting realistic models, might be used to better
“reveal” the design to users.

Our current design development tool is very much a
prototype; an environment in which to explore design
development by watching an end-user at work. After
constructing initial prototypes of various parts of the tool
using a diverse range of tools from Prograph to AutoCAD
we are now in the process of constructing a single
integrated prototype that is capable of running on-line
over the Internet using a Java and VRML enabled World
Wide Web browser.

3.  Generating the design library

3.1 The grammar

The LaHave House grammar is based on a systematic
approach to house design developed by Brian MacKay-
Lyons in over fifteen years of custom architectural design
practice [2,4] The forms generated by the grammar have
been inspired by the vernacular architecture of the LaHave
river valley of Nova Scotia, Canada. Using shape
grammars to capture the design space of a living architect
is in many ways different to much of the existing shape
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grammar work [3,9]. The goal is not so much to create a
grammar that generates an existing corpus of design, but
rather to work with the Architect to extract from their
existing design corpus a robust set of generation
principles.

One feature of the grammar is its tendency to produce
dense cores for services and sparse open spaces for living
in. The grammar is constructed in terms of a set of five
elementary components: Rooms, Tartans, Machines,
Bays, and Totems. The rooms are the principle places for
human action, the tartans provide space for circulation, the
machines (bathrooms, kitchens, laundry, entry etc.) are the
dense service spaces, the Bays provide outlook space and
secondary living space, and the totems (hearths, staircases,
cabinetry etc.) provide focus for the rooms.

The grammar makes much use of the idea of Served
Vs. Servant spaces advanced in [6]. This tends to be a
three level hierarchy in which rooms are served by primary
machines, which may in turn be served by secondary
machines. For example, a dinning room may be served by
a kitchen, which is in turn served by a pantry.

Although we are interested in generating complete
functional modern houses, (i.e. we care where the
bathrooms and closets go), the grammar is driven purely
by issues of form. The function plan is derived only when
the form has been completely generated.

The grammar we are currently working with has a
single longitudinal axis of growth, with a dense machine
zone flanking a body zone, which is in turn surrounded by
a bay zone (see Figure 4). The machine zone tends to be
contiguous and completely filled, particularly in smaller
houses, while the bay zone tends to be more sparsely
populated.
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Figure 4: Space Zoning

3.2 A three phase approach

Our current design engine is based on a hybrid approach
to the generation of designs.
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Figure 5: Phases of Generation

A hierarchical set of Shape Grammars as popularized
by Stiny and Mitchell [5,10] are used to generate both
plan and section schema. A set of backward chaining rules
are then used to identify/recognize within plan schema
possible groupings of individual spaces into abstract
functional zones denoting Public, Private and Semi-
private spaces. Given compatible plan and section schema,
a form schema can now be created. This entails creating
floor plans (from the plan schema), dimensioning these
plans, creating walls to define/enclose the interior spaces,
adding roofs and generally computing all of the 3D
information required to define a complete form. Finally,
form schema are transformed into completed house designs
(house schema) by a rule based system that first assigns to
each space unit within the form schema a function (i.e.
kitchen, bedroom, entry, study etc.) and then assigns a
room organizations from a library of room level designs.
We call these pre-designed room organization tiles and the
problem of assigning tiles to space units, in a pleasing
and functional arrangement, the tile assignment problem.

The current design engine is implemented SWI-
PROLOG and, whereas some attempt has been made to
create a general design generation tool, much of the
structure of the current system is specific our underlying
grammar.

A difficult question, one which we have yet to answer
to our own complete satisfaction is, “when are two houses
sufficiently different to warrant both being included in the
library?” Currently we take a pragmatic approach to this
issue. At the level of form schema, we exclude simple
mirror images and rotations from the library, also minor



variations in secondary forms or roof shape are excluded,
except where they have significant effect on the available
floor space. At the level of tile allocation we only
generate multiple house schema from a single form
schema when the tile allocation process has led to
significantly different circulation/living patterns. Just
switching the position of the living room with the
dinning room does not warrant the production of a new
house design!

Currently the design engine generates over 100,000
different house designs and whereas some of them are
“duplicate designs” arrived at by different paths, we believe
that overall they strike a reasonable balance between
variety and needless variation. There are many interesting
problems within this context still to be investigated.

3.3 Issues in generation

The principle challenge that must be addressed in the
mass generation of house forms is how to avoid the
inherent combinatorial explosion. In our current section
grammar, for example, the bay and body zones come in
three widths each, the machine zone in two. There can be
up to three stories in the body zone, and two in each of
the machine and bay zones. There are nine roof styles for
primary roofs and five for secondary roofs. Thus, there are
nearly fifty thousand different fundamental cross-sections
of which less that 10% are valid.

The central challenges in addressing this combinatorial
explosion are 1) How can you deal with a space that can
increase n-fold with the addition of a single new factor?
and 2) How can you be sure that all the schema being
generated are truly valid when there are far too many to
manually examine? After all, perhaps a certain case has
been neglected, or worse, poorly programmed.

As we see it, there are two opposing approaches to
generating valid schema. The first is to generate all
possible combinations of all the elements, and then prune
away all those which prove invalid using a system of
validation rules. The basic advantage of this approach is
simplicity. The generation rules are relatively simple and
regular and each completed production can be validated by
a equally simple and regular set of rules. There are two
primary disadvantage to this approach. Firstly, it is
unlikely that one has enough time or space to generate all
possible configurations before testing for validity.
Secondly, if a generated schema is invalid for more than
one reason, (i.e. it has features A, B, and C which are each
invalid by themselves) then it is possible (and as it turns
out quite likely) that the combination of invalid features
are jointly consistent enough to slip past the validation
rules. For example, in the Figure 6, there are two invalid
features. The left hand secondary form is too large for the

primary form it connects to, and the roof of the primary
form is too shallow to support a second story:

Figure 6 - An Invalid Section Schema.

The rules which prevent these features from occurring
are given below.

invalid_section
if roof is not flat and

stories in body < stories in bump.

invalid_section
if distance from roof-peak to next floor < 8’.

If the second rule is stated incorrectly, allowing the
primary form to be created with two stories, then the first
rule (which is correct) will allow the secondary form to be
added. After all, there are two stories in the primary form,
but only one in the secondary form. By correcting the
second rule, the two story version will be rejected by the
second rule, and the one story version will be rejected by
the first one.

An approach at the other end of the spectrum is to
generate only valid schema. Here, the idea is to write the
generation rules so craftily that invalid schema are never
generated. Unfortunately, this approach is impossible to
realize for anything but very trivial classes of productions.
There are just too many design issues to be considered at
every choice point to make this approach workable.

The approach we have taken is an attempt to combine
the advantages of both extremes, while minimizing the
disadvantages. In the generation of each schema we build-
up structure hierarchically (See Figure 7). A complete
structure is comprised of substructures, which in turn are
comprised of their own substructures. The atomic
elements, like roof shape, wall sizes, and room types are
combined into intermediate elements like trays, and zones.
These substructures have their own sets of rules to insure
their validity in-and-of themselves.
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Figure 7 A Hierarchical Approach.

Another technique for controlling combinatorial
explosion is based on the idea of generating within
equivalence classes. Once substructures have been created
they must be combined, and the combined structure
checked for validity. For example, a plan and section
schema must be combined to create a form scheme. Rather
than try to combine all section scheme with all plan
schema, such schema are generated in equivalence classes
such that any plan in class X can be combined with any
section in class Y to result in a form schema that has a
high probability of being valid.  These equivalence classes
are defined in terms of the critical factors that govern the
intersection of plan and section, like for example, the
width of zones, the number of stories in each zone and the
amount of usable space on the top story etc. Any factor
which always makes a section-plan pair invalid as a
schema is included in the definition of the equivalence
classes.

Our current design engine uses two different classes of
rules to check the validity of schema: Aesthetic rules, and
Pragmatic rules.

Aesthetic rules are those concerned with the
architectural aesthetic of the generated forms. These rules
check everything from roof shape to plan symmetry.
Figure 8 for example, illustrates a section schema in
which roof angles change, but not sharply enough to
warrant the break in “symmetry”. The current grammar
contains aesthetic rules to invalidate such schema.

Figure 8 An Example Aesthetic Rules:
Weak Roof Angles.

Pragmatic rules are those concerned with the physical
realizability and reasonability of the form described by a
schema. For example the section schema in Figure 9 is
not valid for pragmatic reasons. The primary form has
only one story, there is no floor on the same level as the
balcony. Thus this section schema is rejected for
pragmatic reasons.

Figure 9 An Example Pragmatic Rule:
Inaccessible Spaces

4.  Concluding remarks

In this paper we have given a high level overview of
the LaHave House Project.  The goal of which is to
investigate that application of an industrial design
approach to architectural design practice.

To date we have developed a prototype design engine
and a generative grammar that together produce modern
realizable houses. The sophistication of these generated
representations is  gradually approaching that of detailed
preliminary design.  We have also developed a prototype
design development tool for end-users.  This tool allows
an end-user to Select, Customize and Visualize house
designs.

Although we have come a long way there are many
interesting fundamental questions still to be addressed.
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