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Absract 
In this paper we  describe scalable parallel algorithms 

for building the Convex  Hull  and a Triangulation of 
a g iven  poin t  se t  in R2.  Theae algorithms are de- 
signed for the coarse rained multicomputer model: 
p processors with O(gf >> O(1) local m e m o r y  each, 
connected t o  som,e arbitrary interconnection network 
(e.g. mesh,, hypercube, omega). T h e y  require t ime  
O( T s e q y n t i a i  + T,(n,p)), where Ts(n,p) refers to the 
t i m e  of a global sor t  of n data o n  a p processor m a -  
chine.  Furthermore, t hey  involve only a constant num- 
ber of global communicat ion  rounds.  Since computing 
either 2d Convex  Hul l  or Trian!gulation requires t i m e  
Tsequential = @(TI log n)  these algorithms either run in 
optimal t ime ,  e(?), or in sor t  t ime ,  ~ . ( n , p ) ,  f o r  
the interconnection ne twork  in question. These  results 
become optimal w h e n  T8e9yntiai. dominates  T, (n,  p ) ,  
f o r  instance w h e n  randomized sorting algorithms are 
used, o r  f o r  interconnection networks like the m e s h  f o r  
which  optimal sorting algorithms exist. 

1 Introduction 
Most existing multicomputers (e.g. the Intel 

Paragon, Cray T3D, Meiko CS-:2 and IBM SP2) con- 
sist of a set of p state-of-the-art  processors, each with 
considerable local memory, connected to some inter- 
connection network (e.g. mesh, hypercube, omega). 
These machines are usually coarse grained, i.e. the 
size of each local memory is “considerably larger” than 
O(1). Despite this fact, most theoretical parallel algo- 
rithms, in particular those for solving geometric prob- 
lems, assume a fine grained setting, where a problem 
of size n is to be solved on a parallel computer with p 
processors (e.g., a PRAM, mesh, or hypercube multi- 
processor) such that 2 = O(1). However, as noted in 
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[9], to be relevant in practice such algorithms must be 
scalable, that is, they must be applicable and efficient 
for a wide range of ratios E .  

In this paper we describe scalable parallel algo- 
rithms for some fundamental geometric problems. 
Among the first scalable coarse grained algorithms 
for solving geometric problems on distributed memory 
machines were described in [6]. The majority of these 
algorithms were optimal on architectures for which 
optimal sorting algorithms were known and reciuired 
at most sort time otherwise. Another important fea- 
ture of these algorithms was that they involved only 
a constant number of global communication rounds, 
which had the effect of malting them very fast in 
practice. Problems studied in [6] included computing 
the area of the union of rectangles, 3D-maxima, 2D- 
nearest neighbors of a point set, and lower envelope 
of non-intersecting line segments in the plane. All of 
these algorithms used. a spatial partioning technique 
in which a constant number of partitioning schemes 
of the global problem (on the entire data set of 12 
data items) into p subproblems of size O( %) were used. 
Each processor solved (sequentially) a constant num- 
ber of such O ( $ )  size subproblems, and a const>ant 
number of global routing operations were used to per- 
mute the subproblems between the processors. Even- 
tually, by combining the O(1) solutions of its O ( $ )  
size subproblems, each processor determined its O(  $) 
size portion of the global solution. 

For most of the problems addressed in [6] the spa- 
tial partitioning technique described above were very 
efficient. One exception was the 2d Convex Hull 
problem for which the resulting algorithm required 
O ( y  + Ts(n,p) + logpTs(p,p)) time and involved 
logp global communication rounds. Subsequent work 
on this problem has focussed on developing randoni- 
ized algorithms that trade-off guaranteed solutions for 
efficiency (i.e. a constant number of commnnication 
rounds). In [7] Deng and Gu solve the 2d convex h~dl  
problem with high probability for any input assuming 
E > p2+€ while Dehne, Kenyon and Fabri solve for a 
p. - given a set of “well distributed inputs” the lid convex 
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hull problem, for any constant L, and 
In this paper we describe a deterministic scalable 

algorithm for solving the 2d convex hull problem on 
the coarse grained multicomputer model: p processors 
with O(n)  >> O(1) local memory each, connected to 
some arbitrary interconnection network. Our algo- 
rithmrequires time O ( F + T , ( n , p ) ) ,  whereT,(n,p) 
refers to the time of a global sort of n data on a p pro- 
cessor machine. Furthermore, it involves only a con- 
stant number of global communication rounds. Based 
on this algorithm we also give an algorithm for solv- 
ing the triangulation problem for points in R2 for the 
same model and in the same space and time. 

Since computing either 2d convex hull or trian- 
gulation requires time Tseguential = O ( n  log n)  [14] 
our algorithms either run in optimal time e(*) 
or in sort time T,(n,p) for the interconnection net- 
work in question. Our results become optimal when 

dominates T,(n,p), for instance when ran- T3 e *” e n t I a I 

domized sorting algorithms are used, or when T,(n,p) 
is optimal. 

Consider, for example, the mesh architecture. For 
the fine grained case (; = O(l)),  a time complexity of 
O( fi) is optimal. Hence, simulating the existing fine 
grained results on a coarse grained machine via Brent’s 
Theorem [ll] leads to a O ( $ &  time coarse grained 
method. Our algorithmruns in time O(:(logn+fi)), 
a considerable improvement over both simulation and 
the existing methods. 

The Coarse Grained Multicom uter model, or 
CGM(n,p) for short, is defined in b]. It consists of 
a set of p processors with O ( $ )  local memory each, 
connected to some arbitrary interconnection network 
or a shared memory. The term “course graine8’ refers 
to the fact that (as in practice) the number of words 
of each local memory O ( ; )  is defined to be “consid- 
erably larger” than O(1). Our definition of “consider- 
ably larger” (and the one used in [SI) is that : 2 p .  
This is clearly true for all currently available coarse 
grained parallel machines. In the following, all mes- 
sages are composed of a constant number of words 
and, for determining time complexities, we will con- 
sider both local computation time and inter processor 
communication time in the standard way. 

For the problems studied in this paper, we are in- 
terested in algorithms which are optimal or at least 
efficient for a wide range of ratios 2. We present a 
new technique for designing efficient scalable parallel 
geometric algorithms. Our results are independent of 
the communication network ( e . g .  mesh, hypercube, f a t  
tree). A particular strength of this approach (which 
is very different from the one presented in [l, SI), is 
that all inter processor communication is restricted to 
a constant number of usages of a small set of simple 
communication operations. This has the effect of mak- 
ing the algorithms both easy to implement in that all 
communications is performed by calls to a standard 
highly optimized communication library and very fast 
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in practice (see [6] for evidence of this). 
Our Convex Hull algorithm is described below and 

has the following basic structure. The entire data set 
for a given problem is assumed to be initially dis- 
tributed into the local memories and remains there 
until the problem is solved. Given a set S of n points 
and a p processor coarse grained multicomputer we 
show how to compute the upper hull of S. The lower 
hull, and therefore the complete hull, can be computed 
analogously. In the remainder we assume without loss 
of generality that all points are in the first quadrant. 

U p p e r  Hull(S) 

[npu t :  Each processor stores a set of points drawn arbi- 
xarily from S.  
Dutpu t :  A distributed representation of upper hull of S .  All 
Joints on the upper hull are identified and labeled from left 
.o right. 

1. Globally sort the points in S by x-coordinate. Let S,  de- 
note the set of 2 sorted points now stored on processor 
2. 

2. Independently and in parallel, each processor i computes 
the upper hull of the set S;. Let X ;  denote the result on 
processor i. 

3. By means of a merge operation compute for each upper 
hull X ; ,  1 < i 5 p ,  the upper common tangent line be- 
tween it and all upper hulls X ,  , i < j < p ,  and label the 
upper hull of S by using the upper tangent lines. 

Step 1 of algorithm UpperHull(S) can be completed 
by using a global sort operation as described in Sec- 
tion 2. Step 2 is a totally sequential step and can be 
completed in time O(  F) using well known sequen- 
tial methods [14]. The main challenge is in perform- 
ing Step 3.  This step amounts to a merge algorithm 
in which p disjoint upper hulls are merged into a sin- 
gle hull. We present two different merge procedures: 
MergeHullsl and MergeHulls2. The first, described 
in Section 3.3, is a straightforward merge requiring a 
constant number of global communication rounds and 
11 > p 2  local memory per processor. The second merge 
procedure (MergeHulls2), described in Section 3.4, is 
a more complex merge that uses the first merge as 
a subprocedure but has a higher degree of scalability 
in that it requires only that 3 > p while still requir- 
ing only a constant number of communication rounds. 
Both algorithms use the idea of selecting splitter sets 
which was introduced in the context of solving convex 
hulls by Miller and Stout [13]. 

Our algorithm for triangulating n points in R2 is 
based on our convex hull algorithm and the observa- 
tion that a set S of points can be triangulated by first 
triangulating x-disjoint subsets from S and then trian- 
gulating the regions between the convex hulls formed 
by these triangulated regions, which is a simpler sub- 
problem as these regions belong to a class of simple 
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polygons called f u n n e l  polygons [ 161. 
The remainder of this paper is organized as fol- 

lows: in the next section we give more details about 
the coarse grained multicomputer model, CGM(n,  p ) .  
Section 3 presents our Upper Hull algorithm, whi e 
Section 4 describes how the Upper Hull algorithm can 
be adapted to solve the triangulaiion problem. In sec- 
tion 5 we conclude. 

2 The Coarse Grained Model: Defini- 

The Coarse Grazned Multzcomputer,  CGM(n,p) ,  
considered in this paper is a set (of p processors num- 
bered from 1 to p with O ( % )  local memory each, con- 
nected via some arbitrary interconnection network or 
a shared memory. Commonly used interconnection 
networks for a CGM include the 2D-mesh e.g. Intel 
Paragon), hypercube (e.g. Intel iPSC/S60\ and the 
fat tree (e.g. Thinking Machine,; CM-5). For deter- 
mining time complexities, we limit all messages to a 
constant number of words and account for both local 
computation time and inter processor communication 
time. The term “coarse grained” refers to the fact 
that the size O(:) of each local memory will typically 
be “considerably larger” than 0 (1). We will assume 
either 

Global sor t  refers to the operation of sorting O ( n )  
data items stored on a CGM(n,p),  O ( f )  data items 
per processor, with respect to the CGiWs  processor 
numbering. T,(n,p) refers to the time complexity of 
a global sort. 

Note that, for a mesh T,(n,p) = O($(logn + Jis)) 
and for a hypercube T,(n,p) = O(:(logn + log’p)). 
These time complexities are based on [2] and [12], re- 
spectively. Note that for the h,ypercube an asymp- 
totically better deterministic algorithm exists [4], but 
it is of more theorical than practical interest. One 
could also use randomized sorting [15], but in this pa- 
per we will focus primarily on deterministic methods. 
We refer the reader to [2, 3, 10, 3 1, 12, 151 for a more 
detailed discussion of the different architectures and 
routing algorithms. 

We will now outline four other operations for in- 
terprocessor communication which will be used in the 
remainder of this paper. All of these operations can 
be implemented as a constant number of global sort 
operations and O(:) time local computation. Note 
that, for most interconnection networks it would be 
better in practice to implement these operations di- 
rectly rather than using global sort as this would typ- 
ically improve the constants in the time complexity of 
the algorithms described in the remainder. 

Segmented broadcast: In a segmented broadcast op- 
eration, q < p processors with numbers j ,  < j~ < 
. . . < j ,  are selected. Each such processor, p,, , broad- 
casts a list of 1 5 k < : data items from its local 
memory to the processors p3,+1 . . .p3,+,  -1. The time 
for a segmented broadcast operation will be referred 
to 8s T . b ( k , p ) -  

tions and Basic Operations 

> p as was assumed in [6]. 
P -  

Segmented gather: In a segmented gather opera- 
tion, q 5 p processors with ids j ,  < j2 < . . . < j ,  are 
selected. Each such processor, p j ; ,  is sent a data item 
from processorspj,+l . . . pj,,, -1. This operation is the 
inverse of a segmented broadcast. Note that care must 
be taken to ensure that the selected processors have 
enough memory to receive all sent messages. The time 
for a se mented gather operation will be referred to as 

All-to-All  broadcast: In an All-to-All broadcast op- 
eration, every processor sends one message to all other 
processors. The time complexity will be denoted as 

Personalized All-to-.All broadcast: In a Personalized 
All-to-All broadcast operation, every processor sends 
a different message to every other processor. The time 
complexity will be denoted as Tpa2a(n,p). 

Partial  sum (Scan): Every processor stores one 
value, and all processors compute the partial sums of 
these values with respect to some associative operator. 
The time complexity will be denoted as Tps(n,p). 

2 p it is easy to show 
that these operations are no more complex than sort- 
ing plus a linear arnount of sequential work [6], i.e., 
they require O ( f  + T,(n,p)). 
3 Merging Convex Hulls in Parallel 

In this section we show how to complete the up- 
per hull algorithm given in Section 1 by merging p 
x-disjoint upper hulls stored on a p-processor C M G ,  
one per processor, into a single upper hull. 

We denote by % the line segment connecting the 
points a and b and by (ab)  the line passing through U 
and b. A point c is said to be dominated by the line 
segment a if and only if c’s x-coordinate is strictly 
between the x-coordinates of a and b, and c is located 
below the line segment ab. Definitions 1 and 2, as 
illustrated by Figure 1, establish the initial condition 
before the merge step. 

Definition 1 Let  {S i ) ,  1 5 i 5 p be a par t i t ion  of S 
such  that Vx E Sj, y E Si, j > i, the x-coordinate of 
x is larger than  that of y (see Figure 1). 

Definition 2 Let X i  = (z1, x2,. . . , x,} be a n  upper 
hull. T h e n ,  p redx ,  (xi) denotes xi-1 and S U C X ,  (xi) 
denotes the poin t  xi+l (see Figure 2). 

TS,(k,P5. 

Ta2a (P) .  

For any C G M ( n , p )  with 

Given two upper hulls U H ( S i )  and U H ( S j )  where 
all points in Sj are to the right of all points in Si, the 
merge operations described in this paper are based on 
computing for a point q E Xi the point p E Xi U 
X j  which follows q in UH(Si U Sj). The following 
definitions make this idea more precise (See Figure 2). 

Definition 3 Let  Q C s. T h e n ,  NextQ : S -+ Q as 
a func t ion  such  that Nex tQ(p)  = q i f  and  only i f  q is 
to  the right of p and i s  above pq’ for all q‘ E S, q’ 
to  the rzght of p .  

563 



Figure 1: In this example S = {SI, S2,S3, S4) and the 
points in Si that are filled in are the elements of the 
upper hull of Si, namely Xi.  

o... ........................ 

C 

XX 

Definition 4 Let Y S,. Then, lm(Y) zs a function 
such that lm(Y)  = y* z f  and only zf y- zs the leftmost 
potnt tn Y such that Nextyus, ,3>t(yv)  @ St). 

line(c3 
................... 

Let X represent the upper hull of a set of n points. 
Let also c be a point located to the left of this 
set. Below, we present a sequential algorithm called 
QueryFindNext to search for q = Neztx(c) .  Fig- 
ure 3 illustrates one step of this algorithm. This binary 
search process takes time O(1og 1x1). 

Procedure QueryFindNext (X,c,q) 
[nput: an upper hull X = {XI,. . . .  z m }  sorted by x- 
Zoordinate and a point c to  the left of 21. 
Output: a point q E X ,  q = N e z t X ( c ) .  

1. If X = {z} then q t z and halt. 

2. If z,m,21suc(z,m/21) is located below the line 
( c ~ l ~ , ~ l )  then QueryFindNext((z1.. . . .  xlm/21},c,q). 
else QueryFindNext({zr,/21,. . . .  zm},c ,q) .  

3.1 Characterization of the upper hull 
A classical way of characterizing the upper hull of 

a point set S, as given in [14], is based on the obser- 
vation that “A line segment ab is an edge of the upper 

Figure 3: One step in the binary search procedure 
QueryFindNext. Since the line segment .cqsue(z4) 
is above the line (ezq) the algorithm will recurse on 
( 2 4 . .  .. , x8). 

hull of a point set S located in the first quadrant if and 
only if all the n- 2 remaining points fall below the line 
(a,b)”. We will work with a new characterization of 
the upper hull of S based on the same observation, 
but defined in terms of the partitioning of S given in 
Definitions 1 and 4. 

Consider sets S, Si and X i  as given in Definitions 1 
and 2. 

Definition 5 Let S’ = {e  E U X i  1 c is no t  dominated 
by  a line segment z lNez tUxj , j , i ( z ; ) , l  5 i < p } ,  
where x; = l m ( X , ) .  

We then have the following characterization of 
C H ( S ) .  

Theorem 1 S‘ = U H ( S )  

Proof: We must consider two cases. 

0 U H ( S )  c S’ 
Suppose y E U H ( S ) ,  y @ SI. Then 3z such 

that z:iVextxJ ,3>z(z:) dominates y .  Therefore, 
y $ I ; H ( S ) ,  which is a contradiction. 

0 SI U H ( S )  
Suppose y E S’, y @ U H ( S ) .  Then 3 p , q  

withp E U H ( S ) , q  E U H ( S ) ,  and q = Nezts(p)  , 
such that Pq dominates y. 
Therefore, both q and p cannot belong to X ,  
(since y E X , ,  meaning that y is not dominated 
by any line segment with endpoints in Sz). Thus, 
p and q belong respectively to X ,  and X k ,  ( j  # IC). 
Hence, since q = Nests(p) ,  p E U H ( S ) ,  and 
q E U H ( S ) ,  then 3i such that p = r:, where 
z: = lm(X, ) .  Therefore, y is dominated by a 
segment x:iVextxl ,3>l(z:), which is a contradic- 
tion. 

0 
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3.2 Parallel Merge Algorithms 
In this section we describe twci parallel merge algo- 

rithms based on the characteriza.tion of U H ( S )  given 
in the previous section and analyze their time and 
space complexity for the coarse grained model. The 
following definitions and lemma are needed in the de- 
scription of the algorithms. 

Definition 6 Let Gi X i  and g; = Zm,(Gi). Let  
R i  C Xi be composed of the points  between predc,  (gt) 
and gt,  and RF C Xi be compcsed of the points  be- 
tween g: and suc~,(g:)  (see Figure 4 ) .  

---.... 

b 
G , .  X,. 0 

S ,  

Figure 4: Filled points are element of Gi which is a 
subset of Xi composed of both of hollow and filled 
points. Since the Rf doesn't contained any point 
above the line (gfb) we have Ri = RF. 

We have then the following lemma. 

Lemma 1 O n e  or  both of RT c r  R; is such that all 
i ts  points  are under  the l ine (gz*lVextx,,j>;(gf)). 

Xi. 
The proof of this lemma is direct, otherwise gr $Z 

Definition 7 Let  Ri denote the set  R: or R i  that 
has at  least one point  above the line 
(gfNeztxj  , j>i (g: ) )  (see Figure ,$). 

Note that the size of the sets Ri is bounded by 
the number of points laying between two consecutive 
points in Gi. 
3.3 Merge Algorithm fo.r the Case n / p  2 

In this section, we describe an algorithm that 
merges p upper hulls, stored one per processor on a p 
processor CGM, into a single upper hull using a con- 
stant number of global communication rounds. This 
algorithm requires that be greater than or equal to 
p 2  and thus exhibits limited scalability. This limita- 
tion on the algorithms sca1abilit;y will be addressed in 
the next section. 

In order to find the upper common tangent between 
an upper hull Xi and an upper hull X i  (to its right) 
the algorithm computes the Nex t  function not for the 

P2 

whole set X .  but for a subset of s equally spaced points 
from Xi .  d e  call this subset of equally spaced points a 
splitter of Xi. This approach based on splitters greatly 
reduces the amount of data that must be communi- 
cated between processors without greatly increasing 
the number of global communication rounds that are 
required. 

4lgorithm MergeHullsl(Xi(1 5 i 5 n ) , S , n , n , s , U H )  

[nput: The set of 7r upper hulls Xi consisting of a total of 
tt most n points from S ,  where X i  is stored on processor q;, 
1 5 i 5 K and an integer s. 
3utput: A distributed representation of the upper hull of S.  
211 points on the upper hull are identified and labeled from 
eft to  right. 

1 .  Each processor q; sequentially identifies a splitter set G; 
composed of s evenly spaced points from Xi. 

2. The processorsfind in parallelgz! = Im(G;). This is done 
via a call to  Procedure FindLMSubset. 

3. Each processor qi computes its own RL and R;' sets 
according to  Definition 6, and the set R; of points which 
are above the line (g1NeztG;"xj,j>;(gf)), according to 
Lemma 1. 

4. The processors find in parallel z: = Im(R; U gt) ,  us- 
ing Procedure FindLMSubset. Note that  by definition 
N e x t s ( z z )  @ X i .  

5 .  Each processor q i  broadcasts its zf to  all q,, j > i ,  and 
computes its own S:; according to  Definition 5 .  By The- 
orem 1 this is a distributed representation of U H ( S ) .  

Analysis 
Steps 2 and 4 of the algorithm above are implemented 
via the procedure Fin.dLMSubset which is described 
in detail the next section. The key idea in procedure 
FindLMSubset is to send the elements of G; or Ri, in 
Steps 2 and 4, respectively, to all larger-numbered pro- 
cessors so that processors receiving G = U G j , j  < i 
(at Step 2) or R = U(Rj U g ; ) , j  < i (at Step 4) can 
sequentially compute the required points using Pro- 
cedure QueryFindNext described in Section 3. The 
algorithm MergeHullsl requires ST space at Step 2, 
and 5 4 space at Step 4. Thus, if we set 
T = s = p ,  then this algorithm requires n / p  2 p 2  
space per processor. With respect to time complexity 
note that only a constant number of sort and comiiiu- 
nication rounds are required, plus sequential computa- 
tions. The time required by the algorithm is therefore 

3.4 Merge Algorithm for the Case r i / p  1 p 
In this section, we describe an algorithm, Merge- 

Hulls2, that merges p upper hulls, stored one per pro- 
cessor on a p processor CGM, into a single upper 
hull using a constant number of global communication 
rounds. Unlike the algorithm given in the previous 
section this algorithm requires only n / p  2 p memory 
space per processor. It is based on algorithm Merge- 
Hullsl, except that; now two phases are used. 

O(? + T,(n,p)). 
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1. In the first phase, the algorithm MergeHullsl is 
used to find the upper hull of groups of T = & 
processors, with s equal to &. Kote that the 
space required in this phase is O(p) .  

2. The second phase merges these fi upper hulls 
of size at  most each, instead of the p ini- 
tial ones. Thus, with s = & again, Step 2 re- 
quires only p space. However, we should be care- 
ful, because the size of each set Ri is, in the worst 
case, 9, implying that Step 4 requires up to LL 4 
space, which is too much. Thus, a further reduc- 
tion of their sizes is needed. This is accomplished 
through the simple observation that the sets R; 
are upper hulls themselves, and we can recursively 
apply to the Ri, for all i, the the same method 
udes in MergeHullsl to find xt = Im(Ri U gf). 

P 

The algorithm is as follows. When the processors 
are divided into groups, let 41 denote the z-th proces- 
sor of the i-th group. 

Procedure FindLMSubset(X;, I C ,  w ,  G;,g%*) 

[nput: Upper hulls Xi ,  1 5 i 5 IC;,  represented each in w 
:onsecutively numbered processors q i ,  1 5 z 5 w ,  and a set 

Output: The point gt = Im(G;). There will be a copy of gt 
n each q:, 1 5 2 5 w.  

T; c xi. 

1. Gather G; in processor q: , for all i. 

2. Each processor ql sends its G; to  all processors q:, j > 
Each processor q t ,  for all i , z ,  receives i , l  5 z 5 w. 

E' = u G j , V j  < i. 
3. Each processor q:, for all i , z ,  sequentially com- 

putes Neztx;(g) for every g 6 E', using procedure 
QueryFindNext. 

4. Each processor q;, for all i, z ,  sends back to  all processors 
q i ,  j < i, the computed Neztx,(g),  Vg E G,. Each pro- 
cessor qi , for all i, receives for each g E G; the computed 
Nextx, (g), V j  > i. 

5 .  Each processor q i ,  for all i, computes for each g E G; the 
line segment with the largest slope among gsvcc, (9) and 
gNext,yi (g), j > i, finding NeztGiuxi,,>;(g). Then, it 
comput,es gt? = Im(G;). 

6 .  Broadcast g** t o  q 5 , l  5 z 5 w .  

Input: Upper hulls X;,1 5 i 5 I C ;  represented each in w 
consecutively numbered processors q i ,  1 5 z 5 w, and a set 
G; C Xi. 
Output: The point zCf = l m ( X ; ) .  There will be a copy of zCf 
in each q i ,  1 5 z 5 w.  

1. FindLMSubset(X;, IC, w ,  G;,gt).  

2. If gisucxi(gz*) is above gfNextXj,,>;(gf) then R; is 
composed of all points of Xi between g: and sucG;(gf); 
else R; is composed of all points of X; between 
predc; (gt) and gt .  

3. Let G; t R; U {gf}. 

4. If IG;l * I C  5 p 
then FindLMSubset(X,, I C ,  w ,  G;, zCf) 
else FindLMSubHull(X;, I C ,  w,G; ,  z:) 

Qlgorithm MergeHulls2(X;(l 5 i 5 r ) , S , n , r , s , U H )  

hput:  The set of r upper hulls X ;  consisting of a total of 
tt most n points from S, where X; is stored on processor q; ,  
I 5 i 5 rr and an integer s. 
3utput: A distributed representation of the upper hull of S.  
411 points on the upper hull are identified and labeled from 
eft to  right. 

1. Each processor 9; sequentially identifies a splitter set G; 
composed of s evenly spaced points from Xi. 

2. Divide the r processors into ,/% groups of fi 
processors each. Do in parallel for each group: 
FindLMSubHull(X; = UH(S;),IC = fi, w = l,G;,z:). 

3. Each processor q; broadcasts its 51 to all q j ,  j > i. 
4. Each processor qj computes its own Si according to Def- 

inition 5.  By Theorem 1 this is a distributed represen- 
tation of the upper hull of the points in each of the fi 
groups. Let r;, 1 5 i 5 fi, denote such upper hulls. 

5 .  Each processor q; sequentially identifies a splitter set G; 
composed of s evenly spaced points from r;. 

6. Do in parallel: FindLMSubHull(X; = r ; , k  = f i , w  = 
J;;,G,,xf). 

i .  Each processor 9; broadcasts its x: t o  all q f ,  h > i and 
j > 1. 

8. Each processor q, computes its own Si according t o  Def- 
inition 5 .  By Theorem 1 this is a distributed represen- 
tation of U H ( S ) .  

3.5 Analysis 
In the algorithm MergeHulls2, if we let T = p and 

s = fi, then Step 2 requires n / p  space, as seen in the 
analysis of the algorithm MergeHullsl. Notice that 
the space complexity of procedure FindLMSubset is 
lGil * IC (at Steps 2 and 4). Thus, Step 7's call to 
procedure FindLMSubset requires IGi[ * k = p space. 

Now, let us analyze the space requirements of Step 
7's call to procedure FindLMSubHull. At Step 1 of 
FindLMSubHull, the call to procedure FindLMSubset 
requires IGil*k = p space. At Step 5, IGil*k is greater 
than p implying that a recursive call takes place in 
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order to reduce the size of the considered sets. Both 
new calls to FindLMSubset within the recursive call 
to FindLMSubHull then require p space. Therefore, 
Step 7 requires n l p  2 p space, and this is the space 
requirement for the MergeHulls2 algorithm as a whole. 

With respect to time complexity note that only a 
constant number of sort and cclmmunication rounds 
are required, plus sequential computations. The time 
required by the algorithm is therefore O ( F  + 
Ts (n,  P>>. 

4 Triangulation of a Point Set 
In this section we describe how the same ideas de- 

veloped in the previous section can be used to find 
a triangulation of a planar point set. The algorithm 
is based on geometric observations originally made b 
Wang and Tsay and used in a PRAM algorithm [16r 
We extend their basic technique in order to ensure 
that the resulting algorithm is both scalable over a 
large range of the ratio n / p ,  and uses only a con- 
stant number of global operations rounds. Note that 
the triangulation yielded by the algorithm Triangulate 
presented below is not the same as the one obtained 
in [16]. 

A funnel polygon consists of two x-monotone chains 
and a top and a bottom line segment (see Figure 5). 
Given p 2-disjoint convex hulls, Xi 1 5 i 5 p ,  and a set 
of upper and lower common tangent lines the regions 
between the hulls form a set of funnel polygons if the 
horizontal extreme points of consecutive upper hulls 
Xi are connected (see Figure 6). Funnel polygons can 
easily be triangulated as will be shown in the follow- 
ing algorithm. For details on funnel polygons in the 
contex of triangulations, we refer the interested reader 
to [16]. 

I I’riangulate (S) 

[nput: Each processor stores a set of 2 points drawn arbi- 
xarily from S. 
Output: A distributed representation of a triangulation of 
S. All segment lines of the triangulation are identified and 
abeled. 

1. Globally sort the points in S by x-coordinate. Let S; 
denote the set of sorted points now stored on processor 
2 .  

2. Independently and in parallel, each processor i computes 
the convex hull of the set S,, and the triangulation of its 
convex hull. Let X ;  denote the upper hull of the set Si 
on processor i. 

3. Label the upper funnel polygons. 

4. Identify each point to its upper funnel polygon. 

5. Triangulate the upper funnel polygons. 

6. Repeat Steps 3-5 for the lower funnel polygons. 

In Step 1 the points of S are globally sorted. Step 
2 starts by connecting the horizontal extreme points 
of consecutive upper hulls X ;  [see Figure 6). Then, 
xT = l m ( X ; )  and Neztx,,j>i(zT) are computed as 

in Section 3.4. Finally, an all-to-all broadcast is per- 
formed so that each processor i knows 23 = Zm(Xj) 
and Neztx,,,>j(zj*), -for all i 2 j .  Clearly, the time 
complexity of this Step is dominated by the conipu- 
tation of xi* and NezL(z*) ,  that can be implemented 
through the procedures hndLMSubset and FindLM- 
SubHull described in the Section 3.4. 

Steps 3 and 4 are locally performed on each pro- 
cessor, using the information received at  the end of 
Step 2. Note that, each funnel polygon is delimited by 
the segment line zfNezt(zf), and labeled Fi (see Fig- 
ure 6). Given that each processor stores a table with 
all common tangent lines, they can identify for each 
point of their hull the funnel polygon they are part of 
by a simple sequential. scan of their hull points. 

Let a; and bj  
denote the points in the left and right chain of a fun- 
nel polygon, respectively (see Figure 5). Form records 
containing, for all points a; on the left chain, the slope 
from a point ai to its successor ai+l in the chain. Also, 
form records containing, for all points b on the right 
chain, the absolute value of the slope hom bj to its 
successor bj+l in the chain. Note that if we sort the 
a’s and b’s together by first key: funnel polygon label; 
second key: slope records; third key: left chain first, 
right chain next; then we get a sequence of the form 

set of line segments tlhat forms a triangulataon of the 
funnel polygon can be easily constructed by forming 
the set {(b;a .) U ( a r b s ) } ,  where aj  is the first a to the 
left of b; and b, is the first b to the left of a,. 

Step 5 is the most technical one. 

{- akak+lbhak+2bh+lbh+2bh+3bh+4pk+3 . . .). The 

Figure 5: Two funnel polygons. 

In order to implement this step, we need only a 
global sort operation on the a’s and b’s, followed by 
a segmented broadcast, where each a is broadcast to 
every element until the next a to its right in the sorted 
list, and each b is broadcast to every element until the 
next b to its righik in the sorted list. The line seg- 
ments composing the triangulation can thus be easily 
constructed. 

Only global sort and global communication opera- 
tions are used in addition to the call to FindLMSubset 
and FindLMSubBull. Therefore, procedure Triangu- 
lation above builds a triangulation of a point set in R2 
on a CGM(n ,p )  in time O ( T  + T , ( n , p ) ) ,  where 
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T,(n,p) refers to the time of a global sort of n data 
on a p processor machine. Furthermore, it only re- 
quires n / p  > p local memory, and a constant number 
of global communication and sort rounds. 

I I 

Figure 6: Note that the region between the hulls 
can be seen as a set of funnel polygons (U is 
l m ( X l ) N e ~ : t s ( l 7 n ( X l ) ) ) .  

5 Conclusion 
In this paper we described scalable parallel algo- 

rithms for building the Convex Hull and a Triangu- 
lation of a planar point set for the coarse grained 
multicomputer model. Our algorithms require time 
O ( T  + T,(n,p)), where T,(n,p) refers to the time 
of a global sort of n data on a p processor machine. 
Furthermore, they involve only a constant number 
of global communication rounds, either running in 
optimal time e(?) or in sort time ~ , ( n , p )  for 
the interconnection network in question. Our results 
become optimal when Tsequ~nt'ai dominates T,(n,p), 
for instance when randomized sorting algorithms are 
used, or when T,(n,p) is optimal. For practical pur- 
pose the restriction that : > p is not onerous, but for 
theoretical pers ective it is interesting to note that 
by performing fog(2le)l (0 < E < 1) phases (rather 
than two phases) in procedure MergeHull2 this restric- 
tion can be weakened to p 2 p E  (as in [SI) while still 
maintaining only a constant number of communication 
rounds. 

The algorithms proposed in this paper were based 
on a variety of techniques arising from more theoreti- 
cal models for parallel computing, such as the PRAM 
and the fine-grained hypercube. It would be interest- 
ing to identify those parallel algorithm design tech- 
niques for theoretical models that can be extended 
to the very practical coarse graaned multzcomputer 
model. 

References 
[l] M. J. Atallah and J.-J. Tsay. On the parallel- 

decomposability of geometric problems. Proc. 5th 
Annu. ACM Sympos. Comput. Geom., pages 104- 
113, 1989. 

[2] K.E. Batcher. Sorting networks and their applica- 
tions. Proc. AFIPS Sprmg Joznt Computer Con- 
ference, pages 307-314, 1968. 

[3] D. P. Bertsekas and J. N. Tsitsiklis. Parallel 
and Distributed Computation,: Numerical Meth- 
ods. Prentice Hall, Englewood Cliffs, NJ, 1989. 

[4] R. Cypher and C. G. Plaxton. Deterministic sort- 
ing in nearly logarithmic time on the hypercube 
and related computers. ACM Symposium on The- 
ory  of Computing, 193-203. ACM, 1990. 

[5] F. Dehne, A. Fabri and C. Kenyon Scalable and 
archtecture independent parallel geometric algo- 
rithms with high probability optimal time. Pro- 
ceedings f o  the 6th IEEE SPDP, IEEE Press, 586- 
593, 1994. 

161 F. Dehne, A. Fabri and A. Rau-Chaplin Scalable 
Parallel Geometric Algorithms for Coarse Grained 
Multicomputers. AGM Symposium on Gomputa- 
tional Geometry, 1993. 

[i] Deng and Gu Good algorithm design style for mul- 
tiprocessors. 6th IEEE Symposium on Parallel and 
Distributed Processing, 1994. 

[8] M.T. Goodrich, J.J. Tsay, D.E. Vengroff, and 
J.S. Vitter. External-memory computational ge- 
ometry. Foundations of Computer Science, 1993. 

[9] Grand Challenges: High Performance Computing 
and Communications. The FY 1992 U.S. Research 
and Development Program. A Report by the Com- 
mittee on Physical, Mathematical, and Engineer- 
ing Sciences. Federal Councel for Science, Engi- 
neering, and Technology. To Supplement the U.S. 
President's Fiscal Year 1992 Budget. 

Randoni- 
ized Routing on Fat-trees. Advances in Computing 
Research, 5:345-374, 1989. 

Introduction to Parallel Algo- 
rithms and Architectures: Arrays, Trees, Hyper- 
cubes. Morgan Kaufmann Publishers, San Mateo, 
CA, 1992. 

[12] J.M. Marberg and E. Gafni. Sorting in constant 
number of row and column phases on a mesh. Proc. 
Allerton Conference on  Commun,ication, Control 
and Computing, 1986, pp. 603-612. 

[13] R. Miller and Q. Stout. Efficent Parallel Convex 
Hull Algorithms. IEEE Transcations on Comput- 
ers, 37:12:1605-1618, 1988. 

[14] F. P. Preparata and M. I. Shamos. Computational 
Geometry: an Introduction. Springer-Verlag, New 
York, NY, 1985. 

[15] J. H. Reif and L. G. Valiant. A Logarithmic Time 
Sort for Linear Size Networks. J.  ACM, Vo1.34, 

[16] C. Wang and Y. Tsin. An O(1og n) Time Parallel 
Algorithm for Triangulating A Set Of Points In 
The Plane. Information Processing Letters, 25:55- 
60, 1987. 

[lo] R. I. Greenberg and C. E. Leiserson. 

[11] F.T. Leighton. 

1:60-76, 1987. 

568 


