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Abstract. This paper addresses the query performance issue for Relational OLAP
(ROLAP) datacubes. We present a distributed multi-dimensional ROLAP indexing
scheme which is practical to implement, requires only a small communication vol-
ume, and is fully adapted to distributed disks. Our solution is efficient for spatial
searches in high dimensions and scalable in terms of data sizes, dimensions, and
number of processors. Our method is also incrementally maintainable. Using “sur-
rogate” group-bys, it allows for the efficient processing of arbitrary OLAP queries
on partial cubes, where not all of the group-bys have been materialized.

Our experiments show that the ROLAP advantage of better scalability, in com-
parison to MOLAP, can be maintained while providing, at the same time, a fast and
flexible index for OLAP queries.
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1. Introduction

Online Analytical Processing (OLAP) has become a fundamental com-
ponent of contemporary decision support systems. In 1995, Gray et al.
(Gray et al., 1996) introduced the datacube, a relational operator/model
used to compute summary views of data that can, in turn, significantly
enhance the response time of core OLAP operations such as roll-up,
drill down, and slice and dice. Typically constructed on top of relational
data warehouses, these summary views (called group-bys) are formed by
aggregating values across attribute combinations. For a d-dimensional
input set R, there are 2d possible group-bys. Figure 1 illustrates a
datacube as well as a lattice which is often used to represent the inherent
relationships between group-bys (Harinarayan et al., 1996).
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Figure 1. (a) A three dimensional datacube for automobile sales data. (b) The lattice
corresponding to a four dimensional data cube with dimensions A, B, C and D.

There are two standard datacube representations: MOLAP (multi-
dimensional array) and ROLAP (set of relational tables). The array-
based model, MOLAP (Multi-dimensional OLAP), has the advantage
that native arrays provide an immediate form of indexing for cube
queries. Interesting MOLAP based systems have been described and
implemented in both the sequential (?; ?) and parallel settings(Goil and
Choudhary, 1997; ?). However there is some evidence, that MOLAP
based systems may encounter significant scalability problems (Pendse
and Creeth, 2002). For example, high-dimension datacubes represent
extremely sparse spaces that are not easily adapted to the MOLAP
paradigm. Hybrid indexing schemes are often used, significantly di-
minishing the power of the model. Moreover, since MOLAP needs to
be integrated with standard relational databases, middleware of some
form must be employed to handle the conversion between relational
and array-based data representations.

The relational model, ROLAP (Relational OLAP), does not suffer
from such restrictions. Its summary records are stored directly in stan-
dard relational tables without any need for data conversion. Its table
based data representation does not pose scalability problems. Yet, many
current commercial systems use the MOLAP approach (Pendse and
Creeth, 2002). The main reason, as outlined in (Pendse and Creeth,
2002), is the indexing problem for the fast execution of OLAP queries.
The problem for ROLAP is that it does not provide an immediate and
fast index for OLAP queries. Many vendors have chosen to sacrifice
scalability for performance.
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This paper addresses the query performance issue for ROLAP and
proposes a novel, distributed multi-dimensional ROLAP indexing scheme.
We show that the ROLAP advantage of high scalability can be main-
tained, while at the same time providing a fast index for OLAP queries.
We propose a distributed indexing scheme which is a combination of
packed R-trees with distributed disk striping and Hilbert curve based
data ordering. Our method requires only very low communication vol-
ume between processors and works in “low bandwidth connectivity”
multi-processor environments such as Beowulf type processor clusters
or workstation farms. Our method does not require a shared disk and
scales well with respect to the number of processors used.

To further improve the scalability of ROLAP with respect to the
size and dimension of the data set (which was already better than
MOLAP’s scalability), we extend our indexing scheme to the partial
cube case. The large number of group-bys, 2d, is a significant problem
in practice for any datacube method. We consider the case where we
do not wish to build (materialize) all group-bys, but only a subset.
For example, a user might want to only materialize those group-bys
that are most frequently used, thereby saving disk space and time for
the cube construction. The problem then is to find a way to answer
effectively those less frequent OLAP queries which require group-bys
that have not been materialized. We present an indexing scheme, based
on “surrogate group-bys”, which answers such queries efficiently. In
fact, our experiments show that our distributed query engine is almost
as efficient on “virtual” group-bys as it is on ones that actually exist.

In summary, our method provides a framework for distributed high
performance indexing of ROLAP cubes with the following properties:

• practical to implement,

• low communication volume,

• fully adapted to external memory (i.e. disks),

• no shared disk required,

• incrementally maintainable,

• efficient for spatial searches in high dimensions,

• scalable in terms of data sizes, dimensions, and number of proces-
sors.

We have implemented our distributed multi-dimensional ROLAP
indexing scheme in C++, STL and MPI, and tested it on a 17 node
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Beowulf cluster (a frontend and 16 compute nodes). While easily ex-
tendible to shared everything multi-processors, our algorithms perform
well on these low-cost commodity-based systems. Our experiments show
that for RCUBE index construction and updating, close to optimal
speedup is achieved. An RCUBE index for a fully materialized data
cube of ≈640 million rows (17 Gigabytes) on a 16 processor cluster can
be generated in just under 1 minute. Our method for distributed query
resolution also exhibits good speedup achieving, for example, a speedup
of 13.28 on 16 processors. For distributed query resolution in partial
datacubes, our experiments show that searches against absent (i.e.
non-materialized) group-bys can typically be resolved at only a small
additional cost. Our results demonstrate that it is possible to build
a ROLAP datacube that is scalable and tightly integrated with the
standard relational database approach and, at the same time, provide
an efficient index for OLAP queries.

The remainder of this paper is organized as follows. In Section 2, we
review some of the key research results from the sequential and parallel
settings and describe our framework for distributed index generation,
including mechanisms for building and updating the indexes. Section 3
presents the distributed query engine that is used to access the indexed
group-bys. A performance analysis of our current prototype is presented
in Section 4. Section 5 concludes the paper.

2. Distributed Index Construction For ROLAP

Various methods have been proposed for building ROLAP datacubes
(Agarwal et al., 1996; Beyer and Ramakrishnan, 1999; Dehne et al.,
2001a; Dehne et al., 2001b; Chen et al., 2002; Gray et al., 1996; Hari-
narayan et al., 1996; Ross and Srivastava, 1997; Sarawagi et al., 1996)
but there are only very few results available for the indexing of such
cubes. For sequential query processing, Gupta et al. (Gupta et al., 1997)
propose an indexing model composed of a collection of b-trees. While
adequate for low-dimensional datacubes, b-trees are inappropriate for
higher dimensions in that (a) their performance deteriorates rapidly
with increased dimensionality and (b) multiple, redundant attribute
orderings are required to support arbitrary user queries. In (Roussopou-
los et al., 1997) Roussopoulos et al. propose the cubetree, an indexing
model based upon the concept of a packed R-tree (Roussopolis and
Leifker, 1985). For parallel query processing, a typical approach used
by current commercial systems like ORACLE 9i RAC (Oracle9i, 2002)
is to improve throughput by distributing a stream of incoming queries
over multiple processors and having each processor answer a subset
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of queries. However, such an approach provides no speedup for each
individual query. For OLAP queries, which can be time consuming,
the parallelization of each query is important for the scalability of
the entire OLAP system. With respect to the parallelization of R-tree
queries, a number of researchers have presented solutions for general
purpose environments. In (Koudas et al., 1996), Koudas, Faloutsos
and Kamel present a Master R-tree model that employs a centralized
index and a collection of distributed data files. Schnitzer and Leuteneg-
ger’s Master-Client R-tree (Schnitzer and Leutenegger, 1999) improves
upon the earlier model by partitioning the central index into a smaller
master index and a set of associated client indexes. While offering
significant performance advantages in generic indexing environments,
neither approach is well-suited for OLAP systems. In addition to the
sequential bottleneck on the main server node, both utilize partition-
ing schemes that can lead to the localization of searches. In addition,
neither approach provides a mechanism for incremental updates. In the
remainder of this section, we present the distributed RCUBE indexing
method, which has no sequential bottleneck, provides load balancing
across the p processors during the resolution of each query (i.e. good
parallelization), and allows for incremental updates.

2.1. Generating the Distributed RCUBE Index

The distributed RCUBE consists of a distributed datacube and a dis-
tributed RCUBE index which is used to answer multi-dimensional range
queries on individual group-bys. The challenge is in how data ordering
and partitioning can be used to help satisfy the following goals: 1) par-
tition the data such that the number of records retrieved per node is as
balanced as possible, thereby maximizing the simultaneous involvement
of all processors for each query resolution, and 2) minimize the number
of disk seeks required in order to retrieve the records returned by a
query.

In the distributed RCUBE, as with the Master-Client technique,
local partial R-tree indexes are constructed on each processor and used
to resolve a portion of the query. However, for our distributed RCUBE,
there is no global R-tree on the front-end. Instead, queries are passed
directly to each processor in the cluster, via a single short message,
and intermediate results remain distributed and available for further
processing. For OLAP query results that are to be further processed,
this also avoids the possible bottleneck of previous solutions, where the
results were always gathered on the front-end. Another difference to
previous methods is that the distributed RCUBE index results in the
generation of local packed R-tree forests rather than a single R-tree.
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A further important difference between our distributed RCUBE
index and the previous work in (Gupta et al., 1997; Roussopoulos
et al., 1997; Schnitzer and Leutenegger, 1999) is that our distributed
RCUBE index method applies a novel combination of Hilbert-curve sort
ordering and round robin disk striping for data partitioning. Previous
approaches used XYZ (sometimes also called lowX or nearest-X) data
ordering, which is simply the standard multi-dimensional sort ordering.
The disadvantage of that approach is that response time deteriorates
rapidly when non-primary indices are required, since relevant points
are dispersed broadly across the entire data set. Our approach applies
a combination of Hilbert-curve sort ordering and round robin disk
striping. Hilbert-curve orderings have been shown to be an effective
tool for ordering data such that items that are close to each other in
the original space are likely to be placed close to each other in the sorted
order (Kamel and Faloutsos, 1993; Faloutsos and Roseman, 1989). Ex-
perimental evidence indicates a significant performance advantage over
the XYZ ordering on sequential range queries (Kamel and Faloutsos,
1993). Figure 2 illustrates a typical case. While XYZ is likely to be
efficient for range queries with a large X component and a small Y
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component, queries with large Y components are likely to require an
excessive number of disk accesses. In higher dimensions, the problem is
exacerbated. Hilbert-based ordering, on the other hand, favors no single
dimension and is therefore very well suited to arbitrary range queries.
In the parallel environment, considered here for distributed RCUBE
index constrution, we have, however, the additional requirement that
we seek to balance the retrieval times for arbitrary range queries across
all p processors. Therefore, an effective data partitioning mechanism is
essential. Our approach is to stripe the Hilbert-curve ordered data in a
round robin fashion such that successive records are sent to successive
processors. We then build local packed R-trees from the striped data.
The motivation for this striping pattern is that it dramatically increases
the likelihood that the space bounded by the hyper-rectangle of an
arbitrary user query will be evenly distributed across the p processors.
Figure 3 illustrates this argument. The diagram shows the effect of
striping the original space across two processors. The user query (shown
as a dashed rectangle) results in the retrieval of eight points, with each
processor contributing four points from a pair of contiguous blocks. It
is also worth noting that this example would require four accesses with
a sequential R-tree implementation.

Algorithm 1 Outline of Distributed RCUBE Construction
Input: Raw data set R.
Output: A distributed data cube, C, distributed RCUBE index, I.
1: Using the parallel ROLAP data cube generation algorithms from

(Chen et al., 2002) or (Dehne et al., 2001a; Dehne et al., 2001b)
generate the distributed data cube, C.

2: Using parallel sample sort (Li et al., 1993), order each group-by v
of C in Hilbert order and stripe the result across the processors in
a round-robin fashion such that each of the p processors receives a
stripe of size �n

p �, where n is the number of records in v.
3: Each processor Pi, independently and in parallel, performs the

following for each local data stripe for a group-by v: For a disk
block size of m records, and a local record count k for the group-
by v, associate a bounding box with each of the � k

m� blocks in the
stripe. Using these blocks as the base (for the leaves), build the
packed R-tree in the usual bottom-up fashion. Write the disk blocks
representing the R-tree to disk in level ordering, starting with the
block representing the root.

Algorithm 1 presents an outline of our distributed RCUBE index
generation method. Much of the communication complexity of the algo-
rithm is associated with Step 2 which we will now discuss in more detail.
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In Step 1, the distributed data cube was generated using the parallel
ROLAP data cube generation algorithms from (Chen et al., 2002) or
(Dehne et al., 2001a; Dehne et al., 2001b). Note that, in (Dehne et al.,
2001a; Dehne et al., 2001b) every group-by generated is entirely stored
on one single processor, whereas in (Chen et al., 2002) every group-
by is distributed evenly across the p processors. This implies different
sort criteria for these two cases. The computation of the comparison
function for the global sort ordering is a non trivial combination of the
Hilbert curve comparison function (in our implementation, we use code
from (Moore, 2002)) and a comparison function representing round
robin disk striping. Furthermore, we do not wish to execute a separate
sort for each group-by, which could result in up to 2d sort operations.
Instead, we combine the comparison functions for all group-bys into
one single global sort operation. As a result, we can implement Step 2
with only two h-relation (MPI AllToAllv) operations.

2.2. Updating the Distributed RCUBE

An important advantage of our distributed RCUBE generation method
is that it is easy to perform efficient cube updates. In typical data
warehousing applications, updates consist of an accumulated additional
data set R′ that needs to be added to the original data set R. Such
updates typically occur on a daily or monthly schedule.

In order to add R′ to the data cube, our method constructs the data
cube C ′ for R′, sorts each group-by of C ′ in Hilbert-curve ordering
and stripes it across the disk in round-robin fashion. Each processor
performs, for each group-by v and received update v′ of C ′ relevant for
v, the following two operations: (1) it merges v′ into v and agglomerates,
and (2) it merges the two packed R-trees for v and v′.

3. Distributed ROLAP Query Engine

Previous R-tree parallelization results have focused exclusively on the
retrieval characteristics of R-trees (Gupta et al., 1997; Roussopoulos
et al., 1997). However, in an OLAP environment, accessing disk blocks
is only the first phase of query resolution. Typically, some form of
post-processing is then required to fully resolve the original query. An
important example of this is partial cube extrapolation. The construc-
tion of a partial cube implies that some number of group-bys do not
physically exist on disk. There needs to be an efficient mechanism for
performing searches in these non-materialized group-bys.

In this section, we describe the implementation of a distributed
datacube query engine. A general framework for post-processing is

paper.tex; 17/09/2004; 15:21; p.8



9

presented, along with a specific algorithm for handling partial cube
indexing.

3.1. Distributed RCUBE Query Resolution

As discussed, our distributed RCUBE index has been designed to bal-
ance the retrieval of query records across all p processors. Once the
records have been obtained, additional OLAP processing is often nec-
essary. The fundamental model, outlined in Algorithm 2, provides the
means by which both forms of computation may be carried out in an
efficient, load balanced manner.

Algorithm 2 Outline of Distributed RCUBE Query Resolution
Input: A set S of indexed group-bys, striped evenly across p processors

P1, . . . Pp, and a query Q.
Output: Query result deposited on front-end or distributed across the

p processors.
1: Pass query Q to each of the p processors.
2: Locate target group-by T .
3: Transform Q into Q′ according to the attribute ordering of the

records in T .
4: In parallel, each processor Pj retrieves the record set Rj matching

Q′ for its local data and then reorders the values of each record of
Rj to match the attribute ordering of Q.

5: Perform a parallel sample sort (Li et al., 1993) of R1 ∪ R2 ∪ . . . ∪
Rp with respect to the attribute ordering of Q.

6: IF the query result is to be deposited on the front-end THEN collect
the result via a MPI AllGather.

In Step 1, the query is distributed to all of the p processors, avoiding
unnecessary bottlenecks on the frontend. The query usually cannot be
executed in its native form, however, since the user’s request is not
likely to match the physical ordering of attributes that was determined
by the original datacube build algorithm. For example, the user may
request a three-dimensional group-by sorted and presented as A × B
× C, while Algorithm 1 may have generated that group-by as C × A
× B. In Steps 2 and 3, we identify the group-bys whose dimensions
represent a valid permutation of the dimensions of the user request
and then transform the original query to match the attribute order of
the index/group-by. This transformed query is passed to the packed
R-tree. Since the retrieved records are not guaranteed to have the right
attribute ordering or the right ordering of records, further processing
is necessary. In Step 4, the attributes of each record are permuted, if
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necessary, via a single linear scan of the query result. In Step 5, the
query result is sorted. If the query result is to be deposited on the front-
end, it is simply collected via a MPI AllGather operation. Otherwise,
the result remains distributed over the p processors for further parallel
processing.

A number of additional performance improvements are included in
our solution. Our packed R-tree implementation performs a prefetch on
all parent pages in the group-by index. Because the pages of level i in
the packed R-tree are written contiguously to disk prior to the pages
in level i−1 (Step 3 of Algorithm 1), the prefetch of all relevant parent
pages allows the query engine to minimize the seek time associated
with traversing the index.

We also employ a threshold factor α to determine whether or not a
full parallel sort is required. For very small result sets, a p processor sort
would introduce unnecessary communication overhead. If the number
of records in the result set is below α, then the partial result sets are
sent directly to a single processor for sorting. The threshold factor can
be tuned to the physical characteristics of the parallel machine.

3.2. Distributed Partial RCUBE Query Resolution

To further improve the scalability of ROLAP with respect to the size
and dimension of the data set, we now consider the case where we do not
wish to build all group-bys but only a subset. Since the computation
of all 2d group-bys can lead to unacceptable processing and storage
requirements, particularly in higher dimensions, a user might want
to only build those group-bys that are most frequently used, thereby
saving disk space and time for the cube construction. The problem for
OLAP query resolution is then to find a way to answer effectively those
less frequent OLAP queries which require group-bys that have not been
materialized.

It is important to observe that datacube construction costs are
skewed heavily towards the upper (high dimensional) portion of the
lattice. For example, in a ten dimensional datacube, much of the weight
is typically associated with group-bys of five to ten dimensions. In
the upper portion of the lattice, little aggregation takes place and the
group-bys are very similar to one another. For example, we measured
the sizes of group-bys of a data cube for a 10 dimensional data set
of 1 Million records. Most group-bys with 6 through 10 dimensions
contain almost 97% of all records in the original input set. Therefore,
it is not efficient to build all these very similar group-bys. Clearly, a
partial cube construction and indexing method is required. However,
the query engine must then be able to efficiently answer queries on
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Algorithm 3 Outline of Distributed Partial RCUBE Query Resolution
Input: A partial set S′ of indexed group-bys, striped evenly across p

processors P1, . . . Pp, and a query Q.
Output: Query result deposited on front-end or distributed across the

p processors.
1: Pass query Q to each of the p processors.
2: Locate a surrogate group-by T containing the attributes in Q and

possibly some additional, peripheral, attributes. Among all possible
such group-bys select as surrogate group-by T the one with smallest
size.

3: Transform Q into Q′ according to the attribute ordering of the
records in T and add “*” values for the peripheral attributes.

4: In parallel, each processor Pj retrieves the record set Rj matching
Q′ for its local data and then reorders the values of each record
of Rj to match the attribute ordering of Q. While performing the
re-ordering, processor Pj removes from each record the redundant
values for the peripheral attributes of T .

5: Perform a parallel sample sort (Li et al., 1993) of R1 ∪ R2 ∪ . . . ∪
Rp with respect to the attribute ordering of Q. While performing
the sort, aggregate duplicate records that have been introduced by
the peripheral attributes of the surrogate group-by T .

6: IF the query result is to be deposited on the front-end THEN collect
the result via a MPI AllGather.

group-bys that do not physically exist. In the following, we present
a new method, based on “surrogate group-bys”, which answers such
queries efficiently. An outline of our method is given in Algorithm 3.

There are a number of key difference between Algorithm 3 and the
previous Algorithm 2. First, a surrogate group-by T is used as the basis
of query resolution for Q. A surrogate is an alternate group-by that will
be used to answer the query on the group-by requested by the user,
termed the primary group-by. To select a surrogate, each processor
scans its local disk to find those group-bys whose dimensions represent
a superset of the dimensions specified by the user. From the group-bys
in this list, it selects the group-by of minimum size. Note that, since
this surrogate group-by contains even more detailed information than
the original group-by, we can answer all queries associated with the
original group-by. Furthermore, we note that because Hilbert-based R-
tree packing has been used, there is no performance problem due to
the different ordering of the records in the group-by, since the Hilbert
curve does not favor any particular order. In (Sismanis et al., 2002),
the authors observe that when XYZ ordering is used, the only alternate
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group-bys that can be efficiently used for this purpose are the ones in
which the attributes of Q represent a prefix of T . Since this situa-
tion is unlikely to occur in practice, XYZ ordering makes partial cube
query resolution very costly. However, as shown in the experiments in
Section 4, such problems do not occur with Hilbert ordering.

Once the surrogate group-by T has been determined, the query is
transformed by (i) re-arranging the attributes of the query to match
the order of the surrogate and (ii) adding “*” values for the periph-
eral attributes of the surrogate to the the original query. A peripheral
attribute is a dimension that is not part of the user query but that
must be passed to the packed R-tree query in order to resolve the
query on the surrogate. The result of the packed R-tree query is a
superset of the records that would have been retrieved had the primary
group-by actually existed. However, we note that, since partial cube
indexing is most attractive within environments in which data sparsity
creates large group-bys of almost identical size, the difference between
the sizes of the surrogate result and the actual result are likely to be
small in such cases. In addition, since the disk blocks for the packed
R-tree are arranged to support contiguous retrieval of disk blocks, the
time taken to answer the query will be less influenced by the use of a
surrogate because the additional blocks are likely to be accessed within
the same disk scans rather than with costly additional disk seeks. These
observations are consistent with our experimental results.

When the records have been retrieved, their values must be re-
ordered to match the order of attribute values in Q. Furthermore,
during this re-ordering, the redundant values for the peripheral at-
tributes of T are removed. Thereby, no additional disk accesses are
introduced for the removal of the redundant values.

During the final sort of the query result, it is easy to aggregate, at
the same time, the duplicate records that have been introduced by the
peripheral attributes of the surrogate group-by T . Again, no additional
disk accesses are introduced for the removal of the redundant records.

In summary, our partial cube query mechanism is build directly upon
the method for completely built datacubes, requiring only very little
additional computation. Our experiments, discussed in the following
section, show that our distributed query engine is almost as efficient on
“virtual” group-bys as it is on ones that actually exist.

4. Performance Analysis

We have implemented our distributed datacube indexing prototype
using C++, STL and the LAM MPI communication library, version
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6.5.6. The current prototype consists of approximately 8,000 lines of
code (not including libraries) and was created by a single programmer
over a seven month period.

Our experimental platform consisted of a 17 node Beowulf cluster (a
frontend and 16 compute nodes), with 1.8 GHz Intel Xeon processors,
1 GB RAM per node and two 40 GB 7200 RPM IDE disk drives per
node. Every node was running Linux Redhat 7.2 with gcc 2.95.3. All
nodes were interconnected via an Intel 100 Megabyte Ethernet switch.
Note that on this machine communication speed is quite slow in com-
parison to computation speed. We will shortly be replacing our 100
Megabyte interconnect with a 1 Gigabyte Ethernet interconnect and
expect that this will further improve performance results obtainable
on this machine.

In the following experiments all sequential times were measured as
wall clock times in seconds. All parallel times were measured as the wall
clock time between the start of the first process and the termination
of the last process. We will refer to the latter as parallel wall clock
time. All times include the time taken to read the input from files and
to write the output into files. Furthermore, all wall clock times were
measured with no other users except us on the Beowulf cluster.
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Figure 4. (a) RCUBE index construction, and (b) corresponding Speedup.

Figure 4a shows, for an input data set consisting of 10 dimensions
and 1,000,000 records, the parallel wall clock time observed for RCUBE
index construction as a function of the number of processors used. We
observe that for index construction our method achieves close to op-
timal speedup; generating, on 16 processor cluster, the RCUBE index
for a fully materialized data cube of ≈640 million rows (17 Gigabytes)
in just under 1 minute.

Figure 5 shows parallel wall clock time for distributed query reso-
lution as a function of the number of processors used, and the corre-
sponding speedup. In this experiment, batches of ten multi-dimensional
queries were resolved against random views in a 10 dimensional data
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Figure 5. (a) Distributed query resolution, and (b) corresponding Speedup.

cube consisting of 1,000,000 records, where the queries were constructed
to return approximately 15% of the corresponding group-bys. We ob-
serve that for distributed query resolution our method achieves good
speedup. For example, for 16 processors, a speedup of 13.28 is achieved.
The source of the difference between this speedup and perfect speedup
is interesting. Perhaps surprisingly, it does not arise from the queries re-
turning different numbers of data points on different processors. Hilbert
ordering combined with round-robin striping almost perfectly balances
the query results evenly over the parallel machine. The small work
imbalance observed actually results from the parallel sample sort used
to order the query results. This suggests that these speedup results
might be further improved by simply using a better sort code.
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Figure 6. (a) Disk blocks received vs. number of disk seeks required on 16 processors,
and (b) Relative record imbalance percentage.

Figure 6a shows the number of disk blocks retrieved and correspond-
ing number of disk seeks required in performing distributed query reso-
lution on views of differing sparsity. Each point represents the average
of 15 random queries, each of which returns between 5% and 15% of the
associated view, drawn from the 10 dimensional data cube described
above. The low density (i.e. sparse) views were typically views high
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in the lattice, while the high density views were typically views low
in the lattice. Again, we observe the benefit of using Hilbert ordering
combined with round-robin striping in our distributed RCUBE. Even
when a large number of blocks need to be retrieved, the number of
disk seeks across our parallel machine is very small. This is crucial
to achieving good performance, given that contiguous reads are an
order of magnitude faster than reads that require an associated disk
seek. Figure 6b shows the relative record imbalance, that is the maxi-
mum percentage variation between the size of query results on different
processors computed over the experiments illustrated in Figure 6a. We
observe that the Hilbert ordering combined with round-robin strip-
ing leads to a maximum imbalance of less than 0.3% with up to 16
processors.
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Figure 7. (a) Distributed query resolution in surrogate group-bys, and (b) Relative
percentage cost of using surrogate view instead of materialized primary view.

Figure 7a compares parallel wall clock times for distributed query
resolution in primary and surrogate group-bys as a function of the num-
ber of processors used. Figure 7b shows the corresponding relative cost
of a surrogate-based query resolution over the same search in the cor-
responding materialized primary group-by. We observe from Figure7a
that the overhead of using surrogates, that is performing query resolu-
tion against non-materialized views, is reasonable small, ranging from
3.5 seconds for a batch of 10 queries on a single processor to 0.12
seconds for the same queries on 16 processors. Figure7b illustrates an
interesting trend. As the number of processors grows the relative cost
of using surrogate group-bys decreases.

5. Conclusion

In this paper, we have shown that it is possible to build an efficient
parallel ROLAP index that is scalable and tightly integrated with the

paper.tex; 17/09/2004; 15:21; p.15



16

standard relational database approach. Our parallel RCUBE index has
the additional advantage of being able to process arbitrary queries on
partial datacubes.
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