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Abstract We present “Pipe ’n Prune” (PnP), a new hybrid method for iceberg-cube
query computation. The novelty of our method is that it achieves a tight integration
of top-down piping for data aggregation with bottom-up a priori data pruning. A
particular strength of PnP is that it is efficient for all of the following scenarios: (1)
Sequential iceberg-cube queries, (2) External memory iceberg-cube queries, and (3)
Parallel iceberg-cube queries on shared-nothing PC clusters with multiple disks.

We performed an extensive performance analysis of PnP for the above scenarios
with the following main results: In the first scenario PnP performs very well for both
dense and sparse data sets, providing an interesting alternative to BUC and Star-
Cubing. In the second scenario PnP shows a surprisingly efficient handling of disk
I/O, with an external memory running time that is less than twice the running time
for full in-memory computation of the same iceberg-cube query. In the third scenario
PnP scales very well, providing near linear speedup for a larger number of processors
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and thereby solving the scalability problem observed for the parallel iceberg-cubes
proposed by Ng et al.

Keywords Pipe ’n Prune (PnP) · Iceberg cube query · Data cube ·
Parallel computing · OLAP

1 Introduction

One of the most powerful and prominent technologies for knowledge discovery in
Decision Support Systems (DSS) environments is On-line Analytical Processing
(OLAP) [5]. By exploiting multi-dimensional views of the underlying data ware-
house, the OLAP server allows users to “drill down” or “roll up” on hierarchies,
“slice and dice” particular attributes, or perform various statistical operations such as
ranking and forecasting. To support this functionality, OLAP relies heavily upon a
data model known as the data cube [15, 17]. Conceptually the data cube allows users
to view organizational data from different perspectives and at a variety of summa-
rization levels. It consists of the base cuboid, the finest granularity view containing
the full complement of d dimensions (or attributes), surrounded by a collection of
2d − 1 sub-cubes/cuboids that represent the aggregation of the base cuboid along
one or more dimensions. The data cube operator (an SQL syntactical extension) was
proposed by Gray et al. [15] as a means of simplifying the process of data cube con-
struction. Subsequent to the publication of the seminal data cube paper a number of
independent research projects began to focus on designing efficient algorithms for
the computation of the data cube [1, 2, 17, 19, 20, 23–28, 30, 31].

The size of data cubes can be massive. In the Winter Corporation’s report [29], the
average size of data warehouses covered exceeded 10 Terabytes. Perhaps more im-
portantly over the last four years the average size rose 243%, while the maximum size
rose an astounding 578%. One approach for dealing with the data cube size is to al-
low user-specific constraints. For iceberg-cubes (e.g. [2, 11, 30]) aggregate values are
only stored if they have a certain user specified minimum support. Another possible
approach is to introduce parallel processing, which can provide two key ingredients
for dealing with the data cube size: increased computational power through multiple
processors, and increased I/O bandwidth through multiple parallel disks (e.g. [3, 4,
6–9, 12–14, 21, 22]). In [23], Ng et al. combined both of the above approaches and
studied various algorithms for parallel iceberg-cube computation on PC clusters. The
algorithm of choice in [23], referred to as PT, applies a hybrid approach in that it
combines top-down data aggregation with bottom-up data reduction. Another well
known hybrid sequential method, which we will discuss in more detail later in the
paper, is Star-Cubing [30].

In this paper, we further investigate the use of hybrid approaches for the paral-
lel computation of iceberg-cube queries. We present a new hybrid method, called
“Pipe ’n Prune” (PnP), for iceberg-cube query computation. Our approach combines
top-down data aggregation through piping with bottom-up a priori data reduction. The
main difference to previous approaches is the introduction of a novel PnP operator,
which uses a piping approach to aggregate data and at the same time performs a priori
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pruning for subsequent group-by computations. Our approach was motivated by the
two phase hybrid parallel method PT [23], which first partitions based on BUC style
bottom-up computation, and then uses top-down aggregation for building the startup
group-by for each partition. Inspired by Star-Cubing [30], our new PnP operator ex-
tends this two phase approach towards a complete merge between data aggregation
and a priori pruning. PnP is very different from Star-Cubing [30] in that PnP retains
top-down data aggregation through piping and interleaves it with iceberg bottom-up
data reduction (pruning). An illustration of our approach is sketched in Fig. 2. An
important property of our PnP method is that it is composed mainly of linear data
scans, and does not require complex in-memory structures. This allows us to extend
PnP to external memory computation of very large iceberg-cube queries with only
minimal loss of efficiency. In addition, PnP is well suited for shared-nothing paral-
lelization (where processors do not share any memory and all data is partitioned and
distributed over a set of disks). Our new parallel external memory PnP method pro-
vides close to linear speedup, particularly on those data sets that are hard to handle
for sequential methods. In addition, parallel PnP scales well and provides near linear
speedup for larger number of processors, thereby also solving the scalability problem
for the parallel iceberg-cube method proposed in [23].

This paper makes the following contributions:

• We present a novel PnP operator and “Pipe ’n Prune” (PnP) algorithm for the com-
putation of iceberg-cube queries. The novelty of our method is that it completely
interleaves a top-down piping approach for data aggregation with bottom-up a pri-
ori data pruning. A particular strength of PnP is that it is very efficient for all three
of the following scenarios:
– Sequential iceberg-cube queries.
– External memory iceberg-cube queries.
– Parallel iceberg-cube queries on shared-nothing PC clusters with multiple disks.

• We performed an extensive performance analysis of PnP for all of the above sce-
narios using both synthetic and real data sets. In general PnP performs very well for
both dense and sparse data sets and scales well, providing linear speedup for larger
numbers of processors. In [23], Ng et al. observe that for their parallel iceberg-cube
method “the speedup from 8 processors to 16 processors is below expectation”,
and attribute this scalability problem to scheduling and load balancing issues. Our
analysis, based on experiments using both real and synthetic data sets, shows that
PnP solves these problems and scales well on up to 32 processors.

In more detail our analysis of PnP for the above three scenarios showed the
following:
– Sequential iceberg-cube queries: As a special case, PnP also provides a new

sequential hybrid method for the computation of iceberg-cube queries. We
present an extensive performance analysis of PnP in comparison with BUC [2]
and StarCube [30]. We observe that the sequential performance of PnP is very
stable even for large variations of data density and data skew. Sequential PnP
typically shows a performance between BUC and StarCube, while BUC and
StarCube have ranges of data density and skew where BUC outperforms Star-
Cube or vice versa. For the special case of full cube computation PnP outper-
forms both BUC and StarCube.
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– External memory iceberg-cube queries: Since PnP is composed mainly of
linear scans, and does not require complex in-memory data structures, it is
conceptually easy to implement as an external memory method for very large
iceberg-cube queries. In order to make good use of PnP’s properties we have
implemented our own I/O manager to have full control over latency hiding
through overlapping of computation and disk I/O. We present an extensive
performance analysis of PnP for external memory computation of very large
iceberg-cube queries. Our experiments show minimum loss of efficiency when
PnP switches from in-memory to external memory computation. The mea-
sured external memory running time (where PnP is forced to use external
memory by limiting the available main memory) is only slightly higher than
the running time for full in-memory computation of the same iceberg-cube
query.

– Parallel iceberg-cube queries on shared-nothing PC clusters (with multiple
disks): PnP is well suited for shared-nothing parallelization, where processors
do not share any memory and all data is partitioned and distributed over a set
of disks. We present a PnP parallelization which (1) minimizes communication
overhead, (2) balances work load, and (3) makes full use of our I/O manager
by overlapping parallel computation and parallel disk access on all available
disks in the PC cluster. Extensive experiments show that our new parallel ex-
ternal memory PnP method provides close to linear speedup particularly on
those data sets that are hard to handle for sequential methods. Most importantly,
parallel PnP scales well, and provides near linear speedup for larger numbers of
processors, thereby also solving an important open scalability problem observed
in [23].

The remainder of this paper is organized as follows: Sect. 2 provides first a high
level overview of our PnP approach, and then presents the algorithmic details for
the three scenarios mentioned above. Section 3 presents an in-depth performance
evaluation of PnP, and Sect. 4 concludes our paper.

2 The PnP algorithm

PnP is a hybrid sort-based algorithm for the computation of very large iceberg-cube
queries. The idea behind PnP is to fully integrate data aggregation via top-down pip-
ing [26] with bottom-up (BUC [2]) a priori pruning. We introduce a new operator,
called the PnP operator. For a group-by v, the PnP operator performs two steps:
(1) It builds all group-bys v′ that are a prefix of v through one single sort/scan op-
eration (piping [26]) with iceberg-cube pruning. (2) It uses these prefix group-bys to
perform bottom-up (BUC [2]) a priori pruning for new group-bys that are starting
points of other piping operations. An example of a 5-dimensional PnP operator is
shown in Fig. 1. The PnP operator is applied recursively until all group-bys of the
iceberg-cube have been generated. An example of a 5-dimensional PnP Tree depict-
ing the entire process for a 5-dimensional iceberg-cube query is shown in Fig. 2. The
remainder of this section describes in detail our PnP method for the following three
scenarios:
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Fig. 1 A PnP operator

Fig. 2 A PnP tree. (Plain arrow: top-down piping. Dashed arrow: bottom-up pruning. Bold arrow:
sorting)

• Sequential, in memory, iceberg-cube queries.
• External memory iceberg-cube queries.
• Parallel iceberg-cube queries on shared-nothing PC clusters with multiple disks.

2.1 PnP: sequential in-memory version

We assume as input a table R[1..n] representing a d-dimensional raw data set R

consisting of n rows R[i], i = 1, . . . , n. Because of the iceberg-cube constraint, a
cell in a cuboid is only returned if it has minimum support. That is, a cell is only
calculated if there are at least min_sup tuples assigned to that cell, for some given
input parameter min_sup.

For a row R[i] we denote with Rj [i] the prefix of R[i] consisting of the first j

feature values of R[i], followed by the measure value of R[i]. We denote with R̂j [i]
the row R[i] with its feature value in dimension j removed. We denote with ∅ the
empty (0-dimensional) group-by. For a group-by v we denote with |v| the number
of dimensions of v, and with v̂j the group-by that is the same as v but with dimen-
sion j removed. We denote with vj the group-by identifier consisting of the first j

dimensions of v.
Our PnP method for the sequential, in memory, case is shown in Algorithms 1

and 2. Algorithm 2 represents the main part, the implementation of the recursive PnP
operator.
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Algorithm 1 Algorithm PnP: sequential, in memory
Input: R[1..n]: a table representing a d-dimensional raw data set consisting of n

rows R[i], i = 1, . . . , n; min_sup: the minimum support.
Output: The iceberg data cube.

1: Sort R and aggregate duplicates in R.
2: Call PnP-1(R, vR , ∅), where vR is the group-by containing all dimensions of R

(sorted by cardinality in decreasing order).

We explain our algorithm using the example in Fig. 2 for a 5-dimensional iceberg-
cube query. In Line 2 of Algorithm 1, we call PnP-1(R, ABCDE, ∅). This will first re-
sult in the creation of the pipe ABCDE–ABCD–ABC–AB–A and then create pruned
versions of ABCE, ABDE, and ACDE for subsequent piping operations. Table 1
shows a complete execution for the example raw data set R indicated in the first
column of Table 1. Buffers b[5] · · ·b[1] represent the results of piping operations,
while R3 · · ·R1 show the result of pruning operations. Note that the PnP operator
uses only one single pass through the data set. The horizontal lines in Table 1 indi-
cate cases where aggregation or pruning take place. The recursive call in Line 12 of
Algorithm 2 initiates the PnP operator for group-bys ABCE, ABDE, and ACDE. The
prefix passed as third parameter in Line 12 of Algorithm 2 is shown in Fig. 2 as the
underlined portions of ABCE, ABDE, and ACDE, respectively. It represents for those
recursive calls the portion of the pipe that has already been computed. The recursive
call in Line 20 of Algorithm 2 initiates the PnP operator for group-by BCDE and
starts the iceberg-cube computation for all group-bys not containing A. The resulting
entire process is depicted in Fig. 2.

2.2 PnP: sequential external memory version

Since PnP is sort based, it is easy to extend PnP to external memory, as shown in
Algorithms 3 and 4. We discuss here only the main differences between Algorithm 2
and Algorithm 4. All sort operations are replaced by external memory sorts. Some
care has to be taken with the scan and aggregation/pruning operations, as buffers may
overflow and have to be saved to disk. The main difference between Algorithm 2 and
Algorithm 4 is with respect to the recursive calls in Line 12 in Algorithm 2. In the ex-
ternal memory version, we have to save the tables Rj into a file Fj on disk as shown
in Line 11 of Algorithm 4. A separate loop in Lines 18 to 22 of Algorithm 4 is then
required to retrieve all Rj and perform the recursive calls. Note that these operations
are independent and we can apply disk latency hiding through overlapping of com-
putation and disk I/O. In order to make good use of this effect, we have implemented
our own I/O manager which resulted in a significant performance improvement (see
Sect. 3.2).

2.3 PnP: parallel and external memory version

We now discuss how our PnP algorithm can be parallelized in order to be executed on
a shared-nothing multiprocessor as shown in Fig. 3a. Such a multiprocessor consists
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Algorithm 2 PnP-1(R, v, pv)
Input: R[1..n]: a table representing the raw data set consisting of n rows R[i], i =

1, . . . , n; v: identifier for a group-by of R; pv: a prefix of v.
Output: The iceberg data cube.

1: Local Variables: k = |v| − |pv|; Rj : tables for storing rows of R; b[1..k]: a
buffer for storing k rows, one for each group-by v1 · · ·vk ; h[1..k]: k integers; i,
j : integer counters. Initialization: b[1..k] = [null..null]; h[1..k] = [1..1].

2: for i = 1..n do
3: for j = k..1 do
4: if (b[j ] = null) OR (the feature values of b[j ] are a prefix of R[i]) then
5: Aggregate Rj [i] into b[j ].
6: else
7: if b[j ] has minimum support then
8: Output b[j ] into group-by vj .
9: if j ≤ k − 2 then

10: Create a table Rj = R̂j+1[h[j ]] · · · R̂j+1[i − 1].
11: Sort and aggregate Rj .
12: Call PnP-1(Rj , v̂j+1, vj ).
13: end if
14: end if
15: Set b[j ] = null and h[j ] = i.
16: end if
17: end for
18: end for
19: Create a table R′[1..n′] by sorting and aggregating R̂1[1] · · · R̂1[n].
20: Call PnP-1(R′, v̂1, ∅).

Algorithm 3 Algorithm PnP: sequential, external memory
Input: R[1..n]: a table (stored on disk) representing a d-dimensional raw data set

consisting of n rows R[i], i = 1, . . . , n; min_sup: the minimum support.
Output: The iceberg data cube (stored on disk).

1: Sort R, using external memory sorting, and aggregate duplicates in R.
2: Call PnP-2(R, vR , ∅), where vR is the group-by containing all dimensions of R

(sorted by cardinality in decreasing order).

of p processors P0 · · ·Pp−1, each with its own memory and disk. The processors
are connected via a network or switch. Our focus is on practical parallel meth-
ods that can be implemented on low-cost PC clusters consisting of standard Intel
processor based Linux machines connected via Gigabit Ethernet. However, our meth-
ods can also be used, and will perform even better, on more expensive platforms
such as clusters connected via Myrinet or shared memory parallel machines like the
SunFire.

We assume as input a d-dimensional raw data set R stored in a table consisting of
n rows that are distributed over the p processors as shown in Fig. 3b. More precisely,
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Table 1 PnP processing of ABCDE

R b[5] b[4] b[3] R3 b[2] R2 b[1] R1

ABCDE ABCDE ABCD ABC ABCE AB ABDE A ACDE

11111 1 11111 1 pruned 1111 2 1111 1

11112 1 11112 1 1111 2 1112 1 1112 1

11122 1 11122 1 1112 1 111 3 1122 1 1122 1

11211 1 11211 1 1121 1 112 1 pruned 11 4 1 4 1211 1

21111 1 21111 1 2111 1 pruned pruned pruned

21121 1 21121 1

21122 1 21122 1 2112 2 211 3 21 3 2 3

31111 1 31111 1 3111 1 pruned 3111 1 3111 1

31121 1 31121 1 3121 2 3121 1

31122 1 31122 1 3112 2 311 3 3122 1 3122 1

31221 1 31221 1 pruned 3123 1 3221 1

31223 1 31223 1 3122 2 312 2 31 5 3 5 3223 1

41111 1 41111 1 4111 1 411 1 pruned 41 1 pruned 4111 2

42111 1 42111 1 pruned pruned 4112 1

42112 1 42112 1 4211 2 421 2 42 2 4121 1

43121 1 43121 1 4312 1 431 1 pruned 43 1 pruned 4 4

(a)

(b)
Fig. 3 Computing platform: (a) shared-nothing multiprocessor (b) with individual views stripped across
the distributed disks

every processor Pi stores on its disk a table Ri consisting of n
p

rows of R. As indicated
in Fig. 3b, each group-by of the output (iceberg-cube) will also be partitioned and
distributed over the p processors. We refer to this process as striping a table over the
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Algorithm 4 PnP-2(R, v, pv)
Input: R[1..n]: a table (stored on disk) representing the raw data set consisting of n

rows R[i], i = 1, . . . , n; v: identifier for a group-by of R; pv: a prefix of v.
Output: The iceberg data cube (stored on disk).

1: Local Variables: k = |v| − |pv|; Rj : tables for storing rows of R (called par-
titions); Fj : disk files for storing multiple partitions Rj ; b[1..k]: a buffer for
storing k rows, one for each group-by v1, . . . , vk ; h[1..k]: k integers; i, j : integer
counters. Initialization: b[1..k] = [null..null]; h[1..k] = [1..1].

2: for i = 1..n (while reading R[i] from disk in streaming mode. . . ) do
3: for j = k..1 do
4: if (b[j ] = null) OR (the feature values of b[j ] are a prefix of R[i]) then
5: Aggregate Rj [i] into b[j ].
6: else
7: if b[j ] has minimum support then
8: Output b[j ] into group-by vj . Flush to disk if vj ’s buffer is full.
9: if j ≤ k − 2 then

10: Create a table Rj = R̂j+1[h[j ]] · · · R̂j+1[i − 1].
11: Sort and aggregate Rj (using external memory sort if necessary).

Write the resulting Rj and an “end-of-partition” symbol to file Fj .
12: end if
13: end if
14: Set b[j ] = null and h[j ] = i.
15: end if
16: end for
17: end for
18: for j = k..1 do
19: for each partition Rj written to disk file Fj in line 11 do
20: Call PnP-2(Rj , v̂j+1, vj ).
21: end for
22: end for
23: Create a table R′[1..n′] by sorting and aggregating R̂1[1] · · · R̂1[n] (using exter-

nal memory sort if necessary).
24: Call PnP-2(R′, v̂1, ∅).

p disks. When every group-by is striped over the p disks, access to a group-by can
be performed with maximum I/O bandwidth through full parallel disk access.

For a d-dimensional table Ri , we define tables T
j
i , j = 1, . . . , d , as the tables ob-

tained by removing from each row of Ri the first j − 1 feature values and performing
aggregation to remove duplicates (but not performing iceberg-cube pruning). Note
that, T 1

i = Ri .
Our parallel PnP method is shown in Algorithm 5. The basic idea is illustrated

in Fig. 4. The figure shows a PnP forest obtained by partitioning the PnP tree in
Fig. 2 into d trees, one for each feature dimension. The data set for the root of the
j -th tree is the set T j = T

j

0 ∪ T
j

1 ∪· · ·∪ T
j

p−1. We start with T 1 = R striped over

the p disks, where processor Pi stores T 1
i = Ri , and execute on each processor Pi
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Fig. 4 A PnP forest

Algorithm 5 Algorithm PnP: parallel, external memory
Input: R: a table representing a d-dimensional raw data set consisting of n rows,

stored on p processors. Every processor Pi stores (on disk) a table Ri of n
p

rows
of R as shown in Fig. 3b. min_sup: the minimum support.

Output: The iceberg data cube (distributed over the disks of the p processors as
shown in Fig. 3b).

1: Variables: On each processor Pi a set of d tables T 1
i , . . . , T d

i .
2: for j = 1..d do
3: Each processor Pi : Compute T

j
i from T

j−1
i via sequential sort. (T 1

i = Ri )

4: Perform a parallel global sort on T
j

1 ∪ T
j

1 ∪· · ·∪ T
j
p .

5: end for
6: for j = 1..d do
7: Each processor Pi : Apply Algorithm 3 to T

j
i .

8: end for

the sequential Algorithm 3 with input T 1
i (Line 7 of Algorithm 5). This creates the

first tree in the PnP forest of Fig. 4. Next, we compute on each processor Pi the ta-
ble T 2

i from T 1
i by removing the first feature dimension and performing aggregation

to remove duplicates (via a sequential sort); see Line 3 of Algorithm 5. Different
data aggregation on different processors can lead to imbalance between processors,
and the set T 2

0 ∪ T 2
1 ∪· · ·∪ T 2

p−1 is therefore re-balanced through a global sort
(Line 4 of Algorithm 5). We can then execute on each processor Pi the sequential
Algorithm 3 with input T 2

i (Line 7 of Algorithm 5), creating the second tree in the
PnP forest of Fig. 4. This process is iterated d times, until all group-bys have been
built.

3 Performance evaluation

We have implemented sequential, external memory, and parallel versions of our PnP
algorithm as presented in the previous section. The sequential C++ code evolved
from the code for top-down sequential pipesort used in [4]. The external memory
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code evolved from the sequential code through the addition of an external memory
sort and a custom designed I/O manager that allows us to overlap computation and
disk I/O. The parallel code was built from our external memory code base together
with communication operations drawn from the MPI communication library.

Our performance evaluation was conducted in two stages. In the first stage we eval-
uate the sequential version of PnP by comparing it with implementations of BUC and
Star-Cubing. The Microsoft Windows executables for these implementations were
kindly provided by J. Han’s research group to enable just such comparative perfor-
mance testing of cube construction methods [16]. The PnP codes, for both the sequen-
tial (in-memory) version and external memory version, were compiled using Visual
C++ 6.0. Both sequential and external memory experiments were conducted on a 2.8
GHz Intel Pentium 4 based PC running Microsoft Windows 2000 with 1 GB RAM
and an 80 GB 7200 RPM IDE disk.

In the second stage of our performance evaluation we explored the performance
of our parallel version of PnP on a 32 processor cluster. This shared nothing parallel
machine consists of a collection of 1.7 GHz Intel Xeon processors each with 1 GB of
RAM, two 40 GB 7200 RPM IDE disks and an onboard Inter Pro 1000 XT NIC. Each
processor is running Linux Redhat 7.2 with gcc 2.95.3 and MPI/LAM 6.5.6. as part
of a ROCKS cluster distribution. All processors are interconnected via a Cisco 6509
GigE switch. Due to restrictions in machine access, we were frequently unable to
reserve all 32 processors of this machine. In such cases a minimum of 16 processors
were used.

In the following experiments, all sequential times are measured as wall clock times
in seconds. All parallel times are measured as the wall clock time between the start
of the first process and the termination of the last process. All times include the time
taken to read the input from files and write the output into files. Furthermore, all wall
clock times are measured with no other users on the machine. The running times
for BUC and Star-Cubing that we show were observed by running the executables
obtained from [16].

To fully explore the performance of these cube construction methods, we gener-
ated a large number of synthetic data sets which varied in terms of the following
parameters: n—the number of rows in the raw data set R, d—the number of dimen-
sions, s—the skew in each dimension as a zifp value, m—the minimum support,
b—the available memory in bytes, and c1, . . . , cd—the cardinalities of the d dimen-
sions (where an unsubscripted c indicates the same cardinality in all dimensions).
The data generator used in the sequential and external memory experiments to gen-
erate the raw data set R was provided with the BUC and Star-Cubing executables
from [16]. For the parallel experiments we generated similar synthetic data sets using
our own data generator which creates striped data across the p disks and which had
been previously used in [3, 4].

We also evaluated the performance of PnP on two large real data sets each consist-
ing of over a 100 M rows of data. The first data set was constructed from 12 months
of web log files from a local newspaper website using ETL processing. In the original
log files each line indicates a mouse click event and consists of the IP address, date,
time and page accessed. The log files were transformed into the star-schema shown
in Fig. 5 where the base table consists of four dimensions (IP, date, time and content)
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(a)

(b)

Fig. 5 Star schema for (a) the News Web Log data set, and (b) the World Hydrological data set

and one measure (mouse click counts). The IP dimension includes 833471 unique
addresses, the date dimension 366 unique days, the time dimension 24 unique hours,
and the content dimension 25 unique categories of page contents. In total, the main
fact table consists of over 32 M rows.

The second data set comes from the HYDRO1k Elevation Derivative Database
[18]. This geographic database provides hydrologic information on a continental
scale. The database includes the data for six continents: North America, South Amer-
ica, Europe, Africa, Asia and Australia. For each continent, it divides the surface area
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into equal size squares based on longitude and latitude and for each square it records a
range of geographic information. In the main table, there are eight dimensions: longi-
tude, latitude, aspect, slope, elevation, flow directions, compound topographic index
and continents with cardinalities of 360, 360, 180, 90, 82, 8, 7 and 6 respectively.
The table includes one measure: square counts. In total, the main fact table consists
of 17 M rows.

3.1 Sequential experiments

The performance results for our sequential experiments are shown in Figs. 6 to 12.
There are three groups of experiments in this section. The first group, Fig. 6, com-
pares PnP to BUC and Star-Cubing for the special case of full cube computation. The
second group, Figs. 7 to 8 compares the iceberg cube computation on raw data sets of
varying sparsity. The last group, Figs. 9 to 11 explores various settings of the size of
raw data, dimensions, skew and the minimum support for both very dense and very
sparse cubes.

Fig. 6 Sequential PnP. (a) Full
cube running time in seconds as
a function of cardinality
(n = 1 M) and (b) full cube
running time in seconds as a
function of the size of raw data
set (|Di | = 256, 1 ≤ i ≤ d).
(Fixed parameters: d = 6)

(a)

(b)
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Fig. 7 Sequential PnP. Running
time in seconds as a function of
cardinality (a) m = 10 and
(b) m = 100. (Fixed parameters:
n = 5 M, d = 6)

(a)

(b)

Figure 6 shows for full cube computation (i.e., minimum support m = 1) results
for PnP compared to BUC and Star-Cubing for various cardinalities and data sizes.
Note that varying cardinality, while holding the other parameters constant, amounts
to varying the sparsity. We observe that for the special case of full cube computation
the sequential version of PnP performs better than BUC or Star-Cubing regardless
of sparsity. In this case, PnP takes full advantage of pipeline processing and saves
significant time by sharing sorts, while bottom-up a priori data pruning is ineffectual.

Figure 7 compares PnP to BUC and Star-Cubing for iceberg cube computation
with varying sparsity. In order to measure the sparsity of a data cube, we use the
following formula for its calculation:

Sp = n
∏d

i=1 |Di |
.

In Fig. 7a, sequential PnP typically shows the best performance when the cardinality
is between 25 and 80, which corresponds to a data cube sparsity Sp between 0.02
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Fig. 8 Sequential PnP. Running
time in seconds as a function of
the size of raw data set
(a) |Di | = 22 and (b) |Di | = 80.
(Fixed parameters: d = 6,
m = 10)

(a)

(b)

and 0.00002. Star-Cubing is the best method when the cardinality is below 25, or Sp
larger than 0.02, which is a very dense case. BUC is the best one when the cardinality
is above 80, or Sp larger than 0.00002, which is a very sparse case. Figure 7b shows
the results when the minimum support is 100. We observe a trend similar to Fig. 7a.
PnP and BUC are very similar when Sp is between 0.02 and 0.00002, and both of
them are better than Star-Cubing. When Sp is larger than 0.02, Star-Cubing is best,
and when Sp is less than 0.00002, BUC is the best.

In order to take a close look at the performance for the threshold values 0.02 and
0.00002, we selected cardinalities of 22 and 80, respectively, for a range of values
for n, in order to examine at which point PnP switches position with BUC or Star-
Cubing. Figure 8a shows the running time for varying data size with the cardinality
for each dimensions set to |Di | = 22. In this dense cube case, we observe that PnP and
Star-cubing are better than BUC, and they switch position between 3 M and 4 M. The
sparsity at 3 M is about 0.02. When the data size is smaller than 3 M, or the sparsity
smaller than 0.02, PnP is better than Star-cubing. When the sparsity is increased and
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Fig. 9 Sequential PnP. Running
time in seconds as a function of
n the size of raw data
(a) |Di | = 10 and
(b) |Di | = 100. (Fixed
parameters: d = 6, m = 10)

(a)

(b)

larger than 0.02, Star-cubing becomes better than PnP. Figure 8b shows the running
time for varying data size with the cardinality for each dimensions set to |Di | = 80.
This is a sparse cube case. We observe that PnP and BUC are better than Star-cubing,
and they switch position between 2 M and 3 M. The sparsity at 2 M is about 0.00002.
When the data size is smaller than 2 M, or the sparsity smaller than 0.00002, BUC is
better than PnP. When the sparsity is larger than 0.00002, PnP becomes better than
BUC.

Finally, Figs. 9 to 12 compare PnP to BUC and Star-Cubing for iceberg cube
computation while varying the raw data size, dimensionality, minimum support, and
skew, for both very dense (|Di | = 10 or Sp = 5) and very sparse (|Di | = 100 or
Sp = 0.000005) cubes. We observe that the sequential performance of PnP is very
stable even in these extreme cases. Sequential PnP performance is almost always
close to the best one, while BUC tends to perform best on very sparse data sets and
Star-Cubing best on very dense data sets.
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Fig. 10 Sequential PnP.
Running time in seconds as a
function of n the size of raw
data set (a) |Di | = 10 and
(b) |Di | = 100. (Fixed
parameters: d = 6, m = 10)

(a)

(b)

Overall, sequential PnP shows the best performance when the data sets are in the
normal range of sparsity (0.00002 ≤ Sp ≤ 0.02), and it still performs close to the best
of BUC and Star-Cubing in the extremely sparse or dense cases. Therefore sequential
PnP appears to be an interesting alternative to BUC and Star-Cubing especially in
applications where performance stability over a large wide range of input parameters
is important.

3.2 External memory experiments

Our performance results for the external memory version of PnP are shown in Fig. 13.
Note that since PnP is composed mainly of linear scans and does not require com-
plex in-memory data structures, it is reasonably easy to implement as an external
memory method for very large iceberg-cube queries. In order to make good use of
PnP’s properties, we implemented our own I/O manager in order to have full control
over disk access patterns as well as latency hiding through overlapping of compu-
tation and disk I/O. For the evaluation of the external memory version of PnP we
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Fig. 11 Sequential PnP.
Running time in seconds as a
function of minimum support
(a) |Di | = 10 and
(b) |Di | = 100. (Fixed
parameters: n = 5 M. d = 6)

(a)

(b)

used larger data sets, ranging in size from 1 million to 20 million rows, while varying
dimensionality d and available memory M .

Overall, our experiments show minimum loss of efficiency when PnP switches
from in-memory to external memory computation. The measured external memory
running time (where PnP is forced to use external memory by limiting the available
main memory) is only slightly higher than the running time for full in-memory com-
putation of the same iceberg-cube query. In Fig. 13a we observe similarly shaped
curves even as we increase the dimensionality of the problem, due in large part to the
effects of iceberg pruning. The location of the slight jump in time, corresponding to
the switch to external memory, occurs between 5 million rows and 7 million rows de-
pending on the dimensionality of the iceberg cube being generated. Figure 13b shows,
not surprisingly, that there is a benefit to increasing the memory space M available
to the external memory algorithm. However, the gaps between the curves are very
small. It suggests that the external memory PnP algorithm makes full use of available
memory and exhibits good performance even with limited memory footprints.
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Fig. 12 Sequential PnP.
Running time in seconds as a
function of the data skew
(a) |Di | = 10 and
(b) |Di | = 100. (Fixed
parameters: n = 5 M, d = 6)

(a)

(b)

3.3 Parallel experiments on synthetic data sets

Our performance results for the parallel shared-nothing version of PnP are shown in
Figs. 14 to 17. This implementation is based on the external memory PnP code base
with MPI code added for the parallel part. In addition to parallelism, our code uses
external memory processing when needed.

Our experiments focus on speedup, since this is one of the key metrics for the
evaluation of parallel database systems [10]. The experiments consist of increas-
ing the number of processors available to the parallel version of PnP to determine
the time and corresponding parallel speedup obtained while varying other key pa-
rameters such as input data size, dimensionality, cardinality, minimum support, and
skew.

Figure 14a shows the running time of parallel PnP for input data sizes between
1 and 8 million rows and Fig. 14b shows the corresponding speedup. As is typi-
cally the case, relative speedup improves as we increase the size of the input and
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Fig. 13 External memory PnP.
Running time in seconds as a
function of the size of raw data
set (a) M = 500 MB, and
(b) d = 10. (Fixed parameters:
|Di | = 300, 1 ≤ i ≤ d , m = 100)

(a)

(b)

consequentially the total amount of work to be performed. With data between 2 M
and 8 M rows, near optimal linear speedup is observed up to 8 processors. For 16
and 32 processors, speedup drops off somewhat because the problem allocated to
each processor is too small to dominate the communication overhead. However, even
with only 1 M rows, speedup is optimal up to 4 processors and runs at about 50%
for 8, 16 or 32 processors, showing that speedup is achievable even for small data
sets.

Figure 15a shows the running time of the parallel version of PnP for increasing
dimensionality and Fig. 15b shows the corresponding speedup. We observe that the
speedup increases as the number of dimensions increases. Note that when the num-
ber of dimensions increases there are exponentially more views in the data cube,
implying a large increase in local computation time. Communication time also in-
creases but much more slowly. In fact, for twice the number of views, PnP requires
just one additional parallel sort. The growth in local computation time clearly dom-
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Fig. 14 Parallel external
memory PnP. (a) Parallel wall
clock time in seconds as a
function of the number of
processors for data size n from 1
million to 8 million rows and
(b) corresponding speedup.
(Fixed parameters: d = 10,
|Di | = 100, 1 ≤ i ≤ d , m = 100,
M = 100 Mb)

(a)

(b)

inates the growth in communication overhead leading to improved speedup. Note
that, the best speedup is achieved on cubes that are hardest to compute sequen-
tially, i.e., those that involve the largest computation in terms of input size and/or
dimensionality.

The cardinality of the dimensions in the input data can significantly affect perfor-
mance in two ways: (1) the product of the cardinalities affects sparsity, and (2) the
ratio of the size of the largest cardinalities to p affects the quality of the parallel
load balance. Figure 16a shows the running time of the parallel version of PnP for
input data covering a range of cardinalities and Fig. 16b shows the corresponding
speedup. Data set D, with cardinalities |Di | = 200, 1 ≤ i ≤ d , is both dense and
lacks any large cardinality dimensions. These factors combine to reduce the achieved
speedup. Data sets A and C are both more sparse and have larger maximum cardi-
nalities which leads to a better load balance and the improved speedup we observe.
For data set A, with the cardinalities |Di | = 200, 1 ≤ i ≤ d , we observe for the first
time super linear speedup. In this case we have both large output size and an excellent
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Fig. 15 Parallel external
memory PnP. (a) Parallel wall
clock time in seconds as a
function of the number of
processors for dimensions d

from 8 to 11 and
(b) corresponding speedup.
(Fixed parameters: n = 8 M,
|Di | = 100, 1 ≤ i ≤ d , m = 100,
M = 100 Mb)

(a)

(b)

load balance. The super linearity is due to the fact that as p grows the data allocated
to each processor shrinks allowing our parallel external memory PnP algorithm to
adaptively switch more of the computation to the more efficient in-memory version
of PnP.

Figure 17 shows the effects on running time and speedup of varying minimum sup-
port. We observe that for smaller values of minimum support, m = 100 and m = 500,
the computing time required is larger and the speedup obtained by our parallel PnP al-
gorithm is near linear on up to 16 processors and then drops off more sharply towards
32 processors. The curves for m = 100 and m = 500 are almost overlapped because
most measures in the data cube are greater than 500, and therefore also greater than
100, so that the two cases output almost the same amount of data. For the large min-
imum support cases, m = 1000 and m = 2500, the speedup drops off faster because
much of the data is pruned and there is less local computing to mask the communi-
cation overheads.
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Fig. 16 Parallel external
memory PnP. (a) Parallel wall
clock time in seconds as a
function of the number of
processors for data sets with
different cardinality mixes, and
(b) corresponding relative
speedup. (Fixed parameters:
(A) |Di | = 1024,512,256,128,

64,32,16,8,4,2. (B) |Di | = 50,
1 ≤ i ≤ d . (C) |Di | = 100,
1 ≤ i ≤ d . (D) |Di | = 200,
1 ≤ i ≤ d , n = 8 M, d = 10,
m = 100, M = 100 Mb)

(a)

(b)

3.4 Parallel experiments on real data sets

In this section the performance characteristics of the PnP algorithm is explored using
two large “real” data sets, namely the News Web Log data set and the World Hy-
drologic data set. One significant difference with these datasets, in comparison to the
synthetic ones, is that they contain complex skew, the presence of which may either
help or hinder a particular cubing algorithm.

Figure 18 shows the running time and the relative speedup for generating iceberg
data cubes from the News Web Log data set. We observe that the speedup is very close
to linear in Fig. 18b. In the News Web Log data set, the first and second dimension
have large cardinalities compared with the number of processors and, hence, the work
load is well balanced by PnP across the processors leading to excellent speedup.
Note that, while it is hard to formally describe the amount of skew in this real world
data set, we do know that significant skew exists. For example, some IP addresses
belong to proxy servers, which have much higher access frequency than personal IP
addresses. In addition, many users show a strong preference for one or two content
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Fig. 17 Parallel external
memory PnP. (a) Parallel wall
clock time in seconds as a
function of the minimum
support and (b) corresponding
relative speedup. (Fixed
parameters: n = 8 M, d = 10,
|Di | = 100, 1 ≤ i ≤ d ,
M = 100 Mb)

(a)

(b)

types over all others. In fact about 40% of mouse clicks recorded in the data are
on the obituary and birth pages on this local newspaper’s web site.1 In spite of this
significant skew, or indeed perhaps because of it, parallel PnP exhibits near to linear
speedup.

Figure 19 shows the running time and the relative speedup for generating iceberg
data cubes with different minimum support values from the 32 M row World Hydro-
logic data set. We observe that when the minimum support value is set to 500 (i.e.,
there is significant pruning) linear speedup is achieved on up to 16 processors and
then speedup drops off somewhat for 32 processors as it becomes more difficult to
maintain an ideal load balance. For minimum support levels of 100 and 200 we ob-
serve super linear speed up. In this case, as p grows, the parallel runtime benefits
from doing more and more computation in memory rather than using the disks.

1Apparently a number of local banks perform automated site scraping on the obituary pages looking for
deceased clients.
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Fig. 18 Parallel external
memory PnP on the News Web
Log data set. (a) Parallel wall
clock time in seconds as a
function of the number of
processors and
(b) corresponding speedup.
(Fixed parameters:
n = 32,631,392, d = 4,
|Di | = 833471,366,24,25,
m = 100, M = 100 Mb)

(a)

(b)

One of the most important differences between the “real” data sets used in this
section and the synthetic data sets used previously is that the real data sets contain
complex data skew. A clear advantage of the PnP approach is that it performs well un-
der this real world condition. In all of our experiments on real data sets PnP exhibited
near linear, or even super linear, speedup.

3.5 Parallel experiments on very large data sets

Finally, in this section we evaluate the performance of PnP using very large synthetic
data sets. Figure 20 shows the running time for generating full data cubes from large
data sets of up to 250 million rows and the running time as a function of the corre-
sponding output data (up to one Terabyte). We observe that the running time is almost
linear in terms of both input data size and output data size. Note that for data cubes of
almost 1 Terabyte in size (980 Megabytes) the running time is just under 115 minutes.
Overall, PnP running on a 32 processor cluster is able to build data cubes at a rate of
more than half a terabyte per hour.



124 Distrib Parallel Databases (2008) 23: 99–126

Fig. 19 Parallel external
memory PnP on the World
Hydrologic data set. (a) Parallel
wall clock time in seconds as a
function of the minimum
support and (b) corresponding
relative speedup. (Fixed
parameters: n = 17,845,529,
d = 8, |Di | = 360,360,180,90,

82,8,7,6, M = 100 Mb)

(a)

(b)

4 Conclusions

In this paper, we discussed the use of hybrid approaches for the computation of
iceberg-cube queries and presented a new hybrid method for iceberg-cube query com-
putation termed “Pipe ’n Prune” (PnP). The most important feature of our approach is
that it completely interleaves top-down data aggregation through piping with bottom-
up a priori data reduction.

We performed an extensive performance analysis of PnP for a variety of scenar-
ios. For sequential iceberg-cube queries, BUC and StarCube have ranges of data den-
sity and skew where BUC outperforms StarCube or vice versa. In both cases, PnP
is close to the best one which makes PnP an interesting new alternative method in
applications where performance stability over a wide range of input parameters is
important. For external memory iceberg-cube queries, we observed minimum loss of
efficiency when PnP runs out of main memory. More precisely, the measured external
memory running time for PnP is less than twice the running time for full in-memory
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Fig. 20 Parallel external
memory PnP on a very large
data set. (a) Parallel wall clock
time in minutes as a function of
input data size and (b) the
corresponding output data size.
(Fixed parameters: d = 8,
|Di | = 256 for 1 ≤ i ≤ d ,
p = 32, M = 300 Mb)

(a)

(b)

computation of the same iceberg-cube query. For parallel iceberg-cube queries on
shared-nothing PC clusters, PnP scales well and provides near linear speedup for
larger numbers of processors. In general, PnP performs very well for both, dense and
sparse data sets. PnP is very efficient on real data sets and particularly well suited for
those data sets that are hard to handle using sequential methods because of their large
size, high dimensionality or large cardinalities.
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