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Abstract

In this paper we define a newcompact Hilbert indexwhich, while maintaining all of the advantages of the standard Hilbert curve,
permits spaces with unequal dimension cardinalities. The compact Hilbertindex can be used in any application that would have
previously relied on Hilbert curves but, in the case of unequal side lengths, provides a more memory efficient representation.
This advantage is particularly important in distributed applications (Parallel, P2P and Grid), in which not only is memory space
saved but communication volume is significantly reduced.
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1. Introduction

At the heart of many data intensive applications is the
need to store, manipulate and analyze large reposito-
ries of multi-dimensional data. Such multi-dimensional
data comes in many forms [1–13] including, for exam-
ple, spectral elements in a parallel high resolution at-
mospherical global circulation model [14], tissue micro-
array data in a co-operative Grid-based oncology sys-
tem [15] or business oriented OLAP data [16].

A common challenge in all of these applications is
how best to group and order the multi-dimensional data
to promote efficient processing. For one dimensional
data, sorting is an obvious approach as it groups data
items that are close together in the key dimension. For
example, if we have time-stamped transactional data
items for a bank account, we may first sort them by
time-stamp in order to then efficiently compute hourly,
daily and monthly running balances.
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With multi-dimensional data the appropriate group-
ing strategy is much less obvious. We may of course
pick an ordering of the dimensions, saydim1, dim2,
. . ., dimd, and sort by it, but such an approach favours
some dimensions over others. Data items that are close
in dim1 will be closely grouped, while items that share
values indim2, . . ., dimd, but notdim1, may be very
far apart. If our data items represent points in 3D space
which ordering is better:x, y, z or z, x, y or one of the
other four possible orderings? Note that none of these
orderings captures the natural idea of locality, that is
that points that are close together in Euclidian space
(and therefore more likely to interact in any physical
simulation) are grouped closely together in the resulting
linear ordering.

A powerful and widely used paradigm for orderingmulti-
dimensional data is the use of space-filling curves
[17–22]. Space-filling curves are continuous self-
similar functions that map between a one-dimensional
interval and a multi-dimensional set. By convention,
they are generally defined as continuous mappings
from the unit interval to the unitn-dimensional hy-
percube. Originally formulated by Peano in 1890 [22]
they have found applications in a variety of fields,
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including mathematics [23], image processing and
compression [9, 11], cryptology [24], algorithms [12],
scientific computing [7], parallel computing [8], ge-
ographic information systems [2] and database sys-
tems [5, 10].Such curves tend to be good at preserving
locality: points that are close together (with respect to
Euclidean distance) in the multi-dimensional set tend
to be close together in the linear ordering defined by
the curve. Of the space-filling curves, the Hilbert curve
(see Figure 1) has been shown to have strong locality
preserving properties [21] and, as such, has been the
focus of considerable research, with numerous algo-
rithms constructed to compute it [18,20,25–27].

More formally, consider ann-dimensional lattice
with 2m points per dimensions,

P = B
m × · · ·Bm

︸ ︷︷ ︸

n times

,

whereB
m = {0, 1}m. A standard Hilbert index is a

function H : P → B
nm, which maps each point to its

index (interpretingx ∈ B
mn as an integer inZ2mn) on

the Hilbert curve as it passes through the lattice.
Space-filling curves, particularly Hilbert curves, have

been extensively used to maintain spatial groupings of
multi-dimensional data in a wide variety of applica-
tions. In database systems they are used to map multi-
dimensional data to linearly ordered external memory
(i.e. disk drives) [28]. In data structures they are used
to order multi-dimensional data to promote query ef-
ficiency [29]. And in distributed information systems
they are used topartition multi-dimensional data in
such a way that points that are close in Euclidian space
are likely to be allocated to the same or neighbouring
processors. The idea of using space-filling curves for
partitioning has been key to applications in parallel [16],
P2P [30] and Grid Computing [15] settings.

One significant limitation in the standard definition
of Hilbert curves is the requirement that the grid size
(i.e. the cardinality) in each dimension be the same (i.e.
2m). In many applications involving points in 3D space,
this may be a relatively harmless assumption but in in-
formation system’s applications where one dimension
may represent product id (cardinality1000000) while
another represents gender (cardinality2) it can be ex-
tremely wasteful. The approachof padding all dimen-
sions to the cardinality of the largest dimension wastes
memory and disk space and increases processing time
and communication volume, when manipulating and
communicating these “inflated” values.

In this paper we define a newcompact Hilbert index
which, while maintaining all of the advantages of the
Hilbert curve, permits unequal dimension cardinalities.

More formally, consider ann-dimensional data-set

P
′ = B

m0 × · · · × B
mn−1 ,

wheremi ∈ Z+ is theprecisionof the ith dimension
(there is an obvious injectionU : P

′ → P that prepends
zeroes to each component until they have lengthm).
Storing an element inP′ requiresM =

∑

i mi bits.
However, a Hilbert index must be calculated with re-
spect to a hypercube of precisionm = maxi{mi} and
requiresnm ≥ M bits of storage. Our compact Hilbert
index preserves the ordering ofH on P

′, but requires
only M bits to represent. Formally, it is a mappingH ′ :
P
′ → B

M , such that for allp1,p2 ∈ P
′,

H(U(p1)) < H(U(p2)) ⇔ H ′(p1) < H ′(p2). (1)

Note that the compact Hilbert index can be used in
any application using Hilbert indicesbut, in the case of
unequal side lengths, provides a more compactrepre-
sentation. This advantage is particularly important in
distributed applications, in which not only is memory
space saved but communication volume is significantly
reduced.

To explore the performance of compact Hilbert in-
dices we performed a series of experiments with both
synthetic and real multi-dimensional data. In both cases,
in addition to significant space savings, the use of com-
pact Hilbert curves reduced the time required to order
data in Hilbert order. For example, for a4 dimensional
data-set extracted from a large Apache web log, com-
pact Hilbert indices achieved a data size reduction of2.2
and sorting based on these indices was4.3 times faster
than the dynamic comparison routine implemented in
Moore’s widely used library [27].

The remainder of this paper is organized as follows.
In Section 2 we review the definition of and algorithms
for computing Hilbert curves while emphasizing a geo-
metric perspective. In Section 3 we define the notion
of compact Hilbert indicesand derive an algorithm for
calculating the mapping. In Section 4 we explore the
performance of compact Hilbert indices, in particular
demonstrating significantly improved sorting times as
compared to competing techniques.

2. A Geometric Approach to Hilbert Curves

In this section we briefly describe the standard Hilbert
curve from a geometric point of view and give an al-
gorithm for finding the index on the Hilbert curve of a
given point in the lattice. While motivated and derived
geometrically, the resulting algorithm a variant of thede
factostandard method presented by Butz [18] and later
implemented by Moore [27]. However, our geometric
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approach highlights the source of redundant data in stan-
dard Hilbert indices and facilitates the development of
compact Hilbert indices in the following section.

Consider the traditional recursive geometric construc-
tion of the two-dimensional Hilbert curve. The curve is
initially defined on a2 × 2 lattice with a⊓ shape as
shown in Figure 1. Given an orderk curve defined on
a 2k × 2k lattice we define the curve on a2k+1 × 2k+1

lattice as follows
(i) Place a copy of the curve, rotated90◦ counter

clockwise, in the lower right cell.
(ii) Place a copy of the curve, rotated90◦ clockwise,

in the lower left cell.
(iii) Place a copy of the curve in each of the upper

cells.
(iv) Connect these four disjoint curves in the obvious

manner.
The first four iterations of this construction are shown
in Figure 1.

(a) (b) (c) (d)

Fig. 1. First four iterations of the 2D Hilbert curve, standard view.

The basic unit of the Hilbert curve is the familiar⊓
shape, which may be uniquely parameterized by con-
sidering the entry and exit points into the square lat-
tice of points being walked through. Using the same
approach as that taken in [25], Figure 2 illustrates the
Hilbert curve where the line segments of Figure 1 have
been replaced by arcs. As noted in [25] this presenta-
tion conveys more information as it indicates at some
level the order in which points are visited in a given
cell. The arcs show that the curve enters each cell at a
given vertex, visits all the points in the cell and exits
through another vertex before entering the next cell.

(a) (b) (c) (d)

Fig. 2. First four iterations of the 2D Hilbert curve, arc view.

Many algorithms for calculating Hilbert indices are
based on a geometric analysis of how the curve decom-
poses into appropriately transformed smaller versions
of itself. Nulty [31] presents a generic algorithm de-
scribing this approach with his functionSpaceKey: 1.

Find the cell containing the point of interest. 2. Up-
date the key (index) value appropriately. 3. Transform
as necessary. 4. Continue until sufficient precision has
been attained. This generic framework motivates our al-
gorithmic approach.
Find the cell containing the point of interest.Finding
the cell amounts to determining whether the point lies
in the upper or lower half-plane with respect to each
dimension. Assuming we are working on an orderm
curve, a point is represented by a pointp = [p0, p1] ∈
B

m × B
m. Determining in which half-plane the point

lies with respect to theith coordinate is equivalent to
determining the truth value ofpi < 2m−1, which is
equal to the(m − 1)th bit of pi, bit(pi,m − 1).
Update the key. Given the orientation at the current
resolution (uniquely defined by the entrye and exitf
of the curve through the lattice), we determine the order
in which each of the cells will be visited. Knowing that
all points in a cell are visited before moving on to the
next, the index of the cell of interest tells us whether
the point of interest is visited in the first quarter of the
curve, or the second and so on. In other words, we may
determine two bits of the Hilbert indexh.
Transform as necessary.Knowing the indexi of the
cell in which the point of interest lies, we may determine
the entry and exit points of the Hilbert curve through
this cell. In order to proceed, we zoom in on the cell
containing the point and transform (rotate and reflect) it
to the canonical orientation (entry in lower left, exit in
lower right). This can be done by taking the composition
of the transforms associated with our current orientation
and that of the block we are zooming in on.
Continue until sufficient precision has been attained.
Zooming in on the cell containing our point of interest,
we are now inspecting an orderm − 1 Hilbert curve
through a sub-cell of our original space. We repeat this
procedure for each of the remainingm − 1 levels of
precision, each time calculating a further 2 bits of the
Hilbert index. At the end of the process, we have a2m
bit Hilbert index, isolating a single point on the curve
of length22m through theBm × B

m lattice.

2.1. Generalizing to Higher Dimensions

The described approach yields a straightforward al-
gorithm for the calculation of two-dimensional Hilbert
indices. In order to generalize it to higher dimensions,
we need to identify the properties of the Hilbert curve
we wish to generalize. The first observation relates to the
order of the curve through cells. In two dimensions, suc-
cessive cells are immediate neighbors along exactly one
dimension. Given a 2 bit labeling for each of the cells,
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this means that in labels of successive sub-cells,exactly
one bit will change. This is simply aGray Code[32]
over 2 bit integers. Inn dimensions, we have2n cells
each labeled with ann-bit string and we may use the
n-bit Gray Code to impose an ordering on the cells.

A Gray Code may be interpreted as a Hamiltonian
circuit through the vertices of a hypercube inn dimen-
sions. This implies that the first (entry) and last (exit)
points are also immediate neighbors. Thus, we may
uniquely determine the orientation of a given celli by
considering the entrye(i) into the cell and the dimen-
sion 0 ≤ d(i) < n along which the exit point is our
neighbor. Having chosen the Gray Code order as the or-
dering through the cells, consistent orientations of each
cell have to be determined such that the exit vertex of
a cell is immediately adjacent to the entry vertex of the
next cell. In [33], a closed form is derived for the quan-
tities e(i), f(i) andd(i). An order 2 three-dimensional
Hilbert curve and the associated arc representation may
be found in Figure 3.

(a) (b)

Fig. 3. Standard and arc views of the order 2 three-dimensional
Hilbert curve.

A full analysis of the rotations and reflections in-
volved in the calculation of the Hilbert index shows
that they may all be expressed very naturally in base
2 arithmetic. In fact, reflection may be viewed as the
exclusive-or(⊻) operation and rotation as a bitwise ro-
tation(�) operation. These simplifications lead directly
to the formulation of Algorithm 1. For full details, in-
cluding proofs and inverse algorithms, refer to [33].

Algorithm 1 HILBERTINDEX

Calculates the Hilbert index of a point.

Input: n, m ∈ Z+ and a pointp ∈ P.
Output: h ∈ B

nm, the Hilbert index of the pointp ∈ P.
1: (h, e, d)← (0, 0, 0)
2: for i = m− 1 to 0 do
3: l← [bit(pn−1, i) · · · bit(p0, i)][2] // Get cell label

4: t← (l ⊻ e) � d // Transform to canonical
orientation

5: w = gc−1(t) // Determine cell index in gc
order

6: h← (h ⊳ n) ∨ w // Add n bits to Hilbert index
7: e← e ⊻ (e(w) 	 d) // Compose transforms
8: d← d + d(w) + 1 mod n

9: end for

Algorithm 1 is clearly visible as falling under the
SpaceKeyframework of [31]. In contrast, Butz’s algo-
rithm merges the transformation (Line 4) and compo-
sition (Line 7) into a compound operation and moves
the inverse Gray Code operation (Line 5) outside of
the loop, leading to a more terse implementation with
less intermediate variables. However, having each of
the SpaceKeysteps visible facilitates the development
of compact Hilbert indices.

3. Compact Hilbert Indices

As discussed in Section 1 it is desirable to have a map-
ping that preserves the relative ordering of the Hilbert
curve but does not require additional space to represent.
A simple method to construct such a mapping is to walk
through all the points inP′, calculate their Hilbert in-
dices and sort them based on these values. Then, assign
to each pointp its rank in this sorted list as an index.
Trivially, this index has the same ordering as the Hilbert
ordering overP′ and it requires onlyM =

∑

i mi bits
to represent. However, in order to generate the index in
this manner we must first enumerate the entire space,
a prohibitive cost. The key to calculating this index di-
rectly, referred to as thecompact Hilbert index, lies in an
observation of how bits from the pointp travel through
Algorithm 1 and contribute to the Hilbert index.

3.1. An Observation

We inspect Line 3 of Algorithm 1 which calculates
the locationl of the pointp as

l = [bit(pn−1, i) · · · bit(p0, i)][2] .

Due to the varying precisions of each coordinate we
know that for any pointp ∈ P

′, bit(pj , i) = 0 when
i ≥ mj . Thus at any given iterationi, some subset of
then bits of l may be fixed and known to be zero. These
bits do not provide any information to the calculation,
yet they are still used to calculate a fulln bits of the
index h. Following these redundant bits through Lines
4-5 shows how we can remove them from the output
while still preserving the total ordering of the points in
P
′ as visited by the Hilbert curve overP.
Let Ai = {j : mj > i, 0 ≤ j < n} be the set of “ac-

tive” dimensions at iterationi. Consider the calculation
of t, the transformed location, on Line 4 of Algorithm
1. Since every inactive bit ofl is zero valued, then the
bits of l ⊻ e at these positions will simply take on the
value of the corresponding bits ofe. Thus the only bits
of l ⊻ e whose values are “free” are precisely those in
Ai. The rotation operator serves only to shuffle the bits
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of l ⊻ e in a simple manner. LetFi be the set of free
bits of t at iterationi; that is, those bits whose values
are affected byl and in turnp. It is easy to see that pre-
cisely those bitsj of t such thatm(j+d mod n) > i will
be free at iterationi. Since|Fi| = |Ai|, then we see that
both l and t may only be one of2|Fi| unique values.
Additionally, we know that the Gray Code, and hence
its inverse, is a bijective operator overB

n (see [33] for
a proof of this simple fact). Thus the final valuew may
also only be one of2|Fi| distinct values.

Let r be the rank ofw with respect to all possible
valuesw may take on at a given iterationi of the algo-
rithm. Thenr may be represented as an|Fi|-bit integer
and satisfiesr1 < r2 ⇔ w1 < w2. Instead of appending
w to our partially calculated indexh, we may append
the rankr. By the previous result we see that for any
p1,p2 ∈ P

′, the following holds with respect to modi-
fied indices,h1 andh2, constructed from rank values:

h1 < h2 ⇔ H(U(p1)) < H(U(p2))

Additionally, by counting the number of free bits|Fi|
over all i, we see that the resulting compact index will
be exactlyM bits in length. Thus an index calculated in
this manner satisfies Equation 1, as desired. It remains
only to show how to calculate the rankr of a valuew
givenF . We first consider an example.
Example 3.1 We consider the values oft, w andr for
n = 4, (e � d) = [0100][2] and 2 free bits. In the
following table, the free bits oft have been underlined,
while the ranksr have been calculated by inspection
over the set of allw values.

t 4 5 12 13

w 7 6 8 9

r 1 0 2 3

[t][2] 0100 0101 1100 1101

[w][2] 0111 0110 1000 1001

[r][2] 01 00 10 11

As can be seen seen, the rankr of w can be constructed
by extracting the free bitsf ∈ F from the Gray Code
indexw. We formalize this in Lemma 3.4 and Theorem
3.5, first stating without proof a few necessary lemmas.
Lemma 3.2 (Theorem 2.1 of [33])Consider a non-
negative integerw ∈ B

m. Let t = gc(w). Then it
follows thatt = w⊻ (w⊲1), or equivalently,bit(t, j) =
bit(w, j) + bit(w, j + 1) mod2.
Lemma 3.3 (Theorem 2.2 of [33])Consider a non-
negative integert ∈ B

m. Let w = gc−1(t). Then it
follows thatbit(w, j) =

∑m−1
k=j bit(t, k).

Lemma 3.4 Given e, d and i, let
F = {j : m(j+d mod n) > i, 0 ≤ j < n}. Let T be the
set of2k distinct values that may differ from(e � d)
only at thek = |F| bits j ∈ F . Considera 6= b ∈ T .
Let l be the index of the most significant bit ofa and
b that does not match; in other words,l = max{k :
bit(a, k) 6= bit(b, k)}. It follows thatl ∈ F .

Proof. Define a maskµ as then-bit integer such that
bit(µ, j) = 1 for h ∈ F and bit(µ, j) = 0 otherwise.
The maskµ is created such that only bits in free posi-
tions are one valued. Sincet ∈ T may only differ from
(e � d) at the bitsj ∈ F , we may rewrite

T = {t : t ∧ µ = (e � d) ∧ µ, t ∈ B
n}.

By Lemma 3.3 it follows that bit(a, l) =
∑

l≤k<n bit(gc(a), k) mod2. Knowing bit(a, k) =
bit(b, k) for k > l, Lemma 3.2 implies bit(gc(a), k) =
bit(gc(b), k) for j > l. Thus:

bit(a, l) + bit(b, l) =
∑

l≤k<n

(
bit(gc(a), k) + bit(gc(b), k)

)
mod2 =

bit(gc(a), l) + bit(gc(b), l).

Supposel 6∈ F . Then it follows that bit(gc(a), l) =
bit(gc(b), l) = bit(e � d, l) and therefore bit(a, l) =
bit(b, l), a contradiction. Hence,l ∈ F .

Theorem 3.5 Let F , T and µ be as in Lemma 3.4.
Define the Gray Code Rank as

gcr(w) = [bit(w, fk−1), . . . , bit(w, f0)][2] ,

whereF = {f0 < · · · < fk−1} and w = gc−1(t)
for some t ∈ T . Then for all t1, t2 ∈ T it fol-
lows that gc−1(t1) < gc−1(t2) ⇔ gcr(gc−1(t1)) <
gcr(gc−1(t2)).

Proof. Lemma 3.4 tells us that the most significant dif-
fering bit betweengc−1(t1) andgc−1(t2) must be in a
free bit position. In other words, the only bits necessary
to compare the relative order of these two values are
precisely the bits of indexf ∈ F . Thus, if we remove
the constrained bits fromgc−1(t1) andgc−1(t2) keep-
ing only the free bits in the same relative order, we are
left with two |F| bit values which preserve the ordering
of gc−1(t1) andgc−1(t2). This corresponds exactly to
the valuesgcr(gc−1(t1)) andgcr(gc−1(t2)).

The results of this section and particularly Theorem
3.5 give us the last tools required to create an algorithm
to compute compact Hilbert indices. Using Algorithm
1 as a starting point, Algorithms 2, 3 and 4 allow the
computation of the mappingH ′.

Inspection shows that each of EXTRACTMASK and
GRAYCODERANK haveO(n) time complexity. Simi-
larly, Lemma 3.3 shows that calculatinggc−1(t) isO(n)
(in fact, it may be implemented withO(log n) complex-
ity). Given that each ofe(w),d(w) and� may be imple-
mented in less thanO(n) complexity, we see that both
Algorithms 1 and 4 have a net complexity ofO(nm).
Specifically, this shows us that compact Hilbert indices
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Algorithm 2 EXTRACTMASK

Extracts a maskµ indicating which bits of the transformed location
t are free at a given iterationi of the COMPACTHILBERTINDEX

algorithm.

Input: n, m0, . . . , mn−1 ∈ Z+, i ∈ Zm and the current rotation
parameterd ∈ Zn.

Output: The maskµ of free bits of the transformed locationt at
iteration i.

1: µ← 0
2: for j = n− 1 to 0 do
3: µ← µ ⊳ 1
4: if m(j+d mod n) > i then
5: µ← µ ∨ 1
6: end if
7: end for

Algorithm 3 GRAYCODERANK

Returns the Gray Code rank of the given Gray Code indexw, with
respect to the given maskµ.

Input: n ∈ Z+, µ, w ∈ B
n.

Output: The Gray Code rank ofw with respect toµ.
1: r ← 0
2: for j = n− 1 to 0 do
3: if bit(µ, j) = 1 then
4: r ← (r ⊳ 1) ∨ bit(w, j)
5: end if
6: end for

Algorithm 4 COMPACTHILBERTINDEX

Calculates the compact Hilbert index of a point.

Input: n, m0, . . . , mn−1 ∈ Z+ and a pointp ∈ P
′.

Output: hc ∈ B
M , the compact Hilbert index of the pointp ∈ P

′.
1: (hc, e, d)← (0, 0, 0)
2: m← maxi{mi}
3: for i = m− 1 to 0 do
4: µ← EXTRACTMASK(n, m0, . . . , mn−1, i, d)
5: l← [bit(pn−1, i) · · · bit(p0, i)][2]
6: t← (l ⊻ e) � d

7: w ← gc−1(t)
8: r ← GRAYCODERANK(n, µ, w)
9: hc ← (hc ⊳ ‖µ‖) ∨ r

10: e← e ⊻ (e(w) 	 d)
11: d← d + d(w) + 1 mod n

12: end for

are only at most a constant factor more expensive to
compute than regular Hilbert indices.

4. Experimental Results

To quantify the performance of our algorithms we
implemented routines for mapping to and from both
regular and compact Hilbert indices. The algorithms are
written in C++ and seamlessly handle arbitrary preci-
sion1 . Our Hilbert curve algorithms were then com-
pared to Moore’s [27] implementation of Butz’s [18]

1 Seehttp://www.cs.dal.ca/˜chamilto/hilbert/ .

algorithms for various precisions and dimensions (up to
nm ≤ 64, the maximum supported by Moore’s code)
on both artificial and real data. The running times of our
compact Hilbert indices were then compared to those
of regular Hilbert indices over these and other data-sets.
Finally, we examine the effect of using compact Hilbert
indices in applications where regular Hilbert indices are
currently used. All experiments were performed on a
commodity Dual Intel Xeon 3.06GHz based computer
with 2GB of main memory. All quoted times are wall
time.

The WEBLOGdata-set consists of the log files of an
Apache web server, taken over a 139 day period from
August to September of 2004. A4-dimensional data-set
of ∼ 7.7 million points was extracted from the over 154
million rows of log data. The four dimensions recorded
the IP address, day of access, hour of access and HTTP
return code for each log entry. They had cardinalities
of 834406, 139, 24 and16, respectively, with bit sizes
of 20, 8, 5 and4. A regular Hilbert index requires80
bits to represent while a compact Hilbert index requires
only 37, a savings of over2.2 times.

4.1. Performance

In order to characterize the performance of our algo-
rithms, we compared them against Moore’s code over
randomly generated data-sets and varying parameters
for N,m, n andM . For the purposes of compact Hilbert
indices, precisionsmi were chosen in a monotonically
decreasing fashion such thatM = nm/2. Figure 4
shows the basic results. The jump visible atn = 32 in
Figure 4(a) arises from the code switching to multiple
precision representations ofn-bit intermediate vari-
ables. In general, our regular Hilbert curve implemen-
tation slightly outperforms Moore’s implementation.
When n ≤ 32 the overhead associated with compact
Hilbert indices is as much as 2.5 times or 150%. How-
ever, as bothn andm increase this reduces to a more
reasonable ratio of 1.4, or 40%. Although the compact
Hilbert indices take slightly longer to compute, they are
smaller than full Hilbert indices allowing data points
to be replaced with compact Hilbert indices in-place.

4.2. Sorting by Hilbert Index

As discussed in Section 1, Hilbert curves are often
used to order or partition multi-dimensional data. Thus
it becomes necessary to sort points by their Hilbert in-
dices. The simplest approach is to simply calculate the
Hilbert index for each point and use this value in sorting.
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Fig. 4. Comparing performance over random data-sets. (a) Time to
calculateN indices withm = 4 asn varies. (b) Time to calculate
N indices withn = 4 asm varies.

However, often these indices are larger than the points
they represent resulting in an increased storage cost.
Given the large nature of the data-sets being sorted, it is
often critical that the sort be in-place. Moore’s solution
to this problem was to create a dynamic comparison rou-
tine which simultaneously calculates the Hilbert index
of both points being compared. It calculates the indices
only to the precision required to determine the relative
order of the two points. This approach has the benefit
that the Hilbert indices are never explicitly stored, but
suffers from the problem that they are recalculated at
every comparison.
Dynamic Hilbert Sorting. Suppose a comparison re-
quires examining the firstb bits of the Hilbert indices of
two points in order to distinguish them. Since each bit
costsO(1) to calculate, this incurs a cost ofO(b) for
the comparison. Fill et al [34] explored the average bit-
cost per comparison assuming a quick-sort algorithm
is being used. They derive an expectedO(log N) bits
per comparison, which implies a total bit complexity
of O(N log2 N). Thus, using a quick-sort based algo-
rithm we can expect a total dynamic Hilbert index sort-
ing run-time on the order ofO(N log2 N). Although
this particular analysis is valid only for the quick-sort
algorithm, it is thought this bound holds for the general
problem of sorting2 .
Compact Hilbert Sorting. As a competing approach
we consider sorting using compact Hilbert indices.
Since compact Hilbert indices are the same size as the
data from which they are calculated, we first replace
the data points with their associated compact Hilbert
indices at a net cost ofO(Nnm). We then sort these
elements before converting back to the original data
points. The net cost of this sort isO(N(log N + nm)).

2 Under the constraint that in order to compare a bit, we must first
have compared all bits more significant than it; if we have random
bit access a radix sort can generally do better. Hilbert indices are
calculated incrementally precluding random bit access.

As long asnm < log2 N , such an approach will be
asymptotically faster than dynamic Hilbert sorting.

Figure 5a shows the results of sorting theWEBLOG
data-set using both dynamic Hilbert indices and com-
pact Hilbert indices. As predicted, for this and all other
data sets tested, the compact Hilbert sorting proved to
be much more efficient. As shown in Figure 5b, for as
little as100K data items a speedup of2 was observed.
By 1M data items that speedup had grown to a factor
of 3.4. Speedup continued to increase beyond this point
until it reached a factor of over4.3 on the whole data set.
Note that in distributed applications that order and par-
tition data using Hilbert curves, such as [15,16,30], the
benefits of using compact Hilbert curves would be even
more pronounced. The use of compact Hilbert curves
would result in the memory and time savings illustrated
in Figure 5 as well as a corresponding reduction in the
overall comunication volume and time.
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Fig. 5. A comparison of dynamic Hilbert sorting and compact Hilbert
sorting using theWEBLOGdata-set. Thecompact curve includes
the cost of converting both to and from compact Hilbert indices. (a)
Wall times. (b) Relative speed-up.

5. Conclusion

Due their wide variety of uses and simplicity, space-
filling curves have been oft researched since their
discovery, finding many applications. Motivated by the
lack of intuition in the ubiquitous Butz [18] algorithms
for Hilbert curves as implemented by Moore [27],
we have reconstructed themfrom a geometric point of
view. Based on this formulation we have then described
a compact Hilbert curve which captures the ordering
properties of the regular Hilbert curve but without the
inefficiency in representation for spaces with unequal
side lengths. Finally, we developed algorithms for
computingcompact Hilbert indices, and demonstrated
their performance and utility in real-world applications.
Although these compact indices are somewhat more
computationally expensive to derive, they result in sig-
nificant space savings and, in the critical operation of
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sorting by Hilbert indices, they result in a considerable
time saving. For example, on a typical4-dimensional
web log data set, compact Hilbert indices achieved a
data size reduction of2.2 and a speedup of4.3 over
the widely used dynamic Hilbert sort method. It is
our hope that the compact Hilbert indices introduced
in this paper will find uses in information systems
and other applications where multi-dimensional spaces
have dimensions of unequal cardinalities.
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