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Abstract

Fixed-parameter tractability (FPT ) techniques have recently been successful in solv-
ing NP-complete problem instances of practical importance which were too large to be
solved with previous methods. In this paper we show how to enhance this approach
through the addition of parallelism, thereby allowing even larger problem instances to
be solved in practice. More precisely, we demonstrate the potential of parallelism when
applied to the bounded-tree search phase of FPT algorithms. We apply our methodol-
ogy to the k-Vertex Cover problem which has important applications in, for example,
the analysis of multiple sequence alignments for computational biochemistry. We have
implemented our parallel FPT method for the k-Vertex Cover problem using C and
the MPI communication library, and tested it on a 32 node Beowulf cluster. This is
the first experimental examination of parallel FPT techniques. As part of our experi-
ments, we solved larger instances of k-Vertex Cover than in any previously reported
implementations. For example, our code can solve problem instances with k ≥ 400 in
less than 1.5 hours.

1 Introduction

NP -complete problems abound in many important application areas ranging from com-
putational biology to network planning. For scientists and engineers with computational
problems, merely learning that their problems are NP -complete does not satisfy their need
to solve these problems for the “real world” problem instances at hand. Fixed-parameter
tractability (FPT ) is a new technique for confronting the obstacle of NP-Completeness
[11, 12, 13, 14, 15, 16]. FPT algorithms have been successful in solving NP-complete
problem instances of practical importance which were too large to be solved with previous
methods [11]. Most FPT algorithms consist of two phases: kernelization where the problem
is reduced to a much smaller instance and bounded-tree search where the problem is solved
on the smaller instance through the traversal of a search tree. The Computational Biochem-
istry Research Group at the ETH Zuerich has successfully incorporated the FPT approach
for Vertex Cover problems arising in multiple sequence alignments for computational
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biochemistry research [19, 24, 27]. In this paper, we further increase the size of problems
that can be solved via FPT methods by showing how the FPT approach can be effectively
parallelized. We have implemented a parallel FPT method for the k-Vertex Cover prob-
lem using C and the MPI communication library, and tested it on a 32 node Beowulf cluster
[2]. This is the first experimental examination of parallel FPT techniques. When tested on
sequence data obtained from the National Center for Biotechnology Information (NCBI),
our parallel FPT method showed good relative speedup. To explore general graph classes
and known hard problem instances, we also tested our parallel FPT method on random
graphs and grid graphs, respectively, where we observed good relative speedup as well.
For scientists and engineers who have NP -complete problems to solve, the real test for

any new method is how large a “real world” problem it can solve. In [11], the authors
consider the k-Vertex Cover problem solvable for k ≤ 200. Our parallel code is able to
solve much larger “real world” instances of the k-Vertex Cover problem. For example,
we extracted 730 sequences of the src-homology domain 2 (SH2) from the NCBI database
and computed the input graph for the k-Vertex Cover problem using ClustalW [28],
which has a minimum vertex cover of k = 461. Our parallel FPT method, executed on 27
processors of our Beowulf cluster, found this minimum vertex cover in 72:45 minutes. Note
that, the time of the sequential FPT algorithm for the k-Vertex Cover problem grows
exponentially in k. Therefore, the increase of the solvable problem size from k ≤ 200 to
k ≥ 400 is significant.
This paper presents a general methodology for parallelizing the bounded-tree search

phase of FPT algorithms. For ease of presentation, we introduce our tree search paralleliza-
tion method by describing immediately its application to the k-Vertex Cover problem.
The generalization to parallel tree search for other FPT algorithms is straight-forward.
Our parallel FPT method is designed for the CGM (Coarse Grained Multicomputer [8, 9])
and BSP (Bulk-Synchronous Parallel [29]) machine models. A CGM simply consists of p
processors, P0, P1, . . ., Pp−1, connected via any communication network or shared memory.
Each processor has O(N/p) local memory where N refers to the total problem size. Consult
[8, 9, 29] for more details.
Compared to previous results on parallel FPT algorithms [3, 7], which apply to the

theoretical PRAM model only, our methods are portable and can be run efficiently on
most commercially available parallel machines, including shared memory machines, CC-
NUMA, Beowulf clusters and networks of workstations. Furthermore, the methods in [3, 7]
parallelize only the kernelization phase and leave the tree search unchanged. However,
typical FPT implementations often spend minutes on the kernelization and hours or days
on the tree search. Hence, it is important to parallelize both phases. The main contribution
of this paper is to provide an efficient implementation of parallel bounded-tree search.
The remainder of this paper is organized as follows. Section 2 reviews the definition

of fixed parameter tractability and previous results on the k-Vertex Cover problem. In
Section 3, we present our main result, a coarse grained parallel FPT algorithm for the
k-Vertex Cover problem. Section 4 presents the experimental performance analysis of
our method and Section 5 concludes the paper.

2 Review: Fixed-Parameter Tractability and the k-Vertex
Cover Problem

Fixed-parameter tractability (FPT ) has been proposed in [11, 12, 13, 14, 15, 16] as a
means of confronting the obstacle of NP-Completeness. Let Σ be a finite alphabet and
let L be a parameterized problem such that L ⊆ Σ∗ × Σ∗. Problem L is fixed-parameter
tractable, or FPT , if there exists an algorithm that decides, given an input (x, y) ∈ Σ∗×Σ∗,
whether (x, y) ∈ L, in time f(k) + nα, where |x| = n, |y| = k is a parameter, α is a
constant independent of n and k, and f is an arbitrary function. The goal is to isolate,

2



in the parameter k, the component of the input that causes the exponential time. The
two fundamental algorithmic techniques for solving FPT problems are kernelization and
bounded-tree search [12]. As a two phase approach, kernelization and bounded-tree search
form the basis of many FPT algorithms. The first phase, kernelization, reduces the problem,
in polynomial time, to another problem instance bounded in size by a function of k. It
was shown in [11] that a problem is in FPT if and only if it is kernelizable. The second
phase, bounded-tree search, then attempts to solve the latter problem by exhaustive search,
typically requiring time exponential in k.
Although nearly half the NP-Complete problems in [18] have been shown to be FPT

[11], not all problems admit a parametric solution. For example, the best algorithm to solve
the Dominating Set problem is exponential in n and k. For parameterized complexity,
the analog of NP -hardness is hardness for W [1]; see [14]. Dominating Set is hard for
W [1] and is therefore unlikely to be fixed-parameter tractable.
The k-Vertex Cover problem has important applications in multiple sequence align-

ments for computational biochemistry [27]. The Vertex Cover problem is defined as
follows [18]: given a graph, G = (V,E), determine a set, VC ⊆ V , containing a minimum
number of vertices such that for all (x, y) ∈ E, either x ∈ VC or y ∈ VC . The k-Vertex
Cover problem consists of finding a Vertex Cover of size k. In multiple alignments
between gene sequences, whenever there are conflicts between sequences, a way to resolve
these conflicts is to exclude some sequences from the sample. Define a conflict graph as a
graph where every sequence is a vertex and every edge is a conflict between two sequences.
A conflict may be defined when the alignment of these two sequences has a score below a
given threshold. The goal is to remove the fewest possible sequences that will eliminate all
conflicts, which is equivalent to finding a minimum Vertex Cover for the conflict graph.
Consult Section 4.2 for more details.
The Vertex Cover problem is known to be NP-Complete, but in the context of

parameterized complexity the problem is fixed-parameter tractable [11, 12, 13, 14, 15].
Consider the following k-Vertex Cover kernelization algorithm by Buss [4]: given a
graph G = (V,E) and a parameter k, find the set S consisting of all vertices v such that
deg(v) > k. Let |S| = b. If b > k then we conclude there can be no k-sized vertex cover
in G. Otherwise, include S in the vertex cover, remove all the elements of S from V (and
all their incident edges from E). Let k′ = k − b. If the resulting graph, G′, has more than
k · k′ edges, then we can conclude that no k-sized cover is possible. Otherwise, the graph
G′, which is called kernelized, has a vertex set V ′ bounded in size by O(k2).
The next phase, bounded-tree search [12], is based on an exhaustive combinatorial

search. The search tree is a rooted tree and bounded in size by a function f(k). The
nodes of the search tree are labeled by k-solution candidate sets. Consider the following
k-Vertex Cover algorithm by Fellows [16, 17]: observe that, given a graph G = (V,E),
for each v ∈ V and each vertex cover VC of G, either v ∈ VC or N(v) ⊆ VC 1. Thus,
given an instance 〈G, k〉 for the k-Vertex Cover problem, the original input graph G has
a k-vertex cover if 〈G−v, k−1〉 or 〈G−N(v), k−|N(v)|〉 has a solution. Since the parameter
k reduces in each such step by at least one, we can decide in time O(2k|V |) whether G has
a vertex cover of size k.
The first Vertex Cover algorithm is due to Buss and has an O(kn + 2kk2k+2) time

complexity [4]. Improvements have been presented in [1, 14, 21, 23, 26, 27]. Recent results
in [6, 11] present solutions with times complexity O(kn+rkk2) for r ≈ 1.3. These algorithms
exhibit tradeoffs between small differences in r and leading constants.

1N(v) = the set of vertices that constitute the neighborhood of vertex v. N [v] = N(v)
⋃{v}.
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Figure 1: Search Path For Processor Pi in Algorithm 2, Using Theorem 1 And Theorem 2
of [1].

3 Coarse Grained Parallel Kernelization and Bounded-Tree
Search for the k-Vertex Cover Problem

Most sequential FPT algorithms consist of two phases, kernelization and bounded-tree
search [12]. The main result of this paper is an efficient parallelization of both of these
phases. In this section, we describe our general methodology using the example of the well-
known k-Vertex Cover problem. For a list of other FPT problems that can be solved
via kernelization and bounded-tree search see [12].
We present a coarse grained parallel k-Vertex Cover algorithm which parallelizes

aspects of the two sequential FPT algorithms described in [1]. The first algorithm in
[1] combines Buss’ kernelization technique with a 3-level, depth-first search strategy that
produces a 3-ary search tree (referred to as Theorem 1 in [1]). The second algorithm in
[1] combines Buss’ kernelization technique with case-based reduction rule application to
determine a k-Vertex Cover (referred to as Theorem 2 in [1]).
We now present a brief overview of our parallel k-Vertex Cover algorithm, with

details to follow in Sections 3.1 and 3.2.
All processors, Pi, 0 ≤ i ≤ p− 1, together perform parallel kernelization on the problem

instance 〈G = (V,E), k〉, and the resulting instance 〈G′, k′〉 is then broadcast to all pro-
cessors. Let VC kern be the set of vertices determined by the kernelization phase to be in
the vertex cover set, VC . Each processor, Pi, 0 ≤ i ≤ p − 1, locally and deterministically
executes the search tree phase of the Theorem 1 algorithm on its instance of 〈G′, k′〉 as
follows: Pi selects exactly the branching nodes that lead it to leaf i at depth log3 p of the
search tree. This approach is similar to search-frontier splitting, as each processor now has
a unique problem instance, 〈G′′

i , k
′′
i 〉. Each processor, Pi, 0 ≤ i ≤ p − 1, then locally per-

forms a fully-random depth-first search of the subtree rooted at leaf i, starting with instance
〈G′′

i , k
′′
i 〉. See Figure 1. When a processor finds a solution, it outputs the set VC kern

⋃
VC i

and signals all other processors to terminate.
In the following two sections we describe in detail our parallelization of the kernelization

and the tree search, respectively.
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3.1 Parallel Kernelization

The parallelization of the kernelization phase is straight-forward. For a graph G = (V,E)
and parameter k, Buss’ kernelization algorithm consists of the following steps: find the set
S consisting of all vertices v such that deg(v) > k. Let |S| = b. If b > k then we conclude
that there can be no k-sized vertex cover in G. Otherwise, include S in the vertex cover,
remove all the elements of S from V .2 Let k′ = k − b. If the resulting graph, G′, has more
than k · k′ edges, then we can conclude that no k-sized cover is possible. Otherwise, 〈G′, k′〉
is a kernelized instance of 〈G, k〉.
In the parallel setting, this operation reduces to O(1) parallel integer sorts where edges

are sorted by vertex id in order to identify the vertices with deg(v) > k. This sort can be
implemented via deterministic sample sort [5]. Note that other kernelization rules can be
applied as described in [11] and [1]. These rules are also easily reduced to O(1) parallel
integer sorts.

Algorithm 1 Parallel Kernelization
Input: 〈G = (V,E), k〉. Output: 〈G′, k′〉 or “No”.
(1.1) Simulate Buss’ kernelization algorithm on G = (V,E) via O(1) parallel integer sorts,

using deterministic integer sample sort [5].
(1.2) Output either a kernelized graph 〈G′ = (V ′, E′), k′〉, or VC (≤ k), or “No”.
— End of Algorithm —

Lemma 1 Algorithm 1 performs kernelization in time O(kn
p ) using O(1) h-relations for

communication between processors.

3.2 Parallel Bounded-Tree Search

We first recall a few facts about sequential bounded-tree search. Let 〈G′′ = (V ′′, E′′), k′′〉
be a problem instance associated with a search tree node x currently under consideration in
the bounded-tree search and let VC be the current set of vertices known to be in the vertex
cover. The algorithm described by Theorem 1 of [1] consists of repeating the following steps
until either the correct VC is found, or it is determined that G does not have a k-cover.
Step 1: Randomly select a vertex, v ∈ V ′′. Step 2: Starting from v, perform a depth-first
search traversing at most three edges. Step 3: Based on the possible paths derived from
the search in Step 2, either expand node x into three children (Cases 1 and 2) or process
immediately (Cases 3 and 4):
Case 1. The path obtained in Step 2 is a simple path of length 3 consisting of a sequence
of vertices v, v1, v2, v3. Associate three children (i.e., subproblems) with node x as follows:
(a) 〈G′′′ = (V ′′ − {v, v2}, E′′′), k′′′ = k′′ − 2〉; VC = VC

⋃ {v, v2}
(b) 〈G′′′ = (V ′′ − {v1, v2}, E′′′), k′′′ = k′′ − 2〉; VC = VC

⋃ {v1, v2}
(c) 〈G′′′ = (V ′′ − {v1, v3}, E′′′), k′′′ = k′′ − 2〉; VC = VC

⋃ {v1, v3}
Case 2. The path obtained in Step 2 is a 3-cycle consisting of the following sequence of
vertices v, v1, v2, v. Associate three children with node x as follows:
(a) 〈G′′′ = ( V ′′ − {v, v1}, E′′′), k′′′ = k′′ − 2〉; VC = VC

⋃ {v, v1}
(b) 〈G′′′ = ( V ′′ − {v1, v2}, E′′′), k′′′ = k′′ − 2〉; VC = VC

⋃ {v1, v2}
(c) 〈G′′′ = ( V ′′ − {v, v2}, E′′′), k′′′ = k′′ − 2〉; VC = VC

⋃ {v, v2}
Case 3. The path obtained in Step 2 is a simple path of length 2 (i.e., pendant edge)
consisting of a sequence of vertices v, v1, v2. This can be processed immediately as follows:
〈G′′′ = ( V ′′ − {v1, v2}, E′′′), k′′′ = k′′ − 1〉; VC = VC

⋃ {v1}.
Case 4. The path obtained in Step 2 is a simple path of length 1 (i.e., pendant edge)

2For the remainder, we assume that whenever a vertex v is removed from a graph, all edges adjacent to
v are removed as well.
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consisting of a sequence of vertices v, v1. This can be processed immediately as follows:
〈G′′′ = ( V ′′ − {v, v1}, E′′′), k′′′ = k′′ − 1〉; VC = VC

⋃ {v}.
The running time of the algorithm is O((

√
3)

k
k2 + kn).

The algorithm described by Theorem 2 in [1] consists of scanning the adjacency list
associated with a graph instance at a given search tree node for specific branching cases.
See [1] for details regarding these reduction rules. Note that, this algorithm no longer
guarantees a 3-ary search tree. The number of children created can be 2, 3, or 4, while the
parameter (k) can decrease by as much as 8, depending on the rule that is applied. The
running time of the algorithm is O((1.324718)kk2 + kn).
Our basic approach for parallelizing the tree search is quite simple. We initially create

the first O(log p) levels of the search tree in breadth-first fashion until we have obtained
a search tree with p leaves. This is done using the algorithm described by Theorem 1 ,
in a deterministic fashion. We then assign each of the p leaves to one processor and let
each processor continue searching the tree from its respective leaf. In this step, we use the
algorithm described by Theorem 2 . We assure that this part of the tree search is well-
randomized: that is, when a processor proceeds downwards in the search tree, it selects a
random node among the still unexplored children. See Figure 1 for an illustration. The
following describes our tree search parallelization in more detail.

Algorithm 2 Parallel Tree Search
Input: 〈G′, k′〉. Output: VC (≤ k), or “No”.
(2.1) Consider the search tree T obtained by starting with graph G′ and iteratively ex-

panding the combinatorial search tree in breadth-first fashion, using the Theorem 1
algorithm, until there are exactly p leaves γ1 . . . γp. Every processor, Pi, 0 ≤ i ≤ p− 1,
computes the unique path in T from the root to leaf γi. Let (G′′

i , k
′′
i ), 0 ≤ i ≤ p − 1,

be the subgraphs and updated parameters associated with γi.
(2.2) Processor Pi, 0 ≤ i ≤ p − 1, starts with (G′′

i , k′′
i ) and expands/searches the subtree

below γi in a randomized, depth-first fashion, using reduction rules of the Theorem 2
algorithm, as follows:

Processor Pi randomly selects and expands one of the children, repeating this
recursively until either a solution is found or the parameter is exhausted (i.e., there
is no solution). Pi then backtracks in its subtree and randomly chooses another
unexplored child. This process is repeated until a solution is found (in which
case it notifies all other processors to halt) or the processor’s subtree has been
completely searched.

— End of Algorithm —

While the above algorithm is fairly simple, it is non-trivial to analyze its performance.
Consider the path Λ in which a sequential algorithm traverses the search tree. The sequential
processing time is determined by the number lseq of nodes in Λ which need to be traversed
until a first solution is found. The parallel algorithm essentially sets p equally spaced
starting points on Λ and starts p search processes, one at each starting point. Let Λi be
the portion of Λ assigned to processor Pi, and let li be the number of nodes in Λ which
processor Pi needs to traverse until it finds a first solution. The parallel time is determined
by lpar = min0≤i≤p−1 li, the minimum number of nodes that a process has to traverse until
it reaches a solution node. The possible relative speedup observed corresponds to the ratio
between lseq and lpar. What relative speedup is obtained through this parallel exploration
of subtrees? After all, only one solution needs to be found. Clearly, it is possible that the
parallel algorithm examines many nodes that the sequential algorithm would never reach.
In general, what kind of relative speedup can we expect?
A “balls-in-bins” model can be used to predict the relative speedup that could be ex-

pected for our parallel tree search algorithm. Consider p processors and a path Λ of length
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L in which a sequential algorithm traverses the search tree, and assume that there are m
solutions in the search tree which are randomly distributed (with uniform distribution) over
the search path Λ. Consider an array of p rows and n = L/p columns. The ith row corre-
sponds to Λi and the entire array corresponds to Λ. We mark m random array elements as
solutions and measure lseq and lpar = min0≤i≤p−1 li.
The expected number of nodes in Λ that need to be traversed by the sequential algorithm

is given by E(lseq) = L
m+1 . The expected number of nodes lpar = min1≤i≤p li that need to

be traversed by the parallel algorithm is bounded by E(lpar) ≤ L/p
m+1 + p [10]. Therefore, we

obtain an expected relative speedup

E(sp) ≥ 1
1
p +

m+1
L/p

The above is only a lower bound on the expected relative speedup E(sp). We have
simulated the “balls-in-bins” experiment in order to obtain a better understanding of the
exact value of E(sp). The simulation results are shown in Figure 2. The experiments were
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Figure 2: Simulated Relative Speedup Estimation Through “Balls in Bins” Experiment.

performed for L = 1000000, m = 1, 10, 100, 1000, 10000, 100000 and p = 3, 9, 27, 81, 243
processors. The x-axis represents the number p of processors and the y-axis represents the
relative speedup sp = lseq/lpar. Each data point shown corresponds to the average of 150
experiments. The diagonal line, sp = p represents linear relative speedup. The most striking
result of the experiments is how close all data points are to the diagonal line for m = 1, 10,
100, 1000. These are the most interesting cases in practice because the number of actual
k-Vertex Cover solutions is typically small compared to the very large, exponential size,
search space. Even for m = 10000, that is where 1% of the entire search space correspond
to solutions, we observe a relative speedup of about p/2. Only for m = 100000, that is
where 10% of the entire search space correspond to solutions, we observe very low relative
speedup. Note that in this case, any sequential method would find a solution in such a
short time that a parallelization is not even interesting. We ran the experiment for many
other combinations of L, m, and p, and the results were always very similar.
The close to linear relative speedup for low densitym/L observed in Figure 2 is consistent

with the bound on E(sp) derived above. For m � L/p the second part of the denominator
becomes negligible and we get an expected relative speedup E(sp) of approximately p. It
is important to note that the above lower bound on E(sp) is only a coarse lower bound.
The actual relative speedup can be considerably better. Furthermore, as the discussion in
[25] suggests, the uniform distribution of the m solutions over the array examined above
does not constitute a good scenario. On the contrary, when solutions are non-uniformly
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distributed, the processor whose search path starts close to a cluster has a high probability
of finding a solution much faster than in the uniform case. Therefore it can be expected that
the relative speedup observed is often better in the non-uniform case than in the uniform
case.

4 Experimental Results

In this section we discuss the experimental examination of our parallel FPT technique. We
first discuss our setup and methodology as well as the data sets used for the evaluation. We
then present the performance results obtained.

4.1 Experimental Setup and Methodology

We first implemented in C the sequential FPT algorithm described in [1] (Theorem 2).
We will refer to this sequential C code as Code-s. While recent theoretical improvements
of the core result in [1], namely [6, 21], exhibit tradeoffs between small differences in the
asymtotic running time and leading constants, we believe that execution times measured
on a well crafted implementation of [1] are a good representation of the current sequential
state-of-the-art.
We then implemented our parallel FPT method described in Section 3, using C and

the MPI communication library, by adding the relevant C and MPI code to Code-s. We
will refer to this parallel C/MPI code as Code-p. Note that, Code-s is the same as a one
processor version of Code-p with all MPI calls disabled and all code removed that is not
required for the one processor case.
Our experimental platform consisted of a 32 node Beowulf cluster with 1.8 GHz Intel

Xeon processors, 512 MB RAM per node and 60 GB of disk storage per node. All nodes
were interconnected via a Cisco gigabit ethernet switch. Every node was running Linux
Redhat 7.2 with gcc 2.95.3 and MPI/LAM 6.5.6.
All sequential times were measured as wall clock times in seconds. All parallel times were

measured as the wall clock time between the start of the first process and the termination of
the last process. We will refer to the latter as parallel wall clock time. All times include the
time taken to read the input graph from a file and write the solution into a file. Furthermore,
all wall clock times were measured with no other user except us on the Beowulf cluster.
Our experiments proceeded in the following steps:

1. Sequential Experiments (Section 4.3)

(a) Sequential Code-s: We executed Code-s on a single processor of our parallel
machine and measured the sequential wall clock time.

(b) Sequential Code-p: We executed Code-p on a single processor of our paral-
lel machine, using multiple virtual processors (i.e. MPI/LAM processes), and
measured the sequential wall clock time.

2. Parallel Experiments (Section 4.4)

(a) Code-p Parallel Wall Clock Times: We executed Code-p on 27 processors of
our parallel machine and measured the parallel wall clock time.

(b) Code-p Relative Speedup: We executed Code-p on 1, 3, 9, and 27 processors of
our parallel machine and measured the relative speedup with respect to parallel
wall clock time, where the “baseline” (i.e. time for one processor) was set to the
minimum of the sequential times measured in Steps 1a and 1b.
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4.2 Data Sets

For our experiments we primarily relied on test data from the National Center for Biotech-
nology Information (http://www.ncbi.nlm.nih.gov/). We obtained and processed various
sets of amino acid sequences. For biologists, sequence alignments are a very useful computa-
tional tool because alignments can be used to infer evolutionary relationships among genes
and proteins. Proteins that are closely related have more similar amino acid sequences for
an orthologous protein than more distantly related proteins. This information can be used
to construct phylogenetic trees which represent relatedness of proteins.
A typical experiment involves a large set of amino acid sequences for an orthologous

protein from distantly related organisms which are suspected to have a common ancestor.
The task is to remove a minimum number of sequences (organisms) from the set that
contradict the common ancestor hypothesis. Alignments can also be used to determine
the order in which variations in sequences occurred, to infer when gene duplication events
occurred, and to identify amino acid residues necessary for protein functions.
To test our algorithm, sets of amino acid sequences were collected from the National

Center for Biotechnology Information database. Several protein modules that comprise
large families of sequences (organisms) were chosen for alignments. The data sets selected
are listed in Table 1: Somatostatin is a neuropeptide involved in the regulation of many
functions in different organ systems. WW is a small protein domain that binds proline rich
sequences in other proteins and is involved in cellular signaling. Protein kinases comprise a
large and important family of enzymes involved in cellular regulation. SH2 (src-homology
2) domain protein modules are involved in targeting proteins to specific sites in cells by
binding to phosphor-tyrosine. Thrombin is a protease involved in the blood coagulation
cascade and promotes blood clotting by converting fibrinogen to fibrin. PHD (pleckstrin
homology domain) is a protein domain about 100 amino acid residues in length that is
involved in cellular signaling.
The sequences in each data set were aligned using ClustalW [28], a hierachical multiple

alignment program that generates pairwise alignments for all of the input sequences and
then ranks the scores of the pairwise alignments. The conflict graph, i.e. the input for
the minimum vertex cover problem, was created by selecting all sequences in the data set
as vertices and selecting all edges between sequences whose alignment had a score below a
given threshold. The thresholds values used are shown in Table 1, together with the sizes
of the resulting conflict graphs and the values of k and k′.

Data Set Threshold |V | |E| k = |V C| k′

Somatostatin 10 559 33652 273 255
WW 10 425 40182 322 318
Kinase 16 647 113122 497 397

SH2 (src-homology domain 2) 10 730 95463 461 397
Thrombin 15 646 62731 413 413

PHD (pleckstrin homology domain) 10 670 147054 603 603

Table 1: Sequences Used And Resulting Graph Sizes

To also explore general graph classes and known hard problem instances, we also tested
our parallel FPT method on random graphs and grid graphs (see Table 2). We show results
for one random graph and one grid graph which are typical for the results obtained in our
experiments for these classes of graphs.
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|V | |E| k = |V C| k′

Random 220 2155 122 122
Grid 289 544 145 145

Table 2: Random and Grid Graphs Used

4.3 Performance Results: Sequential Experiments

We executed Code-s on a single processor of our parallel machine and measured the se-
quential wall clock time (see Figure 3, first set of vertical bars). Each data point in Figure 3
represents the average of five experiments. We selected data sets Somatostatin, WW, PHD,
Random and Grid (Tables 1 and 2) because they would complete on a single processor in
a reasonable amount of time. We observe that the wall clock times for Code-s shown in
Figure 3 do not strictly increase with either k or k′. The structure of the graphs is clearly
an important factor for the performance of Code-s.
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Figure 3: Average Sequential Wall Clock Times

While developing Code-p, we used simulation mode on a single processor for devel-
opment/debugging purposes. In this mode, MPI/LAM simulates p virtual processors as
independent processes on the same physical processor. We observed that Code-p simulated
on a single processor would, for small numbers of virtual processors, often run faster than
Code-s. It appeared that the simulated parallel code, exploring the search tree from multi-
ple starting points, would often find a solution quicker than the sequential code. Note that,
in simulation mode, the sequential wall clock time for Code-p is the sum of the wall clock
times of the individual processes plus the overhead created e.g. by the context switches
and MPI/LAM. As illustrated in Figure 4, there is typically a net benefit only for a small
number of virtual processors. Each data point in Figure 4 represents the average of five
experiments. For most of our data sets, the minimum average wall clock time is achieved by
using three virtual processors. We conclude that, exploring the search tree from multiple
starting points as proposed in our parallel FPT method can also lead to improvements of
sequential FPT methods. Figure 3 compares the average wall clock time for Code-s on
one processor with the minimum average wall clock time for Code-p on one processor in
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simulation mode. In each case, except for Grid, we observe that Code-p simulated on one
processor runs faster than Code-s on one processor for the same data set. In some cases,
the difference is substantial. For the relative speedup measurements in the following Sec-
tion 4.4, the “baseline” (i.e. time for one processor) was therefore set to the minimum of
the wall clock times measured for Code-s and one processor simulations of Code-p.
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Figure 4: Code-p on One Processor. Average Sequential Wall Clock Time as a Function of
the Number of Simulated Virtual Processors

4.4 Performance Results: Parallel Experiments

We executed Code-p on 27 processors of our parallel machine and measured the average
parallel wall clock time. Figure 5 shows the results for the Somatostatin, WW, Kinase, SH2,
Thrombin and PHD data sets. Each data point represents the average of ten experiments.
We observe that our parallel FPT method is able to solve “real world” problem instances
of size k ≥ 400 in less than 1.5 hours, whereas previously, for sequential FPT methods,
only k-Vertex Cover problems for k ≤ 200 were considered solvable [11]. Similar to the
sequential wall clock times shown in Figure 3, we observe that the parallel wall clock times
shown in Figure 5 do not strictly increase with either k or k′. For the “real world” data
sets shown, the structure of the graphs is clearly an important factor for the performance
of Code-p. Most interestingly, the PHD data set with k = k′ = 603 can be solved in under
ten minutes, on average.
We executed Code-p on 1, 3, 9, and 27 processors of our parallel machine and measured

the average relative speedup with respect to parallel wall clock time. As discussed at the
end of Section 4.3, the “baseline” (i.e. time for one processor) was set to the minimum of
the wall clock times measured for Code-s and one processor simulations of Code-p. Figure 6
shows the results for the Somatostatin and WW data sets and Figure 7 shows the results
for the random and grid graphs. Each data point represents the average of 20 experiments.
For both cases in Figure 6, we observe that the average relative speedup does not grow
monotonically. For 27 processors, the average relative speedup is larger than 20. For a
smaller number of processors we observed some “noise” in the average relative speedup
caused by considerable variations in individual running times. Some “lucky draw” events
can occur where the search happens to find a solution near instantaneously.
For Figure 6, we observe that the average relative speedup grows monotonically in both

cases. For the random graph data set in Figure 6(a), the slope of the average relative
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speedup curve is considerably lower. We observed the same effect for other random graphs.
For the grid graph data set in Figure 6(b), we note that there exist exactly two solutions.
As discussed in Section 3.2 and illustrated in Figure 2, the number of solutions in the search
tree is also very important for the relative speedup. We conjecture that this is the reason
why, in Figure 6(b), the the slope of the average relative speedup curve is very close to
linear.

5 Conclusion

In this paper, we have studied the potential of parallelism when applied to the bounded-
tree search phase of FPT algorithms. We have implemented and tested a new parallel FPT
method for the k-Vertex Cover problem and provided the first experimental examination
of parallel FPT techniques.
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Figure 6: Average Relative Speedup for (a) Somatostatin and (b) WW
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Figure 7: Average Relative Speedup for (a) a Random Graph and (b) a Grid Graph

By solving “real world” problem instances with k ≥ 400 in typically less than 1.5 hours,
our code can handle larger instances of k-Vertex Cover than any previously reported
sequential implementation.
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