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1 Introduction 

The operation of modern distributed organisations, be they 
commercial, scientific or health related, generates massive 
quantities of data. Decision makers increasingly construct 
large-scale data warehouses and utilise On-Line Analytical 
Processing (OLAP) tools to glean from these rich data 
resource nuggets of information which can be used to better 
run their enterprises. A typical approach to OLAP-based data 
warehouses is to construct a single centralised data repository 
by copying all of the raw data from the sites where it is 
generated to a central location, where it is integrated and then 

to route all queries to that central location. As the amount of 
data and number of sites and users grow, this approach 
suffers from significant scalability problems. 

More recently, distributed enterprises are adopting grid 
computing as a means of tackling computing problems 
requiring large amounts of computational power or reliable 
access to large amounts of data. There has been growing 
interest in distributed data warehouses in the context of grid-
based computing resources (Niemi et al., 2002; Niemi et al., 
2003; Dubitzky et al., 2004; Fiser et al., 2004;Lawrence and 
Rau-Chaplin, 2006). 
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In this paper, we build on the grid OLAP model presented 
by Lawrence and Rau-Chaplin (2006) and propose new 
cooperative Caching algorithms for grid-based data 
warehouses. Our approach is to forgo the construction of a 
centralised data warehouse in favour of maintaining 
distributed data sources across a grid. In this context, queries 
must be routed to the appropriate data resources. Note that 
unlike transaction processing queries, OLAP queries tend to 
involve large amounts of data aggregation and typically 
return large results. Fortunately, these results can often be 
used to help compute the answers to future queries as users 
roll-up their analysis. 

Our approach is to take advantage of the hierarchal 
structure of a typical enterprise grid, blending new and 
sophisticated Caching techniques and data grid scheduling 
to efficiently execute queries in a distributed fashion. Our 
aggregate-aware Cache control algorithms take advantage of 
the hierarchal grid organisation and the collection of local 
users’ Caches in order to reduce the amount of data 
retrieved from remote sites (see Figure 1). 

Figure 1 An example OLAP enabled grid with the entities at 
each site and the connections between sites shown 

 

This paper is the first to propose a cooperative Caching 
strategy to speed up OLAP queries in the grid. (A 
preliminary version of this paper appeared as Dehne et al. 
(2007) and implementation issues were discussed in 
Lawrence et al. (2007).) While cooperative Caching 
schemes exist, e.g. for Web Services (Narravula et al., 2006) 
and Peer-to-Peer (P2P) systems (Kalnis et al., 2002), ours is 
the first that provides the ability to combine and aggregate 
Cached data for future-related OLAP queries. We believe 
that cooperative Caching for OLAP amongst the users at a 
grid site is beneficial due to the likelihood that those users 
are interested in analysing similar perspectives. We propose 
an efficient localised Cache admittance scheme which uses 
a decay and refresh mechanism for controlling admission to 
and eviction from the Cache and a fast, aggregate-aware 
goodness metric for incoming OLAP view fragments. 

We have prototyped the key components of our grid-
based OLAP system in order to evaluate the effectiveness of 
the Cache extraction and admission algorithms in 
comparison with recent OLAP Caching proposals in the 
literature. Our experiments show that a significant reduction 

in query cost is achieved by sharing and aggregating locally 
Cached data amongst users and that our Cache extraction 
method significantly outperforms previously proposed 
alternatives. 

Our contributions can be summarised as follows: 
1 a grid-based application taking advantage of the 

resources across an enterprise in order to provide a 
scalable OLAP solution 

2 two-tiered query processing algorithms making use of 
cooperative Caching on the local site and scheduling 
queries for non-Cached data to be executed over 
different servers 

3 aggregate-aware Cache control mechanisms taking 
advantage of this two-tiered organisation and the 
collection of local user’s Caches in order to reduce the 
amount of data retrieved from remote sites 

4 a prototype implementation in order to demonstrate the 
effectiveness of the Cache extraction and admission 
algorithms in comparison with recent OLAP Caching 
proposals in the literature. 

The remainder of this paper is organised as follows: Section 2 
describes OLAP and gives an overview of our grid-based 
OLAP application, also discussing related work. Section 3 
outlines the architecture of the OLAP-enabled grid. Sections 
4 and 5 describe the details of the query processing algorithm 
and Caching strategies, respectively. An experimental 
evaluation is presented in Section 6. 

2 Background and related work 

A typical data warehouse stores its information according to 
a StarSchema having a fact table with d feature attributes 
(dimensions) and some number of measure attributes. In 
addition to the fact table, there are dimension tables which 
give further details about the dimensions. These details 
often define a hierarchy on the values of a dimension. 

A common type of query in OLAP data warehousing is 
the range-aggregate query, performed using the SELECT and 
GROUP BY clauses in the Standard Query Language (SQL). 
Typically the user selects a subset of the feature attributes 
from either the fact or dimension tables or both and at least 
one measure attribute from the fact table with some aggregate 
function applied to it. The selected dimensions are used for 
grouping the results and aggregation of the measure 
attribute(s) is applied over all records having identical values 
for the selected dimensions. 

For example, a user of a bicycle store data warehouse 
may be interested to see how much each customer spent on 
each purchase. Such information can be obtained by an 
OLAP query selecting CUSTOMER, TIME and SUM 
(AMT), grouping the results by CUSTOMER and TIME, 
represented with the following SQL expression: 

SELECT CUSTOMER, TIME, SUM (AMT) 

FROM SALES 

GROUP BY CUSTOMER, TIME 
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Aggregate queries in OLAP are categorised by the 
dimensions they choose in the GROUP BY clause and the 
aggregated table. In the case that a query contains selection 
ranges on one or more of the dimensions, its results 
represent a view fragment. If a data warehouse has d 
dimensions, and the number of elements in dimension  
i’s hierarchy is Hi (where non-hierarchal dimensions D have 
the size 2 hierarchy D → ‘all’), then the total number of 
views is 

1
( ).d

ii
H

=∏  

Harinarayan et al. (1996) introduced the data cube 
lattice, expressing the relationship between views as a 
partial order. Each view is a node and there is a path from a 
view v to a view w in the lattice if queries on w can be 
answered also using v. This occurs when w groups on a 
subset of v’s dimensions, each at the same or lower levels of 
their respective hierarchies. More precisely, a view v can be 
represented as a tuple of d values (v1, v2…, vd), where vi  
is the level of dimension i’s hierarchy that v groups on.  
The partial order amongst views as defined by the lattice is 

iff ii iw wν ν≺ ≺ , where i≺  is the partial order defined by 
dimension i’s hierarchy. The complete data cube lattice for 
the bicycle store data warehouse is shown in Figure 2.  
A fragment of a view v (resulting from a query on v) can be 
aggregated to produce fragments on descendants of v so 
long as it contains the entire range of values for those 
dimensions which are aggregated out. 

Figure 2 An example data cube lattice and dimension 
hierarchies for a bicycle store data warehouse 

 

There has been recent related work on grid-based OLAP 
applications (Niemi et al., 2002; Brezany et al., 2003; Niemi 
et al., 2003), OLAP aware Caching (Kotidis and 
Roussopoulos, 2001) distributed Caching in P2P and Web 
Services settings (Kalnis et al., 2002; Narravula et al., 
2006). Brezany et al. (2003) describe a grid application for 
performing data mining and OLAP tasks on heterogeneous 
healthcare data sources. The focus here is primarily on the 
application and data integration issues, rather than the 
efficiency of the OLAP processing. Niemi et al. (2002) and 
Niemi et al. (2003) focus on the challenging problem of 
building an OLAP datacube in a grid environment. 
Although query processing is briefly addressed, the  
 

proposed approach is quite simplistic. It does not make use 
of Cached results which we believe is the key to efficiency 
in the grid OLAP setting, because of the high network 
latency and relatively low bandwidth between widely 
geographically dispersed grid entities. 

OLAP data is unique from a Caching perspective in that 
the results of some queries (fragments) can be used to 
compute some or all of the results of queries on different 
views of the lattice. Kotidis and Roussopoulos (2001) take 
advantage of this by designing a Cache which can further 
aggregate Cached fragments for producing a query result. 
However, their approach is all or none, in that either the 
entire query result is obtained by aggregating a single 
Cached fragment or not at all. They do not consider 
aggregating and combining multiple Cached fragments to 
answer a query and they do not consider fragmenting a 
query and answering part of it from Cache and part from the 
back end. Deshpande and Naughton (2000) relaxed this by 
partitioning each view into discrete chunks and apply 
Caching and querying on a chunk-based level. However, 
this requires special indexes and functionality at the back 
end. 

Distributed Caching approaches have been examined in 
P2P and Web Services settings (Kalnis et al., 2002; 
Narravula et al., 2006). Kalnis et al. (2002) consider 
processing of OLAP queries in P2P networks. They use the 
chunk-based Caching scheme of Deshpande and Naughton 
(2000) and peers propagate requests for chunks amongst 
each other and data warehouses. Narravula et al. (2006) 
consider in-memory Caching of web objects in large-scale 
data centres. Each node maintains an index of the other’s 
Caches, which they use to cooperatively answer requests. 

3 The OLAP-enabled grid 

3.1 Entities 

Our application, the OLAP-enabled grid, is based on the 
observation that the structure of an enterprise grid is 
typically hierarchal: there are a number of sites in the 
organisation, each having a number of computational 
entities. Each site is a location where the enterprise has 
operations, and it is the case that transmission within a  
site is much faster than transmission between two sites  
(e.g. LAN vs. WAN transmission). The entities at a site are 
attached computers (sequential or parallel) which are able to 
participate in the OLAP process, for example a user or a 
Database Server. An illustration showing the various entities 
present in an example enterprise is given in Figure 1. 

As can be seen in the figure, each entity has a role 
according to the functionality it offers in the OLAP-enabled 
grid. There are  total of four different roles: 

1 Database Server – A machine which manages an 
operational database in the enterprise. The data 
maintained by different Database Servers are 
independent and follows a common warehouse schema. 
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2 Computational/Storage Resource – A machine which 
offers storage space and processing power to the grid. 

3 Site Broker – Responsible for the organization and 
coordination of resources within that site. 

4 User Agent – The workstation of a user who is 
interested in performing OLAP operations on the data 
managed by the Database Servers. Each User Agent 
has an amount of Cache space on disk for storing the 
results of previously answered queries. 

3.2 System architecture 
An overview of the logical components of the proposed 
system from the perspective of a user is shown in Figure 3. 
The corresponding layers of the Open Grid Services 
Architecture presented by Foster et al. (2001) are shown as 
well. In this section, we give a brief introduction to the role 
of each component in the system. The details of query 
processing are described in the sections which follow. 

Figure 3 Components of the proposed grid-based OLAP solution 
and the corresponding Open Grid Services Architecture 
layers as presented in Foster et al. (2001) 

 

The user interacts with a Front End which displays query 
results and translates requests into OLAP queries which are 
answered by the Query Service. The Query Service uses the 
Distributed Cache Index Service: a global index 
implemented on the Site Broker of all Cached fragments on 
the local site. Having such an index allows as much of the 
query as possible to be answered by local data. We could 
have also followed the approach of Narravula et al. (2006) 
and put a Cache index on each User Agent. However, given 
the possibility of a large number of User Agents and a high 
degree of query fragmentation, this would likely result in a 
very large number of messages between User Agents to 
keep the Cache indexes up to date. We could have forgone 
an index as in the P2P system of Kalnis et al. (2002), but 
this does not guarantee that the maximum amount of local 
data will be used. 

The Query Service uses the Data Source Service to 
obtain both Cached fragments as well as query results from 
the back end, which in turn uses a Collective Cache Service 
for the Cached fragments and various Grid OLAP Services 
for obtaining the parts of the query which are not Cached. 
There is one Grid OLAP Service corresponding to the data 
of each Database Server in the grid. However, due to the 
presence of other computational and storage resources on a 

site, there may be multiple underlying OLAP Servers which 
can answer an OLAP query on that data. In our 
implementation, the OLAP Servers store the data in a 
normalised multidimensional format using R-trees as 
indices as described by Dehne et al. (2003); Chen et al. 
(2004); Dehne et al. (2006). For a particular Database 
Server, the Site Broker at its site implements the 
corresponding Grid OLAP Service, whose job is to choose 
which of the OLAP Servers will answer a given query. 
Which Grid OLAP Services a particular sub-query goes to 
depends on the selection ranges of that sub-query. The data 
is partitioned across Grid OLAP Services horizontally by 
dimension values and a sub-query is sent to each Grid 
OLAP Service whose range of values intersects with that of 
the sub-query. 

As in the Collective Cache Service, the Data Source 
Service immediately forwards results of sub-queries back  
to the Query Service as soon as they are received. This is  
to allow the Cache Admission Controller (described in 
Section 5) to make Caching decisions on each fragment 
while the Query Service is waiting for the remaining 
fragments, rather than trying to do them all at once. When 
all of the results of the sub-queries have been obtained by 
the Query Service, the overall query result is constructed 
and returned to the Front End for display to the user. 

4 Query processing algorithms 

This section describes the basic steps taken in order to 
execute a user’s OLAP query on the grid. Referring to 
Figure 3, this involves the description of the Query Service, 
Distributed Cache Index Service, Collective Cache Service, 
Data Source Service and Grid OLAP Service. Based on our 
sharing of local Caches, a two-tiered process for answering 
queries is proposed. The first tier uses the Caches on the 
local site in a collaborative manner to answer as much of the 
query as possible, and the second tier requests the missing 
fragments from the OLAP Servers. 

Similar to Deshpande and Naughton (2000), we take 
advantage of the data cube lattice by further aggregating 
Cached data at any level above the desired result. Unlike 
Deshpande and Naughton (2000), we index arbitrarily sized 
multidimensional fragments (rather than equally sized 
chunks). Kotidis and Rous-sopoulos (1999) and Kotidis and 
Rous-sopoulos (2001) also index fragments, but they argue 
that it does not pay to combine multiple Cached results to 
answer a query. In our cgmOLAP system, Dehne et al. 
(2003), Chen et al. (2004), Dehne et al. (2006), we have 
observed aggregation of multidimensional to be an I/O-
bound task whose time is directly proportional to the 
number of records which must be read from disk, i.e. the 
query’s size. Therefore, even if only half of a query can be 
answered from Cache, then it should take half the time to 
answer the remainder of the query at each of the OLAP 
Servers compared to the time it would have taken to answer 
the entire query. An additional feature of our strategy is  
that, since the Cached data is distributed across local User 
Agents, Cache requests are serviced in parallel. 
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We call the Cache Search algorithm of the Distributed 
Cache Index component of the system the Fragment 
Aggregation and Recombination (FAR) strategy, since it 
can aggregate Cached fragments and will recombine several 
fragments in an attempt to answer a query. To implement 
FAR, the Distributed Cache Index uses the data cube lattice 
with an associated R-tree for view which indexes the 
Cached fragments at that view’s level of aggregation. When 
given a query, the Distributed Cache Index searches the  
R-tree of that query’s view and identifies all intersecting 
view fragments. A set of sub-queries are computed and, 
similar to Deshpande and Naughton (2000), a search is 
made for Cached fragments further up the lattice which can 
answer these. These sub-queries are not further broken 
down, rather they are attempted to be answered as a whole. 

Translating a query on a view v to a query on an 
ancestor of v when there are no dimension hierarchies is 
straightforward and described by Kotidis and Roussopoulos 
(2001). We review the procedure here so that the extension 
to dimension hierarchies is more clear. Consider a query  
q = ((I1 h1), (I2, h2)… (Id, hd)). Ii is an interval reflecting the 
query’s selection of values for dimension i and hi is the level 
of dimension i’s hierarchy which is used. If hj =‘all’, then 
the value for Ii is irrelevant. 

If a query q = ((I1, h1), (I2, h2) … (Id, hd)) is to be 
translated over a view v = (vh1, vh2… vhd), then for all i, it 
is either the case that hi = vhi, or that hi = all and vhi = Di, 
the ith dimension of the data warehouse. The translated 
query is q' = ((I'1, h'1), (I'2, h'2),… (I'd, h'd)), such that I'i = Ii 
for any i such that hi = vhi, otherwise I'i = (min (Di), max 
(Di)), the entire range of Di. For example, referring to Figure 
2, if q = (((), all), ((10, 20), CUSTOMER), ((), all)) is to be 
translated over the (PRODUCT_ID, CUSTOMER, all)  
view, then the result would be q' = (((min (PRODUCT_ID), 
max (PRODUCT_ID), PRODUCT_ID), ((10, 20), 
CUSTOMER), ((), all)). This is necessary because each tuple 
in the (all, CUSTOMER, all) view represents the aggregation 
over purchases made by a specific customer at any time  
and of any product, hence the full range of each of the 
aggregated dimensions must be included. In case that  
there are dimension hierarchies, the requirement is not as 
restrictive. To translate a query q = ((I1, h1), {I2, h2) …  
(Id, hd)) over a view v = (vh1, vh2,…, vhd) there may be cases 
where hi ≠ all and hi ≠ vhi, i.e. hi is at some intermediate 
level of the hierarchy. In this case, we do not need a 
selection of all the values on vhi, only the ones 
corresponding to the range indicated in Ii. Consider, for 
example, the query q = (((4, 4), CATEGORY), ((), all),  
((), all)). In order to compute this query from the view 
(PRODUCT_ID, all, all), only the IDs of those products 
corresponding to category 4 are needed, not all of the 
products. For performing a translation of this type, the Site 
Broker needs global knowledge about how values of a 
particular hierarchical level of a dimension map to values at 
a higher level in the hierarchy. 

In order to implement the FAR Cache search as 
described above, we have designed an algorithm which 
computes a set of sub-queries Q given a query q and a set of 
intersecting view fragments F. Geometrically, this is the 

difference between q and the union of all fragments in F.  
An example is shown in Figure 4. Algorithm 1 gives an 
iterative algorithm over the dimensions of the query which 
subtracts a single fragment from a query and gives the set of 
sub-queries. An algorithm using this to compute the desired 
set Q given the set F is given in Algorithm 2. This algorithm 
also determines which fragments in F are actually 
necessary, since there may be fragments in f which are 
completely contained in the union of other fragments in f. 
The overall FAR Cache search algorithm is based on 
breadth-first search and is given as Algorithm 3. 

Figure 4 An example illustrating the problem of computing a set 
of sub-queries given a query q and a set of intersecting 
fragments. Subfigure (a) shows a query q and two 
intersecting fragments f1 and f2. The desired output is a 
set of non-intersecting queries Q which also do not 
intersect with f1 and f2such that 

1 2( ) ( ) ( )
i

iq Q
q f q f q q

∈
∪ ∩ ∪ ∩ =∪  Subfigures (b) 

and (c) show different possible solutions for Q = {q1, 
q2, q3, q4, q5} 

 

As discussed in Section 3, each Grid OLAP Service on a 
site corresponds to the data of a Database Server. Each 
site’s Site Broker implements the Grid OLAP Service(s) for 
that site by scheduling each query to be answered by one of 
the available OLAP Servers. As in previous grid schedulers 
(Orlando et al., 2002; Park and Kim, 2003), our scheduler 
sends the query to be executed on that OLAP Server  
which it estimates can quickly deliver its result to the user. 
This depends on both the CPU and network interface load 
on the various servers, their processing speed as well as 
materialised indexes and views on the data. 

We express the time to answer a query q on a particular 
OLAP Server S as 

t(q, S) = tc(q, S) + tn (q, S), 

where tc is the computation time and tn is the network 
transfer time back to the user who requested it. When a Site 
Broker receives a query q for a particular Grid OLAP 
Service, it polls each OLAP Server S for that Grid OLAP 
Service, asking S to compute tc (q, S) and tn (q, S). 

We use R-trees to index the data stored on each block  
of external memory, which is ordered on disk according to a 
multidimensional space-filling curve as in Dehne et al. 
(2003), Chen et al. (2004), Dehne et al. (2006). The time to 
answer a query is then proportional to the amount of data 
which must be read from disk, which in turn depends on  
the selection ranges of the query and the materialised view 
which will be used to answer it. The computation time to 
answer a query q on a server S can be expressed as a 
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function of the amount of data d(q, S) to be read from disk 
and the available bandwidth of S’s disk system as in  

 

 

 

( , )( , ) .
_ ( )c

d q St q S
disk bandwidth S

=  

The value of d(q, S) depends on the materialised view of S 
which q will be answered on. The server S maintains a 
reference a(v) to the smallest materialised ancestor of each 
view v, and upon receiving a query q, it translates q over 
a(view(q)). It can then use information about the distribution 
of data in a(view(q)) to approximate the amount of data to 
be read to answer q on a(view(q)) and estimates the time 
this would take by checking the current load and available 
bandwidth of its disk system. 

The estimation of tn(q, S) is relatively straightforward.  
If S is on a different site from the user, it depends on both 
the available bandwidth of the link from S to the gateway of 
the site and on the available bandwidth across the link to the 
user’s site. Information of this nature can be obtained, for 
example, by using the Network Weather Service (Wolski  
et al., 1999). Here, tn(q, S) is the estimated size of the query 
result divided by the minimum of these two values. If S is 
on the same site as the user, then tn(q, S) is the estimated 
size of the query result divided by the available bandwidth 
from S to the user. The available bandwidth depends on 
various factors including the load on S’s network interface 
and on the load and speed of the links. 

Once the Site Broker performing a Grid OLAP Service 
has computed t(q, S) for each of the OLAP Servers S, it 
schedules q to be computed on the one with minimum  
t(q, S) and instructs it to send the query results directly back  
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to the user. A potential for improvement of the proposed 
strategy would be combining and aggregating together 
results from the various Grid OLAP Services on a site for 
the same query. If there are N Grid OLAP Services on a site, 
this could potentially reduce the amount of data to be 
transferred by 1/N. 

5 Cooperative Caching algorithms 

In this section, the operation of the Cache Admission 
Controller implemented on each User Agent is described. 
Given the potentially large amount of work that goes into 
computing fragments to answer a query, the key to an 
efficient grid-based OLAP system is an effective Caching 
scheme. The challenge in our case is how to assign a value 
representing the ‘goodness’ of a particular Cached fragment, 
since fragments which can be computed locally are 
presumably not as valuable as fragments computed on 
remote sites. The User Agents compute the goodness of 
each fragment and make a local Caching decision upon 
receiving it, notifying the Distributed Cache Index Service 
on the Site Broker of changes to its Cache contents. The 
disadvantage to this is that there will be many small 
fragments in the Cache, possibly increasing the complexity 
of the Distributed Cache Index Service and the number of 
sub-queries it returns. However, the advantage is that since 
there may be vast differences in the cost of obtaining the 
various sub-fragments and in their benefit to queries on the 
local site, better use of the Cache space can be made by only 
Caching the most valuable sub-fragments, thereby also 
reducing the overlap of fragments in the Cache. 

When Cached data is aggregated, accurate Caching in 
OLAP is a difficult problem. There are many ways in which 
the goodness value of a fragment can be assigned, 
depending on the trade-off they provide between accuracy 
and speed. For example, fast and rough measures of 
computing goodness of a fragment could be the cost to 
retrieve it (Deshpande and Naughton, 2000). A slower and 
more exact measure is the benefit per unit space  goodness 
(Kalnis and Papadias, 2001; Loukopoulos et al., 2001), 
whose complexity is quadratic in the number of views in the 
data cube lattice. There is also the added disadvantage in 
our scenario that it requires the User Agent to have 
knowledge about all of the fragments Cached by other User 
Agents on its site. 

Our goal is to devise a goodness measure in 
combination with a Caching strategy which is efficient yet 
still takes into account the benefit of further aggregating a 
Cached fragment. The proposed Caching strategy maintains 
a priority queue of fragments in increasing order of 
goodness. Each time the Cache is accessed, the goodness of 
all items in the Cache is decreased (either by subtracting or 
dividing by a fixed amount), except for the one which is 
accessed, which has its goodness reset back to the original 
value and is repositioned in the priority queue. A fragment f 
is admitted to the Cache if space can be made for it by 

evicting a set of fragments whose total goodness is less than 
that of f. Cache admission is described in Algorithm 4. 

 

The purpose of this strategy, particularly with the 
decaying/refreshing of goodness values over time is that it 
adapts to the changing query demands of the users (e.g. 
view v is queried less, while view w begins to be queried 
more) but also accounts for the later Caching of descendants 
of a fragment. For example, if a fragment f is frequently 
aggregated in Cache for the purpose of computing 
fragments on descendant views, its goodness will frequently 
be refreshed to the original value and f will have a low 
chance of being evicted from Cache. However, if some 
fragments which are descendants of f become Cached and 
used instead, then f will be accessed less often; its goodness 
decaying until it is eventually evicted. 

The goodness of a fragment should reflect the savings in 
query cost it provides at all levels of aggregation. This 
depends on both the quantity of savings and the relative 
frequency with which it is expected to occur. The quantity 
of savings in query cost that f provides is the relative 
difference between the cost it took to get f and the cost of 
answering future queries on f. Hence we define 

savings(f) = cost(f)  − query_cost(f) (1) 

Since the User Agent which requested f is the one making 
the Caching decision, it can accurately compute cost(f) by 
recording the time taken to retrieve it. A User Agent will 
likely store the records in f on a contiguous space on disk 
without any specialised index, so query_cost(f) is modelled 
as the time it takes to read f from disk (the size of f in bytes 
divided by the disk bandwidth of the user storing it). 

The benefit of aggregating f to other views needs to be 
taken into account. For example, a small fragment of one of 
the lower level views provides a large savings in query cost, 
but to only a very small proportion of all possible queries. 
By contrast, a large fragment of one of the higher level  
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views provides a smaller savings in query cost, but can be 
used to compute a much larger proportion of the possible 
queries. We call the proportion of the data cube lattice that a 
fragment f covers in the feature dimension space at all levels 
of aggregation the volume of f. For example, if a fragment f 
covers half of the multidimensional area of a view v, but 
cannot be aggregated to produce fragments on any of v’s 
descendants, then f’s volume is 1/(2 × num_views). To 
describe how the volume of a fragment is computed, first 
consider the simple case of a data cube lattice with no 
dimension hierarchies. We use the same notation for 
fragments as Kotidis and Roussopoulos (2001), which is the 
same for that of a view (Section 2), except associated with 
each dimension is an interval Ii, specifying the range of 
values that the fragment contains for dimension i. A 
fragment f = ((I1, h1), (I2, h2),…,(Id, hd)) can be aggregated 
into a fragment on a view v = (a1, a2, …, ad) if, for each i 
such that hi = Di and ai = all, we have Ii; = (min(Di), 
max(Di)). Hence, if we let Global Dimensions, GD(f), be 
the set of all I, such that hi = Di and Ii = (min(Di), max(Di)), 
then f can be aggregated into fragments on a total of ( )2 GD f  
views. On each of these views, the fraction of 
multidimensional space that f covers is given by the product 
of the proportion of each dimension’s range selected  
by f, i.e. 

all:

max( ) min( )
max( ) min( )

i

i i

i h i i

I I
D D

≠

−
−∏  

Hence, for the case with no dimension hierarchies, we have 
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−
=

−∏  (2) 

of the total space of the data cube covered by a fragment f at 
all levels of aggregation. 

When there are dimension hierarchies the volume 
calculation is slightly less straightforward, since it is not 
necessary to have Ii = (min(Di), max(Di)) to aggregate along 
a hierarchal dimension Di. For example, all products do not 
need to be selected to produce the aggregate for a particular 
subset of categories. Furthermore, the actual proportion of a 
dimension’s range which is selected by a fragment is 
slightly different at each level of the dimension’s hierarchy. 
The complete volume calculation for the case with 
dimension hierarchies requires enumerating all of the views 
to which f can be aggregated and examining the 
corresponding selection range on these levels. This 
increases the complexity of the volume calculation from 
linear in the no dimension hierarchies case, to exponential 
when there are hierarchies. 

We approximate the true volume for the case of 
dimension hierarchies by using the selection range on a 
hierarchal dimension to approximate the corresponding 
selection range on all levels of the hierarchy. Hence, as in 
the non-hierarchal case, we multiply the number of possible 
aggregates of f by the product over all non-global 
dimensions of the fraction of the range selected of that 
dimension, approximating the proportion of each of the 

views covered. To enumerate the number of possible views 
which the fragment can be further aggregated on, we count 
the number of levels l(hi) below the selected level hi of a 
dimension Di, including hi itself. For non-hierarchal 
dimensions Di, where either hi = Di or hi = all, we have l 
(Di) = 2. The number of possible aggregates of f is then 

( ) ( )

( ) ( ( ) 1i i
i GD f i GD f

l h l h
∈ ∉

−∏ ∏  

and the total volume of f is then 
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The final goodness measure is 

volume( ) savings( )goodness( )
size( )
f ff

f
×

=  (4) 

Which gives a measure of the savings in query cost a 
fragment provides, weighted by the volume representing the 
probability with which these savings are expected to be 
applied, scaled to the storage space of the fragment. 

6 Experimental evaluation 

In this section we describe a prototype implementation of 
the proposed grid-enabled OLAP application and a careful 
evaluation of the performance of its Caching strategies. We 
focus on the tier1 query processing strategy and the FAR 
Cache search strategy of Algorithm 3. FAR is compared to 
the Cache search approach of Kotidis and Roussopoulos 
(1999) and Kotidis and Roussopoulos (2001), which we will 
refer to as Fragment Aggregation (FA). Their approach, like 
ours will aggregate fragments at higher levels in the lattice 
to produce a query result, however it differs in that a query 
must be answered by exactly one such Cached fragment and 
will not be broken further into sub-queries. Where as 
Kotidis argues that it does not pay to do this, our 
experiments aim to show that it can indeed be of substantial 
benefit to the users on a grid site under reasonable 
circumstances. 

6.1 Implementation and experimental setup 

We have fully implemented the Query Service, Distributed 
Cache Index Service, Cache Admission Controller, 
Collective Cache Service and Data Source Service. The 
Cache Services, Grid OLAP Services and OLAP Servers are 
simulated. The result is a working implementation of tier1 
query processing and Caching on a single site, with the 
other sites and data being simulated by single OLAP Server 
entities. Our implementation is a parallel program written in 
the Python scripting language using MPI bindings. 
Although the choice of Python is inhibiting, given the 
computationally intensive nature of manipulating fragments 
and queries on a data cube lattice, it allowed the large 
implementation to be completed reasonably quickly without 
unduly affecting the explanatory power of the experiments. 
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A diagram illustrating the software architecture of our 
implementation is shown in Figure 5. Each class is 
represented as a white rectangle, with classes which are 
programs being represented by a small grey rectangle. 
Entities are drawn as large grey rectangles and files as white 
rectangles with the corner cut-off. All of the classes to do 
with manipulation of the data cube and its properties are 
grouped into the Cube Manager. The Cube Manager acts on 
a single data cube lattice and schema which is constructed 
by the XSDParser as described below. The Cube Manager 
provides information about View instances and their 
organisation into a Lattice instance. The relevant 
information about views for our implementation are their 
size, dimensions, ranges of those dimensions and the 
mapping between ranges for dimensions organised into a 
hierarchy. Access to these properties and functions allows 
for manipulation of Query and Fragment instances over the 
lattice as required to perform the Cache search, indexing 
and simulation of aggregation/grouping of OLAP data. 

Figure 5 The software design of our implementation of the 
proposed grid-based OLAP caching and query 
strategies 

 

The XSDParser creates the Ranges, Dimensions, Views, 
Tables, HierarchyMaps, StarSchema and Lattice instances 
by reading the XML Schema file. Once the document has 
been parsed, the top-level view in the lattice is created by 
initialising a view with all of the feature dimensions of the 
fact table and creating all of the other views in a breadth-
first manner from there. The number of records in each view 
is estimated using the technique of Shukla et al. (1996), 
which is based on dimension cardinalities and the number of 
records in the fact table. 

Query and Fragment instances are defined by an 
associated view and a sub-range of each dimension’s overall 
range selected by the query or contained by the fragment. 
Fragments additionally have a size in bytes, calculated 
based on the estimated number of records in the fragment 
and data type of each dimension. A Query Generator 
program constructs streams of queries from various 
distributions and stores them on disk. Each stream consists 

of a list of pairs (qi, ti) sorted in increasing order of ti and 
specifies that each query qi should be issued by the user at 
time ti. 

The top of Figure 5 depicts the implementation of the 
entities in the grid. They communicate asynchronously, by 
posting and checking for messages inside an event loop. This 
allows users to serve Cache requests while waiting to receive 
their own query result fragments. The AggregationSim class 
is what simulates the actual answering of queries using views 
or Cached fragments. Each OLAP Server is initialised with a 
set of materialised views which will be used to answer 
incoming queries and builds an index associating each view v 
of the lattice to the smallest materialised parent parent(v) of 
that view. Incoming queries defined over v are then answered 
on parent(v) using the AggregationSim class to estimate  
how many MBs must be read from disk based on the size  
of the query when it is translated over parent(v). The 
AggregationSim instance of a User Agent simulates the time 
it takes to answer a query from a Cached fragment, which is 
proportional to the size of the fragment and the disk 
bandwidth of the user. 

We abstract Cache contents by encapsulating fragments 
in the Cache Object class, which associates the goodness 
and size of a generic object to be Cached. The Cache class 
maintains the admission and eviction of Cache Objects as 
described in Algorithm 4, where a sorted list is used as the 
implementation of a priority queue. 

The SiteBroker class implements the Site Broker, having 
a Cache Index instance which implements the FAR and FA 
Cache search strategies. Rather than use an R-tree 
implementation for indexing the fragments of a particular 
aggregate, we take the approach used by Kotidis et al. in 
their experimental evaluation and use a linked list of 
fragments. In our experiments the number of fragments 
stored in the Cache is small (less than 100 per view) and  
so we do not expect there to be a large performance penalty 
for this. 

In our experiments, we use a test lattice having five 
feature dimensions: product, store, employee, customer and 
time, with the single measure dimension sales. The time 
dimension has a five-level hierarchy, while the product and 
customer dimensions have two- and three-level linear 
hierarchies, respectively. The total number of rows in the 
fact table is 10 million, resulting in a lattice with 288 views 
totalling 35 GB in storage size. 

Two different types of query distributions are used in 
the experiments: 

• Uniform: The queries are distributed uniformly 
amongst the views in the lattice, as well as the start and 
end of their selection ranges for each dimension. This is 
a difficult query load for Caching as there is no 
relationship between queries whatsoever. 

• Hot regions: The hot region query distribution used  
by Kalnis et al. (2002), Lawrence (2006) represents a 
more realistic scenario where a subset of the aggregates 
are of particularly high interest to the users. 80% of  
the queries are (uniformly) distributed amongst a ‘hot 
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region’ of 20% of the views (uniformly chosen) in  
the lattice. The selection ranges on queries also follow  
a hot region distribution, where each dimension’s 
overall range is divided into 100 buckets, each having  
a weight drawn from a hot region distribution. For each 
dimension of each query, two buckets are selected with 
probability proportional to their weights. The minimum 
of the selection range is the beginning of the bucket 
which occurs first, while the maximum of the selection 
range is the end of the bucket which occurs last.  
In order to deal with hierarchies, the weight of a  
bucket at a level is defined as the sum of the weights  
of all overlapping buckets at the level below. 

A stream of n queries from either of these distributions is 
generated by selecting a time frame in which the queries 
will be posed, uniformly selecting n random times in this 
time frame and generating the queries for each of the 
selected times according to the given query distribution. 

Each User is configured with a specified Cache size in 
bytes, a disk bandwidth in MB/s, a query stream and 
optionally a list of fragments with which to initially fill the 
Cache. Each OLAP Server is configured with a disk 
bandwidth in MB/s, a network bandwidth to the local site in 
MB/s, a fragment of the fact table which specifies the 
partition of the overall data maintained by that OLAP 
Server and a list of materialised views at that OLAP Server. 

Most of our tests use the Detailed Cost Savings Ratio 
(DCSR) measure Kotidis and Roussopoulos (2001) 
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which measures the reduction in overall query time 
achieved by the Cache as a percentage of query time 
without a Cache. In order to achieve this we implemented a 
version of the system with no Caching components. 

6.2 DCSR vs. Cache size 
The first set of tests aims to determine the Cache search 
strategies’ ability to make effective use of increasing Cache 
space. The parameters for this experiment are summarised 
in Table 1. We execute five independent runs using five 
different hot region distributions. For each run, each user 
has a set of fragments with which to initially warm the 
Cache which are generated from the same hot region 
distribution and the size of each user’s Cache is varied from 
50 MB to 500 MB in increments of 50 MB, so that the Site 
Broker indexes 500 MB of fragments at the minimum and 
5000 MB of fragments at the maximum, or between 1.4% 
and 14% of the size of the entire data cube lattice. The 
DCSR of both FAR and FA as Cache size is increased as 
shown in Figure 6.  

The FAR strategy allows a significant query time 
reduction of 50% to 60% for Caches between 50 and  
250 MB in size. For larger Cache sizes the benefits of the  
FAR approach begin to wane due to the increased cost of  
 
 

the Cache search and number of separate requests which 
must be made for each query, although it is still more 
beneficial than the FA approach up to a Cache size of  
350 MB per user. This is discussed in more detail below. 

Figure 6 The DCSR measure of Cache effectiveness for the 
FAR and FA Cache search strategies as Cache size per 
user is increased 

 

Table 1 A summary of the parameters used in the first 
experiment measuring DCSR vs. Cache size 

Parameter Value 

Number of dimensions 5 (3 hierarchical) 
Lattice size 35GB over 288 views 
Duration of simulation 2 h 
Number of users 10 
Queries per user 10 
Query distribution Hot region 
User disk bandwidth 20 MB/s 
Average query result size 3.34 MB 
Cache size per user 50 to 500 MB 
Number of OLAP Servers 5 
OLAP Server disk 
bandwidth 

80 MB/s 

OLAP Server materialized 
views 

14 randomly chosen 

OLAP Server network 
bandwidth 

1 local (900 kb/s), 4 remote (100 
kb/s) 

Surprisingly, the FA approach makes little gain with the 
additional Cache space, climbing from little under 27% at 
100 MB to a peak at nearly 35% at 400 MB. Thus, either the 
increase in Cache size does not mean substantially more 
queries can be answered from a Cache, or the benefit in 
answering a query from a Cache over answering it at the 
OLAP Servers is not substantial. Figure 7, which shows  
the percentage of all queries which are answered from local 
Caches as the Cache size is increased, demonstrates that the 
former may be the cause.  
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Figure 7 The percentage of queries which are answered from a 
locally Cached fragment for the FA strategy as Cache 
size per user is increased 

 

The percentage of queries answered from Cache increases 
from 3.8% to 17.8%, which is not a substantial increase as 
compared to the increase in Cache space. Examining the 
actual query times shows that for this configuration, queries 
answered from local Caches using the FA approach take 
roughly 5.5 s to complete on average, where as the queries 
answered from the OLAP Servers take roughly 26.5 s on 
average. This difference is not substantial enough for  
the increase of queries answered from Cache to have a 
significant impact on the cost savings for the FA approach. 
For our strategy, the increase in Cache size does not only 
allow a larger proportion of the queries to be answered from 
Cache, but also allows the local query computation to be 
executed more quickly since the distribution of Cache 
requests over the local users allows it to be performed in 
parallel. 

In order to more precisely examine FAR’s failure for 
large Caches we have further broken down average query 
time into three components: 

1 queue time: since the Site Broker might receive more 
queries than it can produce fragmentation plans for in a 
given time period, some queries may spend time 
waiting in the communication queue of the Site Broker 

2 search time: the time it takes from when the Site 
Broker begins the FAR Cache search to when the 
fragmentation plan is received by the user 

3. backend time: the length of the time period from when 
the user receives the fragmentation plan from the Site 
Broker to when it has received all of the necessary  
sub-fragments. 

The average query time for the FAR approach broken down 
into these three components as Cache size is increased is 
shown in Figure 8. For the 50 MB Caches, the queuing time 
of queries is insignificant, as the Site Broker is able to keep 
up with the number of requests it receives.  

There is a large reduction in time at the backend from 
the 50 MB to the 100 MB Caches, coupled with only a 
small increase in search time and a minor increase in 

queuing time (about 1/2 s on average), causing the overall 
query time to be lower. As the Caches increase in size from 
100 MB however, the backend time decreases more 
gradually than the increase in Cache search time and the 
resulting increase in queue time, causing the overall query 
time to grow. The backend time appears to increase as well, 
but this is due to the larger number of requests which are 
sent for sub-fragments of a query. There is a substantial 
increase in query time from 350 to 400MB, where the 
Cache search time makes a large jump of roughly 2.5 s 
causing the Site Broker to be completely overwhelmed and 
consequently fail to service its queue in a reasonable length 
of time. The dip at 450MB is due to the Cache search time 
being about 1 s faster than in the 400 MB case, causing a 
nearly 3 s reduction in average queue time. A likely reason 
for the reduction in Cache search time is due to the 
difference in warmed Cache contents at the start of the 
simulation. With ten users each having an additional 50 MB 
of Cache space, the additional 500 MB of fragments in the 
warmed Caches has an effect on the Cache search time. 
While the Cache search time is usually expected to increase, 
the nature of the fragments may be such that gaps are filled 
in, causing a larger number of Cache searches to conclude 
before the top of the lattice is reached. 

Figure 8 The average query time of the FAR approach vs. Cache 
size, broken down into queue time, search time and 
backend time 

 

6.3 Cache warming 
The previous tests were performed with the Cache  
pre-loaded with a set of fragments drawn from the same 
distribution as the queries themselves. It is also important to 
examine the behaviour of a system starting with a cold 
Cache and how this changes over time as the Cache  
warms up. 

For the Cache warming phase, the same parameters are 
used as in the previous experiment, except the Cache sizes 
are fixed at 100 MB for each user and the simulation lasts  
8 h during which time each user issues 40 queries. Ten 
independent runs are performed and the cost savings for 
each query is measured in the sequence. If qi,j,k is the ith 
user’s jth query during the kth independent run, then for 
each 1 ≤ j ≤ 40 we measure 
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The results are shown in Figure 9. For the FAR strategy, 
there is a general trend towards a higher cost savings for the 
later queries in the sequence, suggesting that they benefit 
from the Cached results from earlier queries.  

Figure 9 The DCSR of the FAR and FA Cache search over a 
sequence of 40 queries 

 

The results are quite noisy for the reason that each point on 
the plot is computed from the results of a set of 100 queries, 
all of which are different from that of each other point on 
the plot. In contrast, the previous tests only varied the Cache 
sizes while the queries remained the same. There is a large 
sample variance between the times of individual queries: 
3404, 6240 and 6299 s on average for the FAR, FA and no 
Cache strategies respectively, resulting in highly variable 
cost savings. This plot does yield the conclusion that for the 
FAR strategy there is a savings and that it does increase as 
the Cache is filled, but we also observe that the quantity of 
savings appears to depend more on the specifics of the 
query than on the fullness of the Cache. 

6.4 Uniform queries 
The tests in Section 6.2 used a query distribution where the 
users had a particular interest in a small subset of the views 
in the lattice and in particular values of their dimensions. 
This is a relatively favourable situation for Caching as there 
is some relationship amongst the queries. A much less 
favourable situation for Caching is when the queries are 
completely independent. 

The same set of tests as in Section 6.2 has been 
performed, this time using queries from the uniform random 
distribution. The DCSR as Cache size is increased is shown 
in Figure 10.  

Surprisingly, even though the queries are unrelated, a 
substantial cost savings can still be achieved by the FAR 
strategy. It also scales much better with increasing Cache 
sizes in this case as compared to the hot region query 
distribution. Further analysis shows that this is due to the 
substantially smaller Cache search time, illustrated in the 
plot of Figure 11.  

Figure 10 The DCSR measure of Cache effectiveness for the 
FAR and FA Cache search strategies as Cache size  
per user is increased. Queries are drawn from a uniform 
distribution. 

 

Figure 11 The Cache search time for the FAR and FA strategies 
for both hot region and uniform query distributions as 
Cache size per user is increased 

 

From the figure it can be seen that for the FAR strategy the 
Cache search time for the uniform queries is roughly half 
than that of the hot region queries, while for FA they are 
roughly the same. The breakdown of query time into Cache 
search, queue and backend time given in Figure 12 shows 
that this results in substantially less queuing time at the Site 
Broker as compared to Figure 8, allowing more benefit to be 
extracted from the larger Caches. 

The reason for the large decrease in Cache search cost as 
compared to the hot region distribution is the smaller 
number of Cached fragments per view of the lattice. With 
the hot region distribution, there will tend to be a large 
number of fragments Cached on the views in the hot region. 
When a query on one of these views comes along, the large 
number of overlapping fragments causes a large number of 
sub-queries to be propagated up the lattice during the 
search. This is why the Cache search is much more costly 
for the hot region distribution, since it is linearly 
proportional to the number of sub-queries propagated up to 
higher levels of the lattice (the search is repeated for each of 
these sub-queries). 
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Figure 12 The average query time of the FAR approach vs. Cache 
size, broken down into queue time, search time and 
backend time. Queries are drawn from a uniform 
distribution 

 

7 Conclusions 

We have presented a cooperative Caching scheme for the 
OLAP-enabled grid in which the user Caches are distributed 
amongst the grid sites and cooperate in order to increase the 
efficiency of OLAP query processing. We have proposed an 
efficient localised Cache admittance scheme which uses a 
decay and refresh mechanism for controlling admission to 
and eviction from the Cache and a fast, aggregate-aware 
goodness metric for incoming fragments. We have 
experimentally evaluated our Caching scheme comparing it 
against previous methods (e.g. which do not recombine 
multiple fragments to answer a query) and found our 
strategy to produce a higher saving in query time, even 
when the queries are uniformly distributed. Given that our 
prototype implementation performs well, the natural next 
step is to explore the performance of our OLAP-enabled 
grid in a full implementation within the context of a 
standard grid toolkit such as Globus. 
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