F. Dehne, A. Ferreira, and A. Rau-Chaplin, "A massively parallel knowledge-base server using a
hypercube multiprocessor," in Parallel Computing, Vol. 20, 1994, pp. 1369-1382.

A MASSIVELY PARALLEL KNOWLEDGE-BASE SERVER USING A
HYPERCUBE MULTIPROCESSOR®

FRANK DEHNE!, AFONSO G. FERREIRAZ, AND ANDREW RAU-CHAPLIN'

1 Center for Parallef and Distributed Computing
Schoal of Computer Science, Carleton University, Otftawa, Canada K18 586

2 Laboratoire de linformatique du Paralielisme - IMAG
Ecole Normale Superieure de Lyon, 69364 Lyon cedex ©7, France

Abstract. In this paper we study the parallel implementation of a traditional frame based
knowledge representation system for a gencral purpose massively parallel hypercube architecture
{(such as the Connection Machine CM-2), We show that, using a widely available parallel system
(instead of a special purpose architecture), it is possible to provide multiple users with efficient
shared access to a large scale knowledge-base. Parallel algorithms are presented for answering
multiple inference, assert and retract queries on both, single and multiple inheritance hierarchies. In

addition to theoretical time complexity analysis, empirical results obtained from extensive testing of
a prototype implementation are presented.

Corresponding Author:

AFONSO G, FERREIRA
Laboratoire de 'Informatique du Parallelisme - IMAG
Ecole Normale Superieure de Lyon, 69364 Lyon cedex 07, France

Symbols

\J = & o =

The first author's research is partially supperted by the Natural Sciences ant Engineering Research
Council of Canada {Grant A9173). The second author is eurrently on leave from the University of
Sao Paulo (Brazil), project BID/USP, and partially supported by CAPES/COFECUB (Grant 503/86-
8). The third author's research is partially supported by tha Bel-Nerthern Research Graduate

Award Program. Hardware support from the Northeast Paraliel Architecture Center (Syracuse, NY)
is greatfully acknowledged.

Frank K Dehne
F. Dehne, A. Ferreira, and A. Rau-Chaplin, "A massively parallel knowledge-base server using a hypercube multiprocessor," in Parallel Computing, Vol. 20, 1994, pp. 1369-1382.

1 INTROBUCTION

As outlined in [9, 27, 28], massively parallel architectures are essential for computationaly
intensive Al applications. Since knowledge representation is an essential part of Al [22, 29],
several researchers have studied parallel architectures for implementing knowledge bases [1,9, 11,
12, 16, 18, 20, 23, 24, 27, 28]. The parallel knowledge representation systems presented in the
literature have, however, either been based on special purpose parallel architectures or support only
the parallelisation of one query at a time. The fatter implies the (economically infeasible) dedication
of a massively parallel computer to one single user (e.g. [11, 18]).

This paper is concerned with the design and implementation of a traditional frame based
knowledge representation system [2, 3, 13, 17, 19} on a general purpose massively parallel
architecture. The considered architecture is a fine grained hypercube multiprocessor like the 64K
processor Connection Machine (CM-2) [135, 27]. We show that, using such a widely available

parallel system, it is possible to provide efficient shared access of multiple users to a large scale
knowledge base server; see Figure 1.

LY
h +
s ¥
A s
8 * B
. .
-
A

Large
Shared

Knowledge
Base

-
3! -
-

L4

:

" r

«‘ ¥

’

LN ¥ *

Figure 1. Many Users Sharing a Single Large Knowledge-Base Server.

We consider a parallel implementation of a standard frame based knowledge representation
systern which answers elementary queries such as top-down and bottom-up inference queries and
assert/retract queries [11] . Such a system could be utilized as the foundational layers of a truly
parallel reasoning system, see Figure 2. That is, it could be used as a parallel implementation of
Layers 1 and 2 in Figure 2. Parallelization of the higher level layers has already been extensively
studied [10, 14, 23]. This could lead to an architecture where Layers 3 and 4 reside on multiple

workstations being connected to a central SIMD hypercube multiprocessor which supports layers 1
and 2.

(Knowledge Based Application) 4

Knowledge Representation Scheme 1

Figure 2. A Layered View of a Knowledge-Base Application,

More specifically, we show in this paper how to execute in paralle]l a set of inference and
assert/retract queries on a knowledge base (with n frames) stored on a fine grained SIMD
hypercube multiprocessor (with N=n processors).

In Section 3 we study single inheritance hierarchies with implicit storage [26). We consider, in
Section 3.2, multiple bottom-up inference queries on single inheritance hierarchies. We show that
ms<N bottom-up inference queries [11] can be answered, in parallel, in time OClog n loglog?n + h
logn)! [or O¢h log n loglogZn) if frames can have an unbounded number of children], where h is
the height of the inheritance hierarchy. In Section 3.3, we present a heuristic algorithm for
answering multiple top-down inference queries {11]. Qur experimental results, obtained from
extensive testing of a prototype implementation, show that a nearly optimal (100%) processor
utilization is obtained for a 70% load factor (number of processors divided by number of queries).
In our experiments, the utilization never dropped below 75%, regardless of the load factor and
other parameters. Our system adapts flexibly and automatically to varying work loads in a close to
optimal way (providing a nearly constant product of response time and number of queries). In
Section 3.5 we study assert and retract queries, and show that they can be executed in essentially
the same time complexity as top-down inference queries. Note that, our system can process all four

kinds of queries simultaneously, and that only direct communication between adjacent processors
is used in our algorithms.

In Section 4 we generalize our results to multiple inheritance hierarchies with explicit storage
[26]. We outline how multiple op-down inference queries, bottom-up inference queries, as well as
assert and retract queries can be answered in parallel for a multiple inheritance hierarchy stored on a
hypercube multiprocessor. The time complexities for these operations are at most a O(loglog?n)

factor larger than the complexities of the respective operations on our parallel single inheritance
system.

2 PRELIMINARIES

2.1 FRAME-BASED KNOWLEDGE REPRESENTATION

Semantic nets alternatively known as frame-based systems have been widely studied [1, 2, 3,9,
11, 13, 17, 19, 24, 25, 26], and several general purpose knowledge representation tools have been
designed based on them [2, 3, 11, 13, 17, 25]. There are many advantages to a frame based
approach for knowledge representation as detailed in [13, 19].

Key _ _
SubClass-Of ink: e Vehicla Csmgrc{:la[
Instarce-Of link: - - - - ehicle

Air-\fehicla SegVehicle

”
L
-
-
-

-
-

it-of-8t-L.0! Cargo-Ship Ocein-iiner Pleasure
% i"’ :\‘-"'-. Craft

Oil-Tanker Container-Ship QE2 Titanic Q.Qéén.iﬁiﬁﬂ

Exxon-Valdez
Figure 3. An Example of an Inheritance Hierarchy

1 Note that, in contrast to [11], our time complexity results also account for the inter processor
communication fimae,

A frame language provides the designer of knowledge based systems with an easy way 10
describe the domain objects 1o be modeled and their relationships. In a frame-based system each
frame is used to describe an individual object or a class of objects. For example in Figure 3, the
class Ocean-Liner is used as a prototype to describe all of the properties that are common to all
Ocean liners, such as the fact that they carry paying passengers. The instance QE2, on the other
hand, is a frame that represents an individual instance of the class ocean-liner. It specifies
knowledge about a particular ocean liner, the QE2, such knowledge might include the number of
passengers that the liner caries, or the QE2’s transatlantic crossing time.

Both classes and instances are represented by frames. Each frame consists of 4 series of slots,
where each slot is used to represent a single fact about a particular class or instance. Some slots

many be explicit while others may inherit their values from their predecessors in the hierarchy
(implicit).

In this paper we will first focus on parallel single inheritance frame based systems. In such
systems the inheritance hierarchy can be represented by a k-nary tree. Later, in Section 4, we will
sketch how our approach can be extended to handle mulriple inheritance; i.e., the inheritance
hierarchy has a more general lattice structure.

2.1 HYPERCUBE MULTIPROCESSOR

A hypercube multiprocessor is a set Py, ..., P, of p processors connected in a hypercube
topology; i.e., P; and P; are connected by a communication link if and only if the binary
representations of i and j differ in exactly one bit. In a hypercube, there is no shared memory. The
entire storage capability consists of constant size local memories, one attached 1o each processor,

2.3. MULT!I-WAY SEARCH ON TREES AND GENERAL GRAPHS

Before presenting our parallel inference algorithms, we introduce some notations and previous
results on hypercube algorithms which will be used in the remainder. In particular, we use a
procedure called mudti-way search: Given a tree stored on a hypercube multiprocessor, m search
queries on that tree are t© be executed independently and in parallel, At each time step, each query
currently visiting a node of the tree decides which adjacent node to visit next, and is then moved 1o
that node. Note that, each node can be concurrently visited by an arbitrary number of queries.

More formally, let T = (V, E) be a tree of size k, height h, and out-degree O(1}, and let U be &
universe of possible search queries on T. A search parh for a query q € U is a sequence
path(q)=(v1, ..., vi) of h vertices of T defined by a successor function £ (VU {starth) x U=V
(i.e., a function with the property that f(start,q) € V and for every vertex ve V, (v.f(v,)) e E). A
search process for a query g with search path (vy, ..., vp) is 2 process divided into h 1ime steps
11<i<...<ty such that at time ¢, 1€jsh, query q is marched with node vi. A march of a query q and
a node v; at time t; is defined as a situation where there exists a processor which contains a
description of both, the query ¢ and the node v, Note, however, that we do not assume that the
search path is given in advance; we assume that it is constructed during the search by successive
applications of the functions f. Given a set Q = {q1,....Qm }c U of m queries, m=0{k), then the
multi-way search problem consists of executing (in parallel) all m search processes induced by the
m queries. In {7, 8] it was shown that the multi-way search problem can be solved on a hypercube
multiprocessor of size max{k,m} in time O(log k loglog?k + h log k). It follows from {4, 7, 8] that

for trees with unbounded out-degree, as well as arbitrary graphs, the time complexity increases to
Oth log k loglogZk),

Consider the problem of changing the tree T during the execution of & multi-way search, That
is, during the search leaves may be added to and subtrees may be deleted from T, and queries may
duplicate or delete themselves when reaching a node of T. This problem is referred to as the
dynamic multi-way search problem. In [5] it has been shown that this problem can be solved on a
hypercube multiprocessor of size max{k,m} in the same time O(log k loglog?k + h logk). It
follows from [4, 7, 8] that for trees with unbounded out-degree as well, as arbitrary graphs, the
tme complexity increases to Oh log k loglogk).

3 A PARALLEL FRAME BASED KNOWLEDGE SERVER SUPPORTING SINGLE
INHERITANCE HIERARCHIES WITH IMPLICIT STORAGE

In this section, we will study the efficient hypercube implementation of a knowledge base server
supporting a single inheritance hierarchy. We first describe, in Section 3.1, how to store a frame
based system on a hypercube multiprocessor, and then, how this representation can be effectively
used for inference. We will be interested in answering two basic types of elementary queries:
bottom-up and top-down inference queries [11]. These query are elementary and intended to serve
as a base upon which more complex query types can be defined by higher level inference
mechanisms (as depicted in Figure 2).

In the fellowing Sections 3.2 and 3.3, we show how multiple bottom-up and top-down
inference queries can be processed efficiently in parallel. To simplify exposition, we will describe
our inference methoeds for both query types separately; it is however gasy to see that both type of
queries can be processed simultaneously.

3.1 STORING AN INMERITANCE HIERARCHY ON A HYPERCUBE MULTIPROCESSOR

We require a scheme for distributing an inheritance hierarchy over the local memories of a
hypercube, Consider the level numbering of the frames of an inheritance hierarchy as indicated in
Figure 4. For the remainder we will assume that each frame with level number i, together with its
links and data, is stored at processor P,

Figure 4. Level Numbering of the Nodes of a Single Inheritance Hierarchy

In many systems (e.g. [17, 25)]), inheritance is “precompiled” such that little or no searching is
required to find the value of a slot, even if the value derived from some superclass via inheritance,
While we will adapt such an approach for our parallel multi inheritance knowledge base server
(Section 5), we will use an implicit representation for the single inheritance system to be discussed
in this section. That is, in order to store a frame at a processor, we store only the explicitly valued
slots. For implicitly valued slots, there is no reference necessary, since these values will be
determined by the inference mechanism.

Frame Narme: Qil-Tarnker Frame Index; 9 Frame Type: Class ™

Slots

Name: Cargo Explicet Valua: Qil Inharited Value: Usknown
Name: Max-Speed Explicet Value: Unknown Inherited Value: Unknown
Links

BuperClass-Index: 5 SubClass-Indices: None Instances-Indices: 15

/

Figure 5. A Frame record representing the class Oil-Tankers

3.2 ANSWERING MULTIPLE BOTTOM-UP INFERENCE QUERIES

We first consider the parallel implementation of multiple bottom-up gueries. Each bottom-up
query, g{X), is of the form “Does frame X meet conditions a through z” or “What are the values of
slots a through z of frame X7”. “Is the Exxon-Valdez an vehicle with color black and current-
location Alaska?” or “*What is the weight the QE2?” are examples of bottom-up queries based on
Figure 3. Bottom-up queries are always about a particular instance or class frame but, since we
are using an implicit representation, may require the examination of all superclasses of that frame.

Queries will be represented by records of the form depicted in Figure 6. Each "Current Value”

field of a query's slot is used to store the value of the respective slot at the frame the query is
currently examining,.

Query Type: Bottom-Up Root Name: Ssa-Vehicles Root index: 2

Sloty: Name: weight Current Value: 2089
Slpi2: Mame: paying-Passagers Current Value! Unknow
Condition: {weight » 1000} and {paying-passagers = {)

Completed; False

Figure 6. A query record representing the bottom-up query “Identify all instances of Sea-Vehicles
with weight > 1000 tons and paying passengers =07

Consider an inference hierarchy with n frames, stored on a hypercube multiprocessor with N
processors as described in Section 3.1 (w.l.o.g., n = N}, and a set of msN bottom-up inference
queries where each query is stored at one arbitrary processor. For the remainder, frames(i) and
query(i} refer to the query and frame (currently)} stored at processor PE(1).

Algorithm 11 Answering Multiple Botiom-Up Inference Queries
1) Match each guery g€X) with the frame X it refers to.
2y Aslong as there is sill a processor PE()} storing an unanswered query(i), repeat the following:
2a) Every PE@): If any slot in frame(i} is explicitly valued, and query(i) refers to the same slot but is
currently anvalued, sct the value of that slot of query(i) lo the value given in the {rame,
2b) Every PE(i): If all necessary slots referred o in query(i) have been instantiated, check the condition,
report the result, and delete the query.
2¢y Use muli-way search to advance all query{i) with Completed = False one siep along their path (in the
inheritance hierarchy) towards root; i.e,, maich them with the parent of the frame currently examined.
Figure 7. Hypercube Algorithm for Answering Multiple Bottom-Up Inference Queries

Figure 7 outlines a hypercube algorithm for answering, in parallel, m bottom-up inference
queries. It works essentially by first matching the queries to the frames they refer to and then
shifting thern through the tree towards the root until all slots referred to in the query have been

instanciated. As indicated in Section 2.3, the problem of advancing all m queries one step along
their path (in the inheritance hierarchy) towards root [Step 2c¢] can be solved on a hypercube
multiprocessor of size n in time O log n) if the number of children of each frame is bounded by a
small constant. For unbounded number of children, each advancement all m queries takes time
Otlogn loglog®n) [4, 7, 8].

The remainder of Step 2 consists of simple local, O(1) time, operations. From [7, 8] and {4] &t
also follows that the initial match in Step 1 can be executed in time O(log n loglog?n).

Summarizing, we obtain that all m<N bottom-up inference queries can be answered, in parallel,

in time O(logn loglog?n + h log n} [or O(h logn loglog?n) if frames can have an unbounded
number of childreni, where h is the height of the inheritance hierarchy.

3.3 ANSWERING MULTIPLE TOP-DOWN INFERENCE QUERIES

Tap-down inference queries, q(X), are of the general form “Identify all frames in the subtree (of
the inheritance hierarchy) rooted at X such that conditions @ through z are true”. For example,
“Identify all instances of Sea-Vehicles with weight > 1000 tons and paying passengers =07, or
“Identify all classes who are subclasses of Vehicle and have less-than 10 paying passengers” are
top-down inference queries based on the hierarchy in Figure 3.

Algorithm 2: Answering Mullinle Top-Down Inference Quernies

1) Match each query q(X) with the frame X it refers to.

) Aslong as there is still a processor PE() storing a query with Completed = False, repeat the following:
23) Every PE(): If any stot in frame(i} is explicitly valued, and query(i) refers to the same slot but is]

currenly unvaived, set the value of that slot of query(d) 10 the value given in the frame,

2h) Every PEG): H all necessary stots referred 1o in query(d) have been instantiated, check the condition, and
set Compleied to True,

2¢y Use multi-way scarch to advance all gquery(i) with Compleled = False one step along their path {in the
inheritance hicrarchy) towards root; 1.e., maich them with the ancestor of 1he frame currently examined.

3 Maich each query (X} with the frame X it refers to.

4) Split each guery g(X} indo two tokens, a search token search-token and a conirol token control-token. Each
token containg a copy of the original query. Each search token at frame X is responsible for searching the
subtree rooted at the first child of frame X; each control token at frame X is responsible for searching (or
having searched) the subtrees rooted at the other children of frame X,

5 As lonyg as there is stll a processor PE() storing an unanswered gquery qfX), repeat the following:

52) Count the number F of {ree processars, A free processor is a processor that is currently not supporting
any search token.

5b) Each token £ caleulates the number aff) of assistanis it could currently use. A control token can always
use as many assistants as it has remaining subtrees to search. A Search ioken can always use as many
assisiants as there are unsearched subtrees at the frame it is current currently visiting. F new search
tokens (assistants} are created and matched with the existing {search and control) tokens in order of the
level numbering of their frames, each receiving aft] assistants until all pew tokens are distributed.

%) For each token that has been allocated assistants in Step 4, assign 4 child whose subtree has not been
searched yet 10 each assistant, maich the assistants with those children, create for cach a corresponding
control token, and have thern search the respective subtrees,

50 Execuls "Process-Search-Tokens” ag shown in Figure 9.

s¢) Ulse multi-way search to advance all search tokens,

Figure 8. Hypercube Algorithm for Answering Multiple Top-Down Inference Querics

Procedure "Process-All-Search-Tokens”
3y Ewvery PE()) storing a search token:
oy Forevery slot j in frame(i) which is explicitly valoed, if query{i} refers to the same slot then
if the last node visited by the search token was the parent of frame(i)
then the inherited value for slot of frame(3) is the current value of slot j of the search
token; the explicit value of stot § (f any} of frame(l) becomes the current value of slot §
of the search token; check the query condition and report the resalt (if condition ={ruye).
else the explicit value of slot } (if any} of {rame(i) becomes the current value of
slot § of the search token.

By i the search token has not yet arrived at its conwrol token
then select, as frame {o be visited next, the next node in the preorder traversat
else if the search token’s corresponding control token has additional subtrees to be
searched

then start raversing one of those subtrees
else delcle both, the scarch token and the corresponding conkrol
token, and release the processor,

Figure 9. Processing of Search Tokens

Again, gueries are represented by records of the form depicted in Figure 6. Each "Current
Value" field of a query's stot 1s used to store the (implicit) value of the respective slot at the frame
the query is currently examining.

Figures 8 and 9 outline our hypercube algorithm for answering multiple top-down inference
queries. Again, we assume an inheritance hierarchy of n frames, stored on a hypercube
multiprocessor with N processors as described in Section 3.1, and a set of msN top-down
inference queries where each query is initially stored at one arbitrary processor. Figure 8 shows the
general structure of the algorithm. Steps 1-3 are similar to our bottom-up inference algorithm. The
result of these steps is that each query, q(X), has for all the slots which are specified in it,
explicitly stored the implicit values at frame X. What is left to do in the remaining steps is 10
search, for every q{X), the subtree rooted at X. To this end, a search token and control token are
created for every query. Each search wken, for a query q(X), traverses (independently and in
parallel} in precorder the subtree rooted at frame X and determines the answers to be reported; the
details are described in Steps 5d and 3e, together with Figure 9. Each control tokens remains at the
root of the respective subtree to be traversed, indicates to the respective search token the end of its
traversal, and creates new assistant processes in the same way as search tokens do. (Note that, the
number of control tokens never exceeds the number of search tokens.) The main idea leading to a
near optimal speedup (as will be shown in Section 3.4) is to re-use processors released by queries
which need to traverse smaller subtrees to improve the performance of the search processes for the
larger subtrees. This rescheduling mechanism is described in Steps 5a-5¢. After each "round”, L.e.
parallel advancement of all search tokens by one edge in the preorder of their subtree, processors
from finished traversal processes are given to unfinished traversal processes. Every token
determines, from the outdegree of the frame it is currently visiting, how many "assistants” it could
currently utilize, i.e. ask them to search those subtrees independently and in parallel. For the
distribution of available processors, the following heuristic is used: higher priority is given to those
search tokens with smaller level number, i.e. tokens that have (in the expected case) the largest
subtrees still to be searched.

For observing the correctness of the algorithm note that, the above algorithm searches for every
query g(X) the entire subtree rooted at frame X, and that at every time a frame is examined, all
inherited values are present. Due to the rescheduling procedure, the performance analysis for this

algorithm is more complicated than in Section 3.2 and will be discussed separately in the next
section.

3.4 ANALYSIS AND EXPERIMENTAL RESULTS

In the previous sections we introduced {wo inference algorithms. In the case of the bottom-up
inference algorithm it was possible to get a worst case bound on the algorithny's time complexity.
In the case of the top-down inference algorithm, worst case analysis is more difficulr. Asin
Section 3.2, advancing all m tokens one step along their path can be executed on a hypercube
multiprocessor of size n in time O{log n) (if the number of children of each frame is bounded by a
small constant) or in time O(log n loglog?n) (for unbounded number of children); see Section 2.3,
The problem lies in determining the number of such parallel steps required by our algorithm, since
at the heart of the method is a heuristic rescheduling scheme that reallocates processors to queries.
The challenge is to quantify how effective this reallocation technique is.

In order to test our mechanism, we have implemented a prototype system and have performed
extensive tests using randomly generated hierarchies and sets of top-down inference queries. We
considered the following input parameters:

n =number of frames = number of processors,

m = number of queries,

k = max. number of children of a frame,

Figure 10 shows the result of our experiments for 16,000 node hierarchies (n=16,000). The graph
on the left depicts results for hierarchies with unbounded k, while the graph on the right shows
results for hierarchies with a small value of k {(k=8}, The x-axis in each diagram represents m, the
number of queries, ranging from 1 to 16,000 in 1% increments. For each value of m, 1000
experiments where performed, each with a new randomly generated hierarchy and set of queries.
The two curves show the average number of parallel steps as well as the average speed up. The
speed up was measured by comparing the number of parallel steps with the total number of steps
necessary for sequentially processing the same query set on the same hierarchy. It measures the
utilization of the massive parallel architecture and, as our resulis show, a nearly optimal utilization
is abtained for a 75% load factor (number of processors, n, divided by number of queries, m). The
utilization never dropped below 75%, regardless of the load factor and other parameters.

The shape of the curves in Figure 10 can be explained by two opposing effects, If there are only
a few queries to be processed (small load factor), these can not immediately request enough
assistants (due to the constraints of the hierarchy) to ntilize all processors. On the other hand, it is
important for large subtrees to receive assistants early in the traversal process. Hence, if the
number of queries is close to the number of processors, there are no (or only very few) assistants
available until the smaller trees have been traversed. Therefore, it becomes likely for the larger
trees, that kate arriving assistants can not be efficiently applied to the traversal.

i

& s
Flale -) -
@] ™ 4
: s : 3
) £ o
f:.:.] o
100'% — B 100&%
- 4
Z 10 3
E o 5 !
o BO% o BO%
Rel. 8L Dov « 12% Fel. 3t Dev <« 14%
o+ ¥ f T T 70% ot X Y 1 T 70%
8] 4K aK 12K 16K o] 4K 8K 12K 18K

=== Paralle] Phasas

i Parafiel Phases {k Unbounded)
— Speedup

—%—— Speedup (K Unbounded)

Figure 10. Experimental results for Top-Down inference

3.5. DYNAMIC KNOWLEDGE REPRESENTATION: ASSERT AND RETRACT QUERIES

We have described how m inference queries can be answered efficiently on a static frame based
inheritance hierarchy of n nodes. We will now sketch how assert and retract queries can easily be
added to the system, thereby producing a truly dynamic knowledge representation scheme.

Assert queries are queries that add knowledge to our representation. There are three basic types
of assertions: assertion of a new slot value, assertion of a new slot (with initial value), or lastly,
assertion of a new class or instance frame (complete with slots and values). Retract queries fall into
three analogous types: retraction of a slot value, retraction of a slot, and retraction of a class or
instance frame,

Assert and retract queries are executed simultaneously to our search queries. From the semantic
viewpoint, however, all insert and retract submitted in one round (set of inference/assertion/
retraction queries to be processed in parallel) will be performed only after all inference queries in
that round have been answered. In addition, assertion and retraction queries processed in parallel
must be prioritized. (For example, it is possible that several assert queries may attempt to change
the value stored in a particular slot and frame in the same round. Which if any of these changes
should have a lasting effect?) We assume query priorities based on their position in the set of
submitted queries, i.e. queries submitted towards the end of the list of queries (to be processed in
parallel) are considered 1o be executed (logically) after those submitted earlier in the list.

Assert and retract queries can then be easily processed as follows: Match the queries with the
respective frames, using the sortng algorithm in [4]; use the concentrate/distribute operations in
[21] to remove redundant assert and retract queries; apply the dynamic multi-way search algorithm
referred to in Section 2.3 to insert/delete the required frames. All of these operations can be
computed, for all assert and retract queries in parallel, in time O(log n loglogZn).

4, MULTIPLE INHERITANCE KNOWLEDGE BASES WITH EXPLICIT STORAGE

In this section we sketch how the above single inheritance system can be modified to obtain a
multiple inheritance knowledge base. While we used an implicit storage scheme for the single
inheritance system described above, we will apply an explicit storage mechanism for obtaining a

10

hypercube implementation of a parallel multiple inheritance knowledge base server. That is, we
assume that in every frame, each slot which is not explicitly valued contains pointers to all possible
slots from whom it can inherit its value, together with a function computing from these values the
actual inherited contenis. [13, 17, 25}

With snch an explicit storage system, bottom-up inference queries can be easily answered by
matching the queries with the respective frames, and then matching them with the frames referred
to by the pointers in the respective slots. Hence, all bottom-up inference queries can be answered
in time O(log n loglog?n); see Section 2.3.

For each top-down inference queries q(X), the problem reduces to matching the query with the
respective frames X, and then traversing the subtree of all frames who have X as their super class.
Despite the fact that this subtree is not any more in level ordering, as for top-down inference
queries in Section 3, the traversal algorithm presented in Section 3 can essentially applied to this
problem as well. The only difference is that for advancing all search tokens by one step in their
preorder traversal, the sorting algorithm in [4] needs to be applied; this results in a time complexity
of O(log n Ioglog®n) per parallel advancement instead of O(log n); see Section 2.3. Otherwise, the
same analysis and experimental resalts as shown in Section 3.4 apply.

The execution of assert and retract queries becomes obviously more involved than in the implicit
storage schenie, In addition to the update/insertion/deletion of frames described in Section 3.5, all
possible pointers to those slots need also to be updated. We observe, though, that for each
update/finsertion/deletion of frame X it suffices to traverse the subtree either of all ancestors or of ali
descendents of X, and update the pointers in those frames' slots. Hence, we obtain a parallel
(multiple inheritance) assert/retract algorithm by adding to the assert/retract algorithm in Section 3.5
the same multiple subtree traversals as described in the previous paragraph. That is, again the same
analysis and experimental results as shown in Section 3.4 apply.

5. CONCLUSION

In this paper we showed how to execute in parallel a set of inference and assert/retract
queries on a shared knowledge base (with n frames) stored on a fine grained SIMD hypercube
multiprocessor (with N=n processors). We studied single inheritance hierarchies and showed that
msN bottom-up inference queries can be answered, in parallel, in time O(log n loglog®n +h logn)
[or Oth log n loglog?n) if frames can have an unbounded number of children], where h is the
height of the inheritance hierarchy. We presented a heuristic algorithm for answering multiple top-
down inference queries; our experimental results showed that a nearly optimal (100%) processor
utilization 15 obtained for a 70% load factor (nurmber of processors divided by number of queries).,
We also outlined how assert and retract queries can be executed with essentially the same time
complexity as top-down inference queries. We finally sketched how our system can be modified to
manage multiple inheritance hierarchies with explicit storage.

Acknowledgements.

We acknowledge the assistance of Alain Bonopera, Kevin Bourgault, Vincent Ho, Joel Lucuik,
and Desmond Weong in implementing the prototype and multi-way search,

1

(1]
[2]
(3]

[4]

{5]

7]

(8]

[9]

(10]

[11]

[12]

[13]

[14]
[15]
[16]

[17]

REFERENCES

L. Bic, "Processing of semantic nets on dataliow systems,” Artificial inteltigence, Vol. 27,
1985, pp. 216-227.

D. G. Bebrow and T. Winograd, "An overview of KRL, a knowledge representation
language,” Ccgnitive Science, Vol. 1, 1877, pp. 3-46.

R. Jd. Brachman and J. G. Schmolze, "An overview of the KL-One Knowledge
Representation system," Cognitive Science, Vol. 9, No. 2, 1988,

R. Cypher and C. G. Plaxion, "Deterministic sorling in nearly fogarithmic time on
the hypercube and related computers,” in Proc. ACM Symposium on Theory of
Computing, No. 22, 1980, pp. 193-203.

F. Dehne, A, Ferreira, and A. Rau-Chaplin, "Parailel branch ang bound on fine

grained hyparcube multiprocessors,” Farallel Computing, Vol. 15, 1890, pp. 201-
209.

K. Dehne, A. Ferreira, and A. Rau-Chaplin, "Paralle! branch and bound on a
hypercube mulliprocessor," in Prec. IEEE Int. Workshop on Tools for Artificial
Intelligence, Herndon, VA, 1889, pp. 616-622.

F. Dehne, A. Ferreira, and A. Rau-Chaplin, "Pargliel fractional cascading on

hypercube multiprocessers,” (o appear in Computational Geometry: Theory and
Applications.

. Dehne and A. Rau-Chaplin, "Implementing data structures oh a hypercubse
multiprocessor and applications in parallel computational geometry," Journal of
Pgrallel and Distributed Computing, Vol. 8, No. 4, 1980, pp. 367-375.

4. G. Delgado-Frias and W. R. Moore, "Parallel architectures for Al semantic

network processing," Knowledge-Based Systems, Vol. 1, No. 5, 1988, pp. 259-
2865.

M. Dixen and J. d. Kleer, "Massively parallel asumption-based truth maintenance,”
in Proc. Proceedings of the Seventh National Conference on Artificial Intelligence,
1988, American Association for Artificial Intelligence, pp. 198-204.

M. Evett apd J. Hendler, "Paraliel knowledge representation on the Connection
Maching,” in Proc. Paraliel Computing 1889, Leiden, The Netherlands, 1889,

S. E. Fahiman, G. E, Hinton, and T. J. Sejnowski, "Massively parallel architectures
for Al: NETL, Thistle and Boltzman machines,” in Proc. AAA! Annual Conferencs on
Arfificial intelligence, 1983, pp. 109-113.

R. Fikes and T. Kehler, "The role of frame-based representation in reasoning,”
Communications of the ACM, Vol. 28, No. 9, 1983, pp. 904-920,

A. Gupta, "Parallelism in production systems,”, Carnegia-Mailon, 19886,
W. D, Hillis, The Connection Machine{Ed.}, MIT Press, USA, 1985,

K. Hwang, J. Gosh, and R. Chowkwanyun, "Computer architectures for artificial
intelligence," Computer, Vol. 20, No. 1, 1987, pp. 13.27.

IntelliCorp, "KEE: Core Relergnce Manual” 1988,

12

{18]

(18]

[20]

[21]

[22]

(23]

[24]

[25]

[28]
[27]
28]

(298]

B. Israel and J. Hendler, "A highly parailel implementation od a marker passing
passing algorithm,” Tech. Beport No. CS-TR-2088, Dept. of Computer Sclence,
University of Maryland, College Park, 1988.

M. Minsky, "A framework for representing knowledge,” in P. Winston (Ed.), /n The
Psychology of Computer Vision, McGraw-Hill, New York, 1975, pp. 211-277.

3. . Moldovan and Y.-W. Tung, “SNAP: a VLS8! architecture for anificial

intelligence," Journal of Paraliel and Distributed Computing, Vol 2, No. 2, 1885,
pp. 108-131%.

D. Nassimi and 3. Sahni, "Data broadcasting in SIMD computers,” IEEE Transactions
on Computers, Vol. 30, No. 2, 1981, pp. 101-1086.

A. Newell, "The knowledge level,” Artifivial Intefligence Magazine, Vol. 2, No. 2,
1881, pp. 1-20.

J. Rice, "The advanced architectures project,” Artificial Infelligence Magazine, Vol
Fall, 1889, pp. 27-39.

P. 8. Sapaly. "A wave lanquage for parallel processing of semantic networks,”
Comput. Artificial Intefligence, Vol. &, No. 4, 1988, pp. 289-314,

M. J. Stefik, M, Bobrow, D. G. Mittal, and L. Conway, "Knowledge programming in

LOOPS: Report on an experimental course,” Artificial Intelfegence, Vol. 4, No. 3,
1983, pp. 3-14.

D. S. Touretzky, The Mathematics of Inherltance Systems{Ed.}, Morgan Kaufmann
Publishers, inc, Los Allos, CA, 1986.

L. Ubr, Multi-Computer Architectures for Artificial Intelligence(Ed.), John Wiley
& Sons, 1987.

B. W. Wah and G.-J. L, "A survey on special purpose computer architectures for
Al" SIGART News, Vol. 4, No. 86, 1986, pp. 28-46.

W. A. Woods, "What's important about knowledge representation?," Computar, Vol.
18, No. 10, 1983, pp. 22-29.

13

