
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2010; 00:1–17
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe

Accelerating R-based Analytics on the Cloud†

Ishan Patel, Andrew Rau-Chaplin and Blesson Varghese∗

Risk Analytics Laboratory, Faculty of Computer Science
Dalhousie University, Halifax, Nova Scotia, Canada

SUMMARY

This paper addresses the problem of harnessing cloud-based infrastructure for the kind of analytical
workloads that abound in application domains ranging from computational finance and risk analytics
to engineering and manufacturing. Often in this setting, software is not developed by a professional
programmer, but on an ad hoc basis by Analysts in high-level programming environments such as R or
Matlab. The goal is to allow Analysts to take an analytical job, including both the software and associated
data that executes on their personal workstations, and with minimum effort execute the software on a large-
scale parallel cloud infrastructure and manage both the resources and the data required by the job. If this can
be facilitated gracefully, then the Analyst can not only benefit from experimenting with large-scale analytical
problems in less time but also from on-demand resources, low maintenance cost and scalability of computing
resources, all of which are offered by the cloud.
In this paper, a Platform for Parallel R-based Analytics on the Cloud (P2RAC) that is placed between an
Analyst and a cloud infrastructure is proposed and implemented. P2RAC offers a set of command-line tools
for managing the resources, such as instances and clusters, the data and the execution of the software on the
Amazon Elastic Computing Cloud infrastructure. Experimental studies are pursued on two parallel problems
and the results obtained confirm the feasibility of employing P2RAC for solving large-scale analytical
problems on the cloud. Copyright c© 2010 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: cloud computing; data analytics; catastrophe bonds; R script

1. INTRODUCTION

Cloud based infrastructure has proven to be very effective in providing on-demand computational
resources to both commercial applications and a wide range of large-scale scientific applications.
Applications in climate simulation and analysis [1], biomedical image processing [2], satellite data
processing [3], astronomy [4], and disaster response systems [5] have all be successfully tackled
using cloud infrastructure. Such successes in both the commercial and scientific settings have
depended on bringing to bear the talents of computer scientists and expert developers in order to
efficiently exploit cloud-based infrastructure.

In this paper, we explore how a different class of users with a different kind of workload might
be able to take advantage of the cloud. In particular, we study how Analysts, who are domain
experts with quantitative/mathematical skills, but often with software skills limited to high-level
programming environments like R [6], Matlab [7] or Octave [7], might be supported in harnessing
the cloud for ad hoc analytical workloads.

†This research was fully financially supported by the Natural Sciences and Engineering Research Council of Canada
(NSERC) and Flagstone Re, Halifax, Canada under the Collaborative Research and Development grant CRDPJ 412889-
11, and was supported in part by an Amazon Web Service Education Grant Program.
∗Correspondence to: varghese@cs.dal.ca

Copyright c© 2010 John Wiley & Sons, Ltd.
Prepared using cpeauth.cls [Version: 2010/05/13 v3.00]

2

Analytical workloads abound in application domains ranging from computational finance and
risk analytics to engineering and manufacturing settings. In our experience, these workloads which
involve often involve simulation [8] and optimization [9] tasks share some common features, namely

(a) The associated codes are developed by Analysts, not professional developers, in high-level
programming environments such as R or Matlab.

(b) These codes and the related input data are generally created by Analysts for either one time use
or are heavily modified each time they are used to adapt them to the analytical question at
hand.

(c) The codes are often computationally intensive or require a large number of independent runs
with varying input parameters making some form of parallelism attractive.

Our goal has been to develop a platform that allows an Analyst to take an analytical job (both the
code and associated data) that runs on their personal workstations and with minimum effort/change
have them run on large-scale parallel cloud infrastructure. If this can be facilitated gracefully, the
Analyst can solve larger problems or perform more experiments in less time. Our approach is
somewhat different from other ‘cluster on cloud’ projects such as [10][11][12][13] in that our focus
is to simplify an Analyst’s use of cloud infrastructure, rather than provide a fully-configurable high-
performance computing cluster on clouds for developers. In particular, we have explored a platform
for facilitating R-based risk analytics on the Amazon EC2 cloud. However, we believe that the basic
platform and the experienced gained can be generalized to a wider class of analytics and cloud-based
infrastructure.

The Platform for Parallel R-based Analytics on Cloud Infrastructure (P2RAC) has been designed
to harnessing on-demand compute and storage resources available on the cloud for analytical
workloads, and at the same time simplify an Analyst’s use of the cloud infrastructure. It provides
an interface/API for Analysts to 1) Set-up both individual machines and clusters of machines in
the cloud, 2) Associate with machines both persistent and short term storage, 3) Transfer both
code and data 4) Execute both batch and interactive job, and 5) Manage execution and resource
termination. The goal is to allow Analysts to submit jobs to the cloud with minimum effort, and
manage both the resources and the data required to solve a problem and execute it on the cloud.
The current implementation of P2RAC provides support for the resources available on the Amazon
AWS infrastructure and offers a set of both core and diagnostic tools, but could also be implemented
on other cloud platforms.

In our interaction with Analysts working in industry we have observed a number of commonly
arising work patterns. In each of these an Analysts starts by prototyping an analytical code on their
personal workstations and then reaches a point where they require more computing resources. The
need for additional computational resources may take a number of forms, including 1) needing to
perform production runs on a single workstation with more memory or compute speed, 2) needing
to perform a parameter sweep in which the same code is run hundreds or thousands of times
with different input parameters, or 3) needing to speed-up a single long running optimization or
simulation task by exploiting co-operative parallelism that may be built into the the optimization or
simulation library being used. P2RAC has been designed to address each of these cases. In the later
two cases it is important to balance easy-of-use with parallel speed-up. The experimental section of
this paper explores this trade-off and shows that reasonable speed-up can often be obtained on cloud
infrastructure without undue complexity.

The remainder of this paper is organized as follows. Section 2 shows the sequence of commands
for executing an analytical task on cloud resources. Section ?? considers the design of P2RAC
and the resources employed by it. Section 3 presents the implementation of P2RAC and the set of
commands offered by the platform. Section 5 describes two analytical problems that are executed
on the cloud using P2RAC and the results obtained from the experiments. Section 6 concludes the
paper.

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

3

2. P2RAC: DESIGN OVERVIEW

In this section we discuss the primary goals that guided the design of P2RAC, its software structure,
and its usage.

2.1. Design Goals

Our focus in designing P2RAC was to provide Analysts with a platform that would allow them
to exploit cloud based resources in a manner that was compatible with their fast moving and data
intensive work environment.

2.1.1. Support for how Analysts work Analysts are typically interested in the results of an analysis
than in the. Security: Our primary goal was to support Analysts. Minimum difference between
workstation and cloud computations.

2.1.2. Support for a variety of parallel abstractions that supports typical analysts work:

2.1.3. Support for a variety of data storage models

2.1.4. Support for result and error logging , Robustness:, Support for results logging:

• Use of standards and libraries:
• Easy of deployment:

2.2. Software Platform and Usage

This section considers how the platform fits in coherently between an Analyst, who is the typical
user and the cloud infrastructure (refer Figure 1). The Analyst’s project comprising R scripts and
large data files is passed on to P2RAC as a task for execution on the cloud. The platform then gathers
and initializes a pool of computational and storage resources on the cloud for executing the task.
The platform subsequently transfers the task onto the resources and manages task execution. After
the task is executed, the platform gathers results which may be spread across the resources in the
cloud.

The platform provides support both for an individual computing resource as well as for clusters
(a collection of computing resources that work collaboratively). The platform comprises three
components, (a) the core tools, (b) the diagnostic tools and (c) the configuration files. The core tools
provide functionalities for resource management, data management and execution management.
The diagnostic tools provide functionalities for checking the computational environment. The
configuration files provide support for the functionalities of the core and diagnostic tools.

Two typical usage scenarios: batch and interactive....
Interactive usage:

Step 1:
Step 2:
Step 3:
Step 4:
Step 5:

3. SYSTEM DESIGN AND IMPLEMENTATION

As considered above P2RAC comprises three components, (i) the core tools, (ii) the diagnostic tools
and (iii) the configuration files supporting both instances and clusters. This section considers the
implementation of the tools that support the cluster and instance. The core and diagnostic tools are
implemented as commands which are executed from the command-line. All commands in P2RAC

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

4

Figure 1. Conceptual design of P2RAC

utilise two switches, one of which is -h that provides a description of the use and arguments of the
command, and the other which is -v that provides the version of P2RAC.

3.1. AWS Support

Large scale data analytics is investigated on the cloud infrastructure which is a pool of computational
and storage resources geographically dispersed. The resources provided by a cloud are accessible
through Infrastructure as a Service (IaaS) [26], and Amazon is a leading provider of IaaS. The
computational resources on Amazon are referred to as Elastic Compute Cloud (EC2) and are
available as instances. These resources are available on-demand and are paid for on the basis of
their usage.

The Amazon instances are initialized using Amazon Machine Images (AMI) [29]. The
Bioconductor Cloud AMI [30] was employed during the preliminary test phase of the research. The
SNOW package and the R version of GENetic Optimization Using Derivatives (rgenoud) package
[31] are additionally installed on the instance when the Bioconductor Cloud AMI (this AMI does not
provide SNOW and rgenoud packages) is used. Subsequently, it was necessary to utilise a custom
AMI.

Two Ubuntu AMIs are used in this research. The first AMI, supports Cluster Compute instances
offered by Amazon. The Cluster Compute instances are built on Hardware Virtual Machine (HVM)
type virtualization. The second Ubuntu AMI offers support for non-HVM type virtualization. Any
additional libraries which an Analyst needs to include in his project can be installed on the instance
by specifying library packages in a configuration file.

The storage resources on Amazon are referred to as the Elastic Block Storage (EBS) [28]. Similar
to EC2, EBS is available on-demand and are paid for on the basis of data transfer and volume of
storage. One note worthy feature of EBS includes its ability to provide persistent data storage. This

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

5

feature is exploited when large volumes of data need to be used in an Analyst’s project and thereby
eliminates the need for frequent transfer of data that may not be changed over time. Another feature
of EBS is that it can be attached (mounted) as a local storage onto an EC2 instance in addition to its
storage. This feature eliminates the need for making data locally available to the instance.

The EC2 and EBS services are employed by P2RAC. The P2RAC platform mediates between
an Analyst’s project and the web services offered by Amazon. The platform is built with the
Python programming language and draws heavily on two libraries. Firstly, the Boto library, which
provides P2RAC a Python interface to the Amazon web services. Secondly, the Fabric library, which
facilitates remote administration of the instances on the cloud for P2RAC.

3.2. Core Tools

The core tools of P2RAC provide functionalities for resource management, data management on the
resource, and execution management of a task on the resource. An interface is provided to an Analyst
to access the cloud which allows significant computational resources to be brought to bear while
greatly reducing the complexities associated with directly working with the cloud infrastructure.
This is necessary since an Analyst is less likely to have knowledge and experience of working with
computational clouds.

3.2.1. Instance Support is offered using tools for instance management, data management on the
instance and execution management of a task on the instance.

Instance Management tools configure an instance on the cloud, offers the instance for
the execution of a task and finally terminates the instance after the task it was executing is
completed. P2RAC offers two tools for managing instances, namely ec2createinstance and
ec2terminateinstance.

The ec2createinstance command is responsible for configuring an instance on the cloud
and making it available to an analyst.

The syntax of the ec2createinstance command is
ec2createinstance [-h] [-iname INSTANCE NAME] [-ebsvol
EBS VOLUME | -snap EBS SNAP] [-type INSTANCE TYPE] [-desc
INSTANCE DESCRIPTION]

The optional arguments of the ec2createinstance command are iname, ebsvol, snap,
type and desc. iname specifies the name of the instance that is created. ebsvol specifies the
EBS volume ID which is provided by Amazon when an EBS volume is created. snap specifies
the EBS snapshot ID from which an EBS volume can be created. snap and ebsvol cannot be
specified at the same time. ebsvol can be specified when a EBS volume is available, while if snap
is specified then a new EBS volume is created from the snapshot specified. If both arguments are
not provided, then a default snapshot from a configuration file is used. type defines the Amazon
EC2 instance type which is specified based on the computational requirements of the task. For
example, a High-memory Quadruple Extra Large Instance, offers 68.4 GB of memory, 26 EC2
compute units, 1690 GB of instance storage, with high input/output performance, with instance
type as m2.4xlarge, and was employed for a number of experiments in the work reported in this
paper. The desc argument can be used to provide a description of the instance.

For example, if a command such as
ec2createinstance -iname ’hpc instance’ -ebsvol ’vol-xxxxxxxx’
-type ’m2.4xlarge’ -desc ’For Trial Simulation Run’

is executed, then a sequence of activities follow. One EC2 instance of m2.4xlarge type is
initialized using the AMI specified in the configuration file, and is tagged. The EBS volume,
vol-xxxxxxxx (volume ID is masked in this paper) is attached on to the instance. A configuration
file at the Analyst site is updated with instance information such as the public DNS names of the
instance, EBS volume ID and description of the instance. Should the optional arguments be not
provided then the default values which are defined in a configuration file is chosen.

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

6

The multiple execution of the ec2createinstance command facilitates the creation of
multiple instances. Since an EBS volume can only be attached to one instance, and therefore, the
need for multiple EBS volumes arises when multiple instances are created. Should multiple EBS
volumes require the same data then they need to snapshot from the same source located on Simple
Storage Service (S3) offered by Amazon [32]. Multiple instances cannot have the same name when
the ec2createinstance command is executed more than once.

When a task has completed execution on the instance it is essential to safely release
the instance. The ec2terminateinstance command is provided. The syntax of the
ec2terminateinstance is
ec2terminateinstance [-h] [-v] [-iname INSTANCE NAME]

[-deletevol]

The optional arguments of the ec2terminateinstance command are iname and
deletevol. iname specifies the name of the instance that needs to be terminated. The
deletevol switch deletes an EBS volume attached to the instance being terminated. To terminate
all the instances on the cloud ec2terminateall command is provided which will be considered
in cluster management.

For example, if a command such as
ec2terminateinstance iname ’hpc instance’

is executed, then a sequence of activities follows. Firstly, the EBS volume attached to the instance
is no more available. Further to this, the instance is terminated. The section containing the instance
information of hpc instance in the configuration file is removed. Should the deletevol
switch be included in the command then the EBS volume, vol-xxxxxxxx is deleted.

Data Management on the instance is required to transfer the script and the data from the Analyst’s
site onto the instance and then receive results. The Secure Copy Protocol (SCP) or the rsync protocol
can be employed for data transfer. However, rsync, is chosen as it transfers data quicker than SCP.
Moreover, rsync in subsequent data transfers only synchronises the data changed at the source. This
feature of rsync makes it suitable for P2RAC since data at the Analyst’s site changes frequently. The
ec2senddatatoinstance command is provided for data transfer and the results are retrieved
using the ec2getresultsfrominstance command.

The syntax of the ec2senddatatoinstance command is
ec2senddatatoinstance[-h] [-v] [-iname INSTANCE NAME]

[-projectdir PROJECT DIRECTORY]

The optional arguments of the ec2senddatatoinstance command are iname and
projectdir. iname specifies the name of the instance to which the project directory will be
synchronised. The source project directory is specified as the argument projectdir. If the
instance name is not provided by the Analyst then the instance from the configuration file is
employed. Should the project directory not be specified then the current working directory at the
Analyst site is used as the source project directory. The destination directory is not specified since
the project directory is synchronised at the home directory of the root user.

The project directory comprises a set of R scripts which need to be executed, a set of data files
required by the scripts and a sub-directory that will contain results after the execution of the script.
Large volumes of data which are less likely to change in a short course of time are stored on the EBS
volume. On the other hand smaller chunks of data that frequently change are synchronised from an
Analyst’s site on to the local storage of the instance.

The syntax of the ec2getresultsfrominstance is
ec2getresultsfrominstance [-h] [-v] [-iname INSTANCE NAME]

[-projectdir PROJECT DIRECTORY] [-runname RUN NAME]

The optional arguments are iname and projectdir. The iname argument specifies the name
of the instance from where the results have to be fetched. The projectdir specifies the location
of the source project directory at the Analyst site. The command utilises the name of the project
from the path of the source project directory to fetch data from the corresponding project directory

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

7

on the instance. If no project directory is specified then the path of the current working directory at
the Analyst site is used.

The mandatory argument for the ec2getresultsfrominstance command is runname
which indicates the name of a run that was specified during execution and whose results need to be
gathered. This argument is used if the same R script has been executed a number of times and each
execution had to be differentiated.

Execution Management command, namely the ec2runoninstance runs the R script on the
instance. This command locks the instance onto the R script and does not permit any additional use
of the instance until the script has completed execution or the instance is manually unlocked using
ec2resourcelock considered later. The syntax of ec2runoninstance is
ec2runoninstance [-h] [-v] [-iname INSTANCE NAME] [-projectdir
PROJECT DIRECTORY] [-rscript R SCRIPT] [-runname RUN NAME]

The optional arguments of ec2runoninstance are iname, projectdir and rscript.
The iname argument specifies the name of the instance on which the R script needs to be executed.
The projectdir specifies the location of the source project directory at the Analyst site. The
command utilises the name of the project from the path of the source project directory to execute
an R script from the corresponding project directory on the instance. rscript specifies the name
of the R script to be executed from projectdir. If rscript is not provided then the user is
prompted to select from a list of R scripts that may be available in the project directory.

The mandatory argument for ec2runoninstance is runname which indicates the name of
a run.

3.2.2. Cluster Support is offered using tools for cluster management, data management on the
cluster and execution management of a task on the cluster.

Cluster Management in the core tools are a set of functionalities that range from gathering a pool
of instances on the cloud, followed by configuring the instances as a cluster, offering the cluster
for task execution and finally terminating the cluster when the task executing on the cluster has
completed. P2RAC offers two core tools for cluster management, namely ec2createcluster
and ec2terminatecluster.

The ec2createcluster tool is responsible for gathering and configuring the pool of
instances as a cluster on the cloud.

The syntax of the ec2createcluster command is
ec2createcluster [-h] [-v] [-cname CLUSTER NAME] [-csize
CLUSTER SIZE] [-ebsvol EBS VOLUME | -snap EBS SNAP] [-type
INSTANCE TYPE] [-desc CLUSTER DESCRIPTION]

The optional arguments of the ec2createcluster command are cname, csize, ebsvol,
snap, type and desc. cname specifies the name of the cluster that is created. csize specifies
the size of the cluster. ebsvol specifies the EBS volume ID which is provided by Amazon when
an EBS volume is created. snap specifies the EBS snapshot ID from which an EBS volume can
be created. snap and ebsvol cannot be specified at the same time. ebsvol can be specified
when a EBS volume is available, while if snap is specified then a new EBS volume is created
from the snapshot specified. If both arguments are not provided, then a default snapshot from a
configuration file is used. type defines the Amazon EC2 instance type which is specified based on
the computational requirements of the task. The desc argument can be used to provide a description
of the cluster.

For example, if a command such as
ec2createcluster -cname ’hpc cluster’ -csize ’10’ -ebsvol
’vol-xxxxxxxx’ -type ’m2.4xlarge’ -desc ’For Trial Simulation Run’

is executed, then a sequence of activities follow. Ten EC2 instances of m2.4xlarge type are
initialized using the AMI specified in the configuration file. The cluster of the ten EC2 instances
is referred to as hpc cluster. One instance in the hpc cluster is denoted as the master and

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

8

tagged as hpc cluster Master, while the remaining nine instances are denoted as workers
and are tagged as hpc cluster Workers. The EBS volume, vol-xxxxxxxx (volume ID is
masked in this paper) is attached on to the master instance. Network File System (NFS) is employed
to share the attached EBS volume among the nine worker instances. A configuration file at the
Analyst site is updated with cluster information such as the public DNS names of the master and
worker instances, size of the cluster, EBS volume ID, description of the cluster and whether the
cluster is in use for executing a script. Should the optional arguments be not provided then the
default values which are defined in a configuration file is chosen.

The multiple execution of the ec2createcluster command facilitates the creation of
multiple clusters. Since an EBS volume can only be attached to the master instance of one cluster
the need for multiple EBS volumes arises when multiple clusters are created. Should multiple EBS
volumes require the same data then they need to snapshot from the same source located on Simple
Storage Service (S3) offered by Amazon [32]. Multiple clusters cannot have the same name when
the ec2createcluster command is executed more than once.

When a task has completed execution it is essential to safely release the resources which are
utilized by the cluster. To this end, the ec2terminate cluster command is provided. The syntax
of the ec2terminatecluster command is
ec2terminatecluster [-h] [-v] [-cname CLUSTER NAME] [-deletevol]

The optional arguments of the ec2terminatecluster command are cname and
deletevol. cname specifies the name of the cluster that needs to be terminated. The
deletevol switch deletes an EBS volume attached to the cluster being terminated.

For example, if a command such as
ec2terminatecluster cname ’hpc cluster’

is executed, then whether a cluster is in use is firstly checked. If the cluster is in use, then
the cluster cannot be terminated. If the cluster is not in use, then a sequence of activities
follows. The EBS volume that has been shared with the worker instances through NFS is no
more shared. Further to this, the worker instances are terminated such that they do not exist.
The EBS volume vol-xxxxxxxx is detached from the master node and the master instance is
terminated. The section containing the cluster information of hpc cluster in the configuration
file is removed. Should the deletevol switch be included in the command then the EBS volume,
vol-xxxxxxxx is deleted.

When all resources, both of the instance and the cluster need to be terminated the
ec2terminateall command is provided. The syntax of ec2terminateall is
ec2terminateall [-h] [-v] [-instances] [-clusters] [-ebsvolumes]

[-snapshots]

The optional switches are instances, clusters, ebsvolumes and snapshots which
terminates all the instances, clusters, EBS volumes and snapshots respectively.

Data management on the cluster is required to transfer the task (both the scripts and data) from
the Analyst site to the cluster on the cloud, and thereafter receive results to the Analyst site. The
transfer of task may be to the entire pool of resources in the cluster or to a specific instance on
the cluster. Two feasible routes are to use the Secure Copy (SCP) protocol or the rsync protocol.
The rsync protocol is employed owing to the quicker synchronisation of data between a source and
a destination site. Therefore, two commands, namely the ec2senddatatoclusternodes and
ec2senddatatomaster based on the rsync protocol are provided. In order to receive the results
to the Analyst site the ec2getresults command is developed.

The ec2senddatatoclusternodes command enables an Analyst’s project to be
synchronised with all instances of a cluster. This stands different to the data that is stored in an
EBS volume mounted on the master instance and shared with the worker instances. In this research,
large volumes of data which are less likely to change in a short course of time are stored on the EBS
volume. On the other hand smaller chunks of data that frequently change are synchronised from an
Analyst’s site on to the local storage of the cluster instances.

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

9

The structure of a project at the Analyst’s site is worthwhile to be noted. A directory
comprising a set of R scripts which need to be executed, a set of data files required by
the scripts and a sub-directory that will contain results after the execution of the script. The
ec2senddatatoclusternodes command synchronises the directory from the Analyst’s site
to all the instances of the cluster. In other words, every instance contains a project directory.

The syntax of the ec2senddatatoclusternodes command is
ec2senddatatoclusternodes [-h] [-v] [-cname CLUSTER NAME]
[-projectdir PROJECT DIRECTORY]

The optional arguments of the ec2senddatatoclusternodes command are cname and
projectdir. The cname argument specifies the name of the cluster whose instances will be
synchronised with the project directory. The source project directory is specified as the argument
projectdir. If the cluster name is not provided by the Analyst then the cluster name from the
configuration file is employed. Should the project directory not be specified then the current working
directory at the Analyst site is used as the source project directory. The destination directory is not
specified since the project directory is synchronised at the home directory of the root user.

Owing to the nature of the task to be executed, it may not be necessary that the project directory be
provided to all the instances of a cluster. For example, consider a task in which the master instance
receives data from the Analyst site and distributes it to the worker instances in the cluster. In such
a case it would be inefficient to synchronise the source project directory with all the instances of
the cluster, but would be sufficient for the master instance alone to have the project directory. To
facilitate this, ec2senddatatomaster command is provided.

The syntax of the ec2senddatatomaster is
ec2senddatatomaster [-h] [-v] [cname CLUSTER NAME] [-projectdir
PROJECT DIRECTORY]

The optional arguments of ec2senddatatomaster are similar to that of
ec2senddatatoclusternodes.

Based on the nature of the R scripts that are executed there are three possible scenarios for
generating results. It is assumed that the R scripts generate results in a sub-directory within the
project directory. In the first scenario, the master instance aggregates the results from the worker
instances and stores them at the master instance. In the second scenario, however, the results are
only generated on the worker instances. In the third scenario, the results are generated on both
the master and worker instances. In both the scenarios, the results need to be obtained at the
Analyst site. Therefore, the ec2getresults command is provided. To address the first scenario,
ec2getresults gathers results from the master instance and provides it at the Analyst site. To
address the second scenario, ec2getresults gathers results from the worker instances. In the
third scenario, ec2getresults gathers results from both the master and all the worker instances.
The aggregated results are stored in a directory at the same hierarchical level of the project directory
at the Analyst site.

The syntax of the ec2getresults is
ec2getresults [-h] [-v] [cname CLUSTER NAME] [-projectdir
PROJECT DIRECTORY] [-runname RUN NAME] -frommaster | -fromworkers
| -fromall

The optional arguments are cname, projectdir and a switch. The cname argument specifies
the name of the cluster from where the results have to be fetched. The projectdir specifies the
location of the source project directory at the Analyst site. The command utilises the name of the
project from the path of the source project directory to fetch data from the corresponding project
directory on the cluster. If no project directory is specified then the path of the current working
directory at the Analyst site is used. The switch specifies the instances from where the results need
to be gathered. If frommaster is specified, then results are gathered as in the first scenario. If
fromworkers is specified, then results are gathered as in the second scenario. If fromall is
specified, then results are gathered as in the third scenario. If no switch is specified then the results
are gathered as in the first scenario.

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

10

The mandatory argument for the ec2getresults command is runname which indicates the
name of a run that was specified during execution and whose results need to be gathered. This
argument is used if the same R script has been executed a number of times and each execution had
to be differentiated.

Execution Management assigns the Analyst task onto a cluster and further runs task on the
cluster. This command locks the cluster for execution of the R script specified by the execution
command and does not permit any additional use of the cluster until the script has completed
execution or the cluster is manually unlocked using ec2resourcelock considered in the next
section. For this, the ec2runoncluster command is provided. The syntax of ec2runscript
is
ec2runoncluster [-h] [-v] [-cname CLUSTER NAME] [-projectdir
PROJECT DIRECTORY] [-rscript R SCRIPT] [-runname RUN NAME] [-bynode
| -byslot]

The optional arguments of ec2runoncluster are cname, projectdir and rscript.
The cname argument specifies the name of the cluster where the R script needs to be executed.
The projectdir specifies the location of the source project directory at the Analyst site. The
command utilises the name of the project from the path of the source project directory to execute an
R script from the corresponding project directory on the cluster. rscript specifies the name of the
R script to be executed from projectdir. If rscript is not provided then the user is prompted
to select from a list of R scripts that may be available in the project directory.

Two optional switches to manage the scheduling of slave processes onto the cores of the cluster
nodes are available. The bynode switch assigns the processes in a round-robin fashion while the
byslot switch assigns all processes on a node until all of its cores are exhausted. In MPI, the
default scheduling is byslot, whereas in P2RAC, bynode is chosen as the default scheduling
mechanism if the switch is not specified. bynode switch is required to meet the memory constraints
of large processes.

The mandatory argument for ec2runoncluster is runname which indicates the name of a
run.

3.3. Diagnostic Tools

support instances and clusters and are available as follows:

(a) ec2listinstances, ec2listclusters and ec2listallresources - for listing
the instances and clusters created by the Analyst on the Amazon cloud

(b) ec2logintoinstance and ec2logintomaster - for accessing an instance or the
master instance of a cluster

(c) ec2resoucelock - to lock an instance or a cluster for a specific task or to unlock them
from use

The syntax of ec2listinstance is
ec2listinstance [-h] [-v] [-names]

The optional switch names provides the names of the instance. If the switch is not provided then
the list of the instances, their public DNS names, volume ID of the EBS volume shared with the
instances and the description of the cluster is provided.

The syntax of ec2listclusters is
ec2listclusters [-h] [-v] [-names]

The optional switch names provides the names of the clusters on the cloud. If the switch is not
provided then the list of the clusters along with the size of the cluster, public DNS name of all
instances, volume ID of the EBS volume shared with the instances of the cluster and the description
of the cluster.

The syntax of ec2listallresources is

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

11

ec2listallresources [-h] [-v] [-instances] [-ebsvols] [-snapshots]
[-amis]

The switches instances, ebsvols, snapshots and amis provides the names of the
instances, EBS volumes, EBS snapshots and AMIs on the cloud.

The syntax of ec2logintoinstance is
ec2logintoinstance [-h] [-v] [-iname INSTANCE NAME]

The optional argument iname specifies the name of the instance that needs to be accessed. The
connection to the instance is facilitated through Secure Shell (SSH). If the name of the instance is
not provided then the instance listed in the configuration file is used.

The syntax of ec2logintocluster is
ec2logintocluster [-h] [-v] [cname CLUSTER NAME]

The optional argument cname specifies the name of the cluster whose master instance needs to
be accessed. The connection to the master instance is also facilitated through Secure Shell (SSH).
If the name of the cluster is not provided then the master instance of the default cluster listed in the
configuration file is used.

The syntax of ec2resourcelock is
ec2resourcelock [-h] [-v] [-iname INSTANCE NAME | cname
CLUSTER NAME] [-free | -inuse]

The optional arguments iname specifies the name of the instance and cname the name of the
cluster that needs to be locked or unlocked. The resources are locked using the -inuse switch and
unlocked using the -free switch.

3.4. Configuration Files

There are four files that support the core and diagnostic tools which reside on the Analyst site.
Firstly, a file that contains a list of variables that are required by the command line tools along with
a number of directory paths and references to access keys for Amazon resources. Secondly, a file
that provide support for instances, and includes the name of the instance created, its public DNS
name, Volume ID, the description of the instance and whether the instance is in use. Thirdly, a file
that provides support for clusters, and includes the names of the clusters created, their size, the
public DNS names of all their instances, Volume ID of the EBS volume shared by the master with
the workers, the description of the clusters and whether the cluster is in use. Fourthly, a file that
contains a list of R libraries which are required by an Analyst’s project. These libraries are installed
on the instances of the cluster when it is created. This is required in addition to the pre-installed
libraries of the base AMI.

The P2RAC platform offers support both for instances and clusters. In the case of instance
support, P2RAC enables the management of instances, which includes the creation and termination
of single and multiple instances. In the case of cluster support, P2RAC facilitates creation and
termination of single and multiple clusters. In either case, management of data is facilitated by
making large and small chunks of data available to the executing task by sharing persistent data
volumes and by synchronising data from the Analyst site to the instances or cluster.

The platform is designed for both batch mode execution and interactive mode execution. Batch-
mode execution in P2RAC supports time consuming production tasks. The core commands are listed
in a script and the script is executed without the intervention of an Analyst. The interactive mode
execution on the other hand allows an Analyst to experiment with his scripts and supports execution
of ad hoc tasks. The core commands are executed from the command line by the Analyst.

4. EXAMPLE WORKFLOWS

A workflow of how to use the P2RAC commands for executing a task on instances or on a cluster is
considered in this section. Firstly, for running an R-script on an instance, the sequence of commands

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

12

Figure 2. Workflow of commands using P2RAC

are shown in Figure 2. An Analyst in possession of R scripts utilizing SNOW library firstly creates
an instance on the Amazon Cloud. The scripts and the data required by the script are then provided
to the instance. The script is executed on the instance and produces the results on the instance. The
results can then be fetched by the Analyst. Finally, the instance is terminated.

Figure 3 shows the sequence of the commands and the order in which they are executed at the
Analyst site for executing a task on the cluster. A cluster with 4 instances (1 master and 3 worker
instances) is created. The Analyst secondly sends the R scripts and the data required by the scripts
to the cluster. The script is then executed and the result of execution is generated on the master
instance. When the execution of the R scripts are completed then the Analyst gathers the results to
his site. The cluster is finally terminated.

5. EXPERIMENTAL STUDIES

This section presents the platform, the two problems employed on P2RAC and the results obtained
from experiments.

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

13

Figure 3. Workflow of commands using P2RAC

5.1. Experimental Platform

Two desktop computers, two Amazon cloud instances, and four clusters comprising Amazon cloud
instances are the computational resources utilised for the evaluation of P2RAC. Table I shows the
specifications of the resources.

5.2. Experimental Problems

To evaluate the feasibility of P2RAC, two kinds of experimental problems, which are analytical in
nature were employed. The first problem is a computationally intensive task employing co-operative
parallelism. An R-based example of such a task was used, which is referred to as Catastrophe Bond
Optimization (CATopt). CATopt performs a basis risk minimization task using a multi-objective
optimization in a high (2000-4000) dimensional space. This optimization, which is useful for the
analysis of catastrophe bonds, is performed using the rgenoud package which combines evolutionary
search algorithms with derivative-based (Newton or quasi-Newton) methods. The input data to the
CATopt problem is approximately 300 MB.

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

14

Table I. Resources Utilised for Experimental Studies

Resource Provided by Processor /
Amazon Type

No. of
cores

Memory Storage System
type

Desktop A Dalhousie
University

Intel (R) Core
(TM) i7-2600 @
3.4 Ghz

8 16GB 1.8TB 64 bit

Desktop B Flagstone Re 8 64 bit
Instance A Amazon m2.2xlarge 4 34.2 GB 850 GB 64 bit
Instance B Amazon m2.4xlarge 8 68.4 GB 1690 GB 64 bit
Cluster A Amazon m2.2xlarge X 2 8 68.4 GB 1.7 TB 64 bit
Cluster B Amazon m2.2xlarge X 4 16 136.8 GB 3.4 TB 64 bit
Cluster C Amazon m2.2xlarge X 8 32 273.6 GB 6.8 TB 64 bit
Cluster D Amazon m2.2xlarge X 16 64 547.2 GB 13.6 TB 64 bit

Figure 4. Speed-up achieved for the CATopt and Parameter Sweep Problems using P2RAC

The second problem is a parameter sweep task that runs multiple independent jobs. An R-based
example of such a task was used. The input data to the parameter sweep task is approximately only
3 MB.

5.3. Experimental Results

Figure 4 is a graph showing the relative speed-up achieved for both the experimental problems with
increasing number of Amazon instances. Figure 5 is a bar graph that shows the timing for the best
results on the two desktops, the two Amazon instances and the four Amazon clusters. The best
performance is achieved on Cluster D.

For the CATopt problem in these experiment, the population size is set to 200 and the maximum
generations is set to 50. In both the problems there is a near 100% efficiency for upto 4 Amazon
instances, after which there is a drop in the parallel efficiency. The reduction in parallel efficiency is
due to increase in communication overheads between virtualised cloud instances. The acceleration
achieved for both the problems is satisfactory considering the low cost of the infrastructure

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

15

Figure 5. Best-case timing results of the CATopt and Parameter Sweep Problems using P2RAC

employed and that the problems can be directly deployed from an Analyst’s site without any
additional tuning.

6. CONCLUSION AND FUTURE WORK

Analytical jobs can benefit from harnessing the benefits of cloud computing such as on-demand
availability of resources, scalability of the resources and low costs for maintenance. A platform
that (i) provides an Analyst with an interface to seamlessly submit an analytical job and collect its
results, and (ii) provides the flexibility to manage the resources and jobs is ideal for an Analyst who
needs to exploit the benefits of the cloud.

The Platform for Parallel R-based Analytics on the Cloud (P2RAC) proposed and implemented
in this paper provides an interface for an Analyst who needs to submit a R-based analytical job on
the cloud. P2RAC is therefore placed in between an Analyst and the cloud infrastructure. P2RAC
provides support for instances and clusters on the Amazon cloud and offers a set of core and
diagnostic tools which can be used from the command-line.

The core tools support resource management, data management on the resource and execution
management. Resource management functionalities range from gathering resources required for
an analytical job and releasing them after their use. Data management ranges from providing the
resources with data required for executing an R-script and gathering results from the resources
onto the Analyst’s site once the R-script has completed execution. Execution management provides
functionalities for executing an R-script on the resources acquired.

The diagnostic tools support the testing of resources and provide information of the resources
employed by an Analyst. This is facilitated by providing access to log in to the acquired resources.

The feasibility of P2RAC is validated by considering two analytical problems. The algorithm
for solving the first problem incorporates co-operative parallelism for optimization, while in the
second problem, multiple independent jobs are employed for parameter sweep. Both the problems
are provided from an Analyst work site to the Amazon cloud using P2RAC. The results obtained
from P2RAC is an evidence that R-based analytical problems can benefit from cloud computing and
P2RAC facilitates the execution of the analyst job on the cloud.

The installation package for P2RAC can be obtained from http://www.p2racsoftware.com. The
installation is built for the Linux OS, supports Virtual Python Environment [33] and can be installed

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

16

on a desktop using Easy Install [34]. After installation, P2RAC can be configured automatically
using ec2configurep2rac.

In the future, it is anticipated that another version of P2RAC will be released that incorporates
the support for spot instances. Fault tolerance through distributed checkpointing for spot instance
used in P2RAC will be explored. Further, the dynamic scaling of clusters, i.e., increase and decrease
the size of a cluster when required by a job that is executing on the cluster, will be investigated for
implementation.

ACKNOWLEDGEMENT

The authors would like to thank Dr. Georg Hoffman and Dr. Oliver Baltzer of Flagstone RE, Halifax,
Canada for their support and participation in this research.

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

17

REFERENCES

1. C. Evangelinos, P. F. J. Lermusiax, J. Xu, P. J. Haley, Jr, and C. N. Hill, “Many Task Computing for Real-
Time Uncertainty Prediction and Data Assimilation in the Ocean”, IEEE Transactions on Parallel and Distributed
Systems, Volume 22, Issue 6, 2011, pp. 1012-1024.

2. Zhang C., De Sterck H., Aboulnaga A., Djambazian H. and Sladek R. 2010. Case Study of Scientific Data
Processing on a Cloud Using Hadoop. Proceedings of the 23rd International Conference on High Performance
Computing Systems and Applications, pp. 400-415.

3. Li J., Humphrey M., Cheah Y.-W., Ryu Y., Agarwal D., Jackson K. and Van Ingen C. 2010. Fault Tolerance
and Scaling in e-Science Cloud Applications: Observations from the Continuing Development of MODISAzure.
Proceedings of the 24th IEEE International Parallel and Distributed Processing Symposium, Atlanta, USA, pp.
246-253.

4. Hoffa C., Mehta G., Freeman T., Deelman E., Keahey K., Berriman B. and Good J. 2008. On the Use of Cloud
Computing for Scientific Workflows. Proceedings of the 4th IEEE International Conference on eScience, USA, pp.
640-645.

5. Kelly S., Mazyck C., Pfeiffer K. and Shing M.-T. 2011. A Cloud Computing Application for Synchronized Disaster
Response Operations. Proceedings of the IEEE World Congress on Services, pp. 612-616.

6. Venables W.N., Smith D.M. and the R Development Core Team. 2012. An Introduction to R. Notes on R: A
Programming Environment for Data Analysis and Graphics, Version 2.14.2.

7. Quarteroni A. and Saleri F. 2006. Scientific Computing with MATLAB and Octave. Springer, 2nd Edition.
8. Grossi P. and Kunreuther H. 2005. Catastrophe Modeling: A New Approach to Managing Risk. Springer, 1st Edition.
9. Perez M.J. 2007. Multi-Objective Optimization Evolutionary Algorithms in Insurance-Linked Derivatives.

Handbook of Research on Nature Inspired Computing for Economics and Management, Edited by Rennard J.-P.,
IGI Global, pp. 885-908.

10. Chine K. 2009. Scientific Computing Environments in the Age of Virtualization, Toward a Universal Platform for
the Cloud. Proceedings of the IEEE International Workshop on Opensource Software for Scientific Computation,
pp. 44-48.

11. CycleCloud website: http://cyclecomputing.com/cyclecloud/overview [Last checked: 10th August 2012]
12. Cloud Foundry Website: http://www.cloudfoundry.com/ [Last checked: 10th August 2012]
13. StarCluster Website: http://web.mit.edu/star/cluster/ [Last checked: 10th August 2012]
14. Iosup A., Ostermann S., Yigitbasi M.N., Prodan R., Fahringer T. and Epema D.H.J. 2011. Performance Analysis

of Cloud Computing Services for Many-Tasks Scientific Computing. IEEE Transactions on Parallel and Distributed
Systems, Vol. 22, No. 6.

15. Habich D., Lehner W., Richly S. and Assmann U. 2010. Using Cloud Technologies to Optimize Data-Intensive
Service Applications. Proceedings of the 3rd IEEE International Conference on Cloud Computing, pp. 19-26.

16. Barga R.S., Ekanayake J. and Lu W. 2012. Project Daytona: Data Analytics as a Cloud Service. Proceedings of the
28th IEEE International Conference on Data Engineering, pp. 1317-1320.

17. Nae V., Iosup A. and Prodan, R. 2011. Dynamic Resource Provisioning in Massively Multiplayer Online Games.
IEEE Transactions on Parallel and Distributed Systems, Vol. 22, No. 3.

18. Lu S., Li R.M., Tjhi W.C., Lee K.K., Wang L., Li X. and Ma D. 2011. A Framework for Cloud-Based Large-
Scale Data Analytics and Visualization: Case Study on Multiscale Climate Data. Proceedings of the 3rd IEEE
International Conference on Cloud Computing Technology and Science, pp. 618-622.

19. Tancer J. and Varde A.S. 2011. The Deployment of MML for Data Analytics over the Cloud. Proceedings of the
11th IEEE international Conference on Data Mining Workshops, pp. 188-195.

20. Kim H., Chaudhari S., Parashar M. and Marty C. 2009. Online Risk Analytics on the Cloud. Proceedings of the 9th
IEEE/ACM International Symposium on Cluster Computing and Grid, pp. 484-489.

21. Xue W., Shi J. and Yang B. 2010. X-RIME: Cloud-Based Large Scale Social Network Analysis. Proceedings of the
IEEE International Conference on Services Computing, pp. 506-513.

22. Marozzo F., Talia D. and Trunfio P. 2011. A Cloud Framework for Parameter Sweeping Data Mining Applications.
Proceedings of the 3rd IEEE International Conference on Cloud Computing Technology and Science, pp. 367-374.

23. Watson P., Hiden H. and Woodman S. 2010. e-Science Central for CARMEN: Science as a Service. Concurrency
and Computation: Practice and Experience, Vol. 22, pp. 2369-2380.

24. Pacheco P. 2011. An Introduction to Parallel Programming (1st Edition). Morgan Kaufmann.
25. Simple Network of Workstations (SNOW) website: http://www.sfu.ca/ sblay/R/snow.html [Last checked: 8th

August 2012]
26. Leavitt N. 2009. Is Cloud Computing Really Ready for Prime Time? IEEE Computer, Vol. 42, Issue 1, pp. 15-20.
27. Amazon Elastic Compute Cloud (EC2) website: http://aws.amazon.com/ec2/ [Last checked: 10th August 2012]
28. Amazon Elastic Block Store (EBS) website: http://aws.amazon.com/ebs/ [Last checked: 10th August 2012]
29. Amazon Machine Images (AMI) website: http://aws.amazon.com/amis [Last checked: 10th August 2012]
30. Bioconductor AMI website: http://bioconductor.org/help/bioconductor-cloud-ami/ [Last checked: 10th August

2012]
31. Mebane, Jr. W. R. and Sekhon J. S. 2011. Genetic Optimization Using Derivatives: The rgenoud Package for R.

Journal of Statistical Software, Vol. 42, Issue 1.
32. Amazon Simple Storage Service (S3) website: http://aws.amazon.com/s3/ [Last checked: 10th August 2012]
33. Virtual Python Environment website: http://pypi.python.org/pypi/virtualenv/ [Last checked: 10th August 2012]
34. Python Easy Install website: http://packages.python.org/distribute/easy install.html [Last checked: 10th August

2012]

Copyright c© 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
Prepared using cpeauth.cls DOI: 10.1002/cpe

