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1. INTRODUCTION

Geometric pattern recognition is an important area of research with applications
in computer image processing, manufacturing, robotics, VLSI design, military
intelligence, etc. A typical problem in parallel computational geometry calls for an
efficient solution to a query involving n geometric objects (e.g., points, lines,
polygons) on a parallel computer with p processors. Much previous theoretical
work in parallel computational geometry has assumed fine grained parallelism, i.e.,
n�p=3(1) for machine models including the PRAM, mesh, hypercube, and
pyramid computer [A6L93, M6S96]. However, since most commercial parallel
computers are coarse grained, it is desirable that parallel algorithms be scalable, i.e.,
implementable and efficient over a wide range of ratios of n�p. There has been much
recent interest in coarse-grained computational models [Vali90, CKPSSSSE,
H6K93] and the design of coarse grained geometric algorithms [BMR98, DFR93,
De6Dy95, DFRU99, DDDFK95], motivated in part by the observation that ``fast
algorithms'' for fine-grained models rarely translate into fast code running on
coarse-grained machines. This paper continues this effort by describing new
scaleable algorithms for a variety of problems in pattern recognition.

The paper is organized as

v Section 2. We define the model of computation and discuss fundamental
data movement operations.

v Section 3. We give a scaleable parallel algorithm to find all rectangles
determined by a set of planar points, and we discuss straightforward solutions to
related problems.

v Section 4. We give a scaleable parallel algorithm to find all maximal
equally spaced collinear subsets of a finite point set in a Euclidean space.

v Section 5. We give scaleable parallel algorithms to find all subsets of a
finite set in a Euclidean space that match, in the sense of geometric congruence, a
given pattern.

v Section 6. We give some concluding remarks.

Preliminary versions of this paper appear in [BMR96a, BMR96b]. Some of the
results presented in the current paper improve (in some cases, by correcting errors;
in others, by demonstrating faster running times) results of [BMR96a, BMR96b].

2. PRELIMINARIES

2.1. Model of Computation

The coarse grained multicomputer model, or CGM(n, p) for short, considered in
this paper consists of a set of p processors with 0(n�p) local memory each (i.e.,
0(n�p) memory cells of 3(log n) bits apiece in every processor). The processors
may be connected to some arbitrary interconnection network or may share global
memory. Commonly used interconnection networks for a CGM include the
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2D-mesh, 3D-mesh, hypercube, and the fat tree. A processor may exchange messages
of O(log n) bits with any one of its immediate neighbors in constant time. In deter-
mining time complexities, we consider both local computation time and interpro-
cessor communication time, in the standard way. The term ``coarse-grained'' refers
to the fact that the size 0(n�p) of each local memory is assumed to be ``considerably
larger'' than 3(1). Our definition of ``considerably larger'' will be that n�p�p. Thus,
each processor has least enough local memory to store the ID number of every
other processor. For a more detailed description of the model and its associated
operations, see [DFR93].

2.2. Terminology, Notation, Assumptions

Throughout the paper, we use Rd to denote Euclidean d-dimensional space.
Sorting is used in most of the algorithms presented in this paper. We therefore
assume that our data sets may be linearly ordered in some fashion that should be
clear from the context.

A set of k-tuples X=[(x1 , x2 , ..., xk)] is in lexicographic order if (x1 , ..., xk)<
(x$1, ..., x$k) means

v x1<x$1 ; or

v for some integer j, 1� j<k, x1=x$1 and x2=x$2 and } } } and x j=x$j and
xj+1<x$j+1.

2.3. Fundamental Operations

For a given problem, suppose Tseq and Tpar are, respectively, the running times
of the problem's best sequential and best parallel solutions. If Tpar =3(Tseq �p), then
the parallel algorithm is optimal, to within a constant factor. In practice, analysis
of a CGM algorithm usually must account for the time necessary for interprocessor
communications and�or data exchanges (e.g., in global sorting operations) in order
to evaluate Tpar . The time for these communications may cause Tpar to be asymp-
totically greater than 3(Tseq �p).

We denote by Tsort (n, p) the time required by the most efficient algorithm to sort
3(n) data on a CGM(n, p). Sorting is a fundamental operation that has been
implemented efficiently on all models of parallel machines (theoretical and existing).
Sorting is important not only in its own right, but also as a basis for a variety of
parallel communications operations. In particular, each of the following data move-
ment operations can be implemented via sorting.

v Permutation exchange. Let _: [1, 2, ..., p] � [1, 2, ..., p] be a permutation
(a function that is one-to-one and onto). Every processor Pi sends a list of n�p data
items to processor P_(i) (e.g., this operation could be used to rotate data circularly
among sets of processors).

v Semigroup operation. Let X=[x1 , ..., xn] be data distributed evenly among
the processors and let b be a binary operation on X that is associative and that
may be computed in 3(1) serial time. Compute x1 b x2 b } } } b xn . Examples of such
operations include total, product, minimum, maximum, and, and or.
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v Parallel prefix. Let X=[x1 , ..., xn] be data distributed evenly among the
processors and let b be a binary operation on X that is associative and that may
be computed in 3(1) serial time. Compute all n members of [x1 , x1 b x2 , ...,
x1 b x2 b } } } b xn].

v Parallel search. Let X=[x1 , ..., xk] and Y=[ y1 , ..., yn] be ordered lists
(if necessary, we sort X and Y separately), each distributed evenly among the
processors. Each xi # X searches Y for a value y$i or a range of values (in the latter
case, we mean xi ``learns'' the first and last indices of those members of Y with sort
key in a given interval Ii).

v Formation of combinations. Let X=[x1 , ..., xn] and let k be a fixed positive
integer, 1<k<n. Form the set of 3(nk) combinations of members of X that have
exactly k members, [[xi1

, ..., xik
] | 1�i1<i2< } } } <ik�n].

v Formation of pairs from lists. Let X=[x1 , ..., xk] and let Y=[ y1 , ..., yn].
Form all pairs (xi , yj), where x i # X, yj # Y.

The following result will be useful in comparing the resources required by
problems of different sizes.

Lemma 2.1 [BMR98]. For positive integers k, n, p, we have

k } Tsort (n, p)=O(Tsort (kn, p)) on a CGM(kn, p).

The next several results discuss algorithms for fundamental data operations that
are implemented using sorting.

Proposition 2.2. A permutation exchange operation may be implemented in time
Tsort (n, p) on a CGM(n, p).

Proof. The following algorithm suffices.

1. Let _ be the permutation function of the operation. In parallel, each pro-
cessor Pi sequentially assigns the tag value _(i) to each of its n�p data items. This
takes 3(n�p) time.

2. Sort the data by the tag values. This takes Tsort (n, p) time.

Since the algorithm's running time is dominated by the sort step, the assertion
follows. K

Proposition 2.3 [BMR98]. A semigroup operation on evenly distributed data
x1 , ..., xn may be implemented in time 3(n�p)+Tsort ( p2, p) on a CGM(n, p). At the
end of this operation, all processors have the value of X=x1 b } } } b xn .

Proposition 2.4 [BMR98]. A parellel prefix operation may be implemented in
3(n�p)+Tsort ( p2, p) time on a CGM(n, p). At the end of the operation, the prefix
x1 b x2 b } } } b xi is in the same processor as xi , i # [1, 2, ..., n].

Proposition 2.5. Let X and Y each be lists of data, evenly distributed among the
processors of a CGM(k+n, p), where |X|=k and |Y|=n. Then a parallel search, in
which each member of X searches Y for a value or range of values, may be performed
in Tsort (k+n, p) time.
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Proof. We give the following algorithm for a search in which every member of X
searches Y for a single value. Minor modifications give an algorithm in which every
member of X searches Y for a range of values:

1. Sort X in Tsort (k, p) time.

2. Let x$i be the value sought by xi . Let X$=[x$1, ..., x$k]. For each xi , create
a record ri with components x i , xi$, and report. Let R=[r1 , ..., rk]. This takes
3(k�p) time.

3. Sort R _ Y, using the xi$ component of members of R as the key field. This
takes Tsort (k+n, p) time.

4. Use parallel prefix and postfix operations so every member of R learns
whether or not its nearest member of Y in the sorted R _ Y has the desired x$i value.
If so, set the report field equal to the corresponding member of Y; otherwise, set the
report field to fail. This takes 3((k+n)�p)+Tsort ( p2, p) time.

5. Sort the members of R (found in R _ Y) by the xi component. This takes
O(Tsort (k+n, p)) time.

6. Each member of R is now in the processor in which it was created, and
``reports'' its report component to the corresponding xi . This takes 3(k�p) time.

Thus, the algorithm takes Tsort (k+n, p) time. K

Proposition 2.6. Let X=[x1 , ..., xn]. Let k>1 be a fixed integer. Then the set
of all combinations of members of X with k members apiece, [[xi1

, ..., xik
] | 1

�i1<i2< } } } <ik�n] can be formed in

3 \nk

p ++p } Tsort (n, p)=O(Tsort (nk, p))

time on a CGM(nk, p). If p2=O(nk&1� log n) (which must happen when k>2), the
running time is 3(nk�p), which is optimal.

Proof. The algorithm follows.

1. Use p&1 circular rotation operations of 3(n�p) data per processor so that
each processor has the entire list X. This takes p } Tsort (n, p) time.

2. In parallel, each processor Pi computes one-p th of all the 3(nk) combina-
tions of k members of X. This takes 3(nk�p) time.

Thus, the time required is 3(nk�p)+p } Tsort (n, p). From Lemma 2.1, we have
p } Tsort (n, p) = O(Tsort (np, p)), which is (since p<n and k�2) O(Tsort (nk, p)).
Thus, the running time is O(Tsort (nk, p)).

If we consider the sorting term in the running time, we have, since parallel
sorting is faster than serial,

p } Tsort (n, p)=O(np log n)=O \np2 log n
p + . (1)
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If p2=O(nk&1� log n) (which must happen if k>2, since p2�n), it follows from
statement (1) that

p } Tsort (n, p)=O \nk

p + .

Thus, if p2=O(nk&1� log n), the running time is 3(nk�p), which is optimal, since
there is 3(nk) output. K

Proposition 2.7. Let X=[x1 , ..., xk] and Y=[ y1 , ..., yn] be two lists evenly
distributed among the processors of a CGM(kn, p), with k�n. Then the set

X_Y=[(xi , yj) | 1�i�k, 1� j�n]

may be computed in

3 \kn
p

+p } Tsort (k, p)+=O(Tsort (kn, p))

time. If p2 log k=O(n), the running time reduces to 3(kn�p), which is optimal.

Proof. Let zij =(x i , yj), 1�i�k, 1� j�n. The following algorithm suffices:

1. Allocate space for the array

Z=[zij | 1�i�k, 1� j�n],

its entries uninitialized, in O(kn�p) time.

2. Use p&1 circular rotations of X so that every processor has a copy of the
entire list X. This takes p } Tsort (k, p) time, which, by Lemma 2.1 is O(Tsort (kp, p))
=O(Tsort (kn, p)).

3. Now every processor has all of X and its original share of Y. In parallel,
every processor computes its share of X_Y corresponding to its share of Y in
3(kn�p) time.

Thus, the algorithm requires

3 \kn
p

+p } Tsort (k, p)+=O(Tsort (kn, p))

time.
Since parallel sorting is faster than serial, the sorting term in the running time is

p } Tsort (k, p)=O(kp log k)=O \kp2 log k
p + .

If p2 log k=O(n), it follows that this sorting term is

p } Tsort (k, p)=O \kn
p + ,
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and the running time is therefore 3(kn�p), which is optimal, since there is 3(kn)
output. K

In several of our algorithms, it is desirable to remove, efficiently, duplicate list
entries. We have the following.

Lemma 2.8. Let M be a list of n sets, each of cardinality k. Then duplicate
members may be removed from M in 3(Tsort (kn, p)) time on a CGM(kn, p).

Proof. We give the following algorithm:

1. Sort each of the k-tuples in M lexicographically. This takes Tsort (kn, p)
time.

2. Now, sort M lexicographically. This takes Tsort (kn, p) time.

3. Perform a prefix operation to remove every entry of the ordered list
M that equals its predecessor. Since the running time of the algorithm of Proposi-
tion 2.4 is based on the assumption of prefix values with complexity 3(1), while
the prefix values in the current operation have complexity 3(k), this takes
3(kn�p+Tsort (kp2, p)) time, which, since p2�n, is O(Tsort (kn, p)).

Thus, the algorithm requires 3(Tsort (kn, p)) time. K

3. RECTANGLE PROBLEMS

In this section, we give a scalable parallel algorithm to solve the rectangle finding
or all rectangles (AR) problem. We say a polygon P is from S/R2 if all vertices
of P belong to S. The AR problem is to find all rectangles from S. A serial solution
to this problem is given in [VK6D91].

Proposition 3.1 [VK6D91]. Let S/R2, |S|=n. Then a solution to the AR
problem has 3(n2 log n) output in the worst case. Therefore, 0(n2 log n) time is
required for any serial algorithm that solves the AR problem.

Our CGM solution to the AR problem is obtained by forming all the line
segments with endpoints in S, then sorting these segments so that sweeps (parallel
prefix operations) of the ordered segments will yield the rectangles. The algorithm
follows.

Theorem 3.2. Let S=[v0 , v1 , ..., vn&1] be given as input. Then the AR problem
can be solved in Tsort (n2 log n, p) time on a CGM(n2 log n, p).

Proof. Note that a rectangle in R2 may be determined by a pair of opposite
sides with nonnegative slope. This observation allows us to avoid duplicate con-
struction of rectangles. We give an algorithm with the following steps.

1. Form the set L of all line segments with endpoints in S and with non-
negative slopes, where each member of L is represented as a pair (vi , vj) of members
of S such that vi<vj with respect to lexicographic order. This may be done in
O(Tsort (n2, p)) time by a trivial modification to the algorithm associated with
Proposition 2.6.
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2. Define the order of the elements l of L, in decreasing order of significance,
by

(a) slope;

(b) length;

(c) equation ax+by+c=0 (with first nonzero coefficient equal to 1) of
the line perpendicular to l at its first endpoint (the order of equations is the
lexicographic order of triples (a, b, c)); and

(d) the first endpoint of l.

Note that in this order, if l0<l1<l2 and (l0 , l2) is a pair of opposite sides of
a rectangle, then (l0 , l1) and (l1 , l2) are pairs of opposite sides of rectangles. Sort
the members l of L. This takes Tsort (n2, p) time.

3. Use parallel prefix operations to do the following. For each l # L deter-
mine the unique (if they exist) l0 , l1 # L such that

v l0�l�l1 , and

v if l0�l$�l1 and l${l then l and l$ are opposite sides of a rectangle.

Also determine for each l # L

rl=ord(l1)&ord(l),

the number of rectangles for which l is the first side, and

Pl= :
l$<l

rl$ ,

the number of rectangles whose first sides precede l. By Proposition 2.4, these
operations require 3(n2�p)+Tsort ( p2, p) time.

4. Assign the first side of each of the O(n2 log n) rectangles as follows. The i th
rectangle, Pl<i�Pl+rl , gets l as its first side. Since the values of the Pl and rl

may be assumed associated with the corresponding l in the ordered set L, the first
side of every rectangle can be found via parallel search operations in (by Proposi-
tion 2.5) Tsort (n2 log n, p) time.

5. Assign the second side (the one opposite the first side) of each of the
O(n2 log n) rectangles as follows. The i th rectangle, Pl<i�Pl+rl , has for its
second side the member of L whose index in L is ord(l)+(i&Pl). Thus, the
second side of all rectangles may be determined via parallel search operations in
Tsort (n2 log n, p) time.

Thus, the running time of the algorithm is Tsort (n2 log n, p). K
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Straightforward modifications to the algorithm of Theorem 3.2 yield (the output
estimates are in [VK6D91, P6Sh92])

Problem Worst case output Tpar

All isonormal rectangles 3(n2) Tsort(n2, p) on CGM(n2, p)
All squares 3(n2) Tsort(n2, p) on CGM(n2, p)

4. MAXIMAL COLLINEAR SETS

In this section, we give a scalable parallel algorithm to solve the all maximal
equally spaced collinear subsets (AMESCS [K6R91]) problem: Given a set S of n
points in a Euclidean space, find all maximal equally-spaced collinear subsets of S
determined by segments of any length l. This problem was studied in [K6R91,
B6M93]. The algorithm of [K6R91] runs in optimal 3(n2) serial time. It seems
to be an essentially sequential algorithm. A rather different algorithm that is
efficient on a fine-grained PRAM and optimal on a fine-grained mesh is presented
in [B6M93].

We say S$/S is collinear if |S$|>2 and there is a line in Rd that contains all
members of S$. A collinear set S$ is equally spaced if the members [s1 , ..., sk] of S$
are in lexicographic order such that all of the line segments sisi+1 have the same
length l; such a set S$ is a maximal equally-spaced collinear subset determined by
segments of length l if it is not properly contained in any other equally spaced
collinear subset determined by segments of length l.

The AMESCS problem is interesting because the regularity sought is often
meaningful in a seemingly irregular environment. Collinear equally spaced subsets
might represent street lights, fence posts, land mines, etc.

Our algorithm is based on sorting steps, searches, and sweeps reminiscent of
those in standard propagation algorithms. We give the algorithm below.

Theorem 4.1. Let d be a fixed positive integer. Let S/Rd, |S|=n. Then the
AMESCS problem can be solved for S in 3(Tsort (n2, p)) time on a CGM(n2, p).

Proof. We give the following algorithm.

1. Sort the members of S according to lexicographic order. This takes
Tsort (n, p) time.

2. Determine the set L of all the ordered pairs of distinct data points in S
such that the first member of the pair precedes the second. This may be done by
the algorithm of Proposition 2.6 in O(Tsort (n2, p)) time.

Since S was sorted, the ordered pair formed from the set [xi , xj], i< j, is (xi , xj).

3. Sort the members (xi , xj) of L with respect to length as the primary key
and lexicographic order of xi and xj as secondary and tertiary keys, respectively.
This takes Tsort (n2, p) time.
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4. In parallel, every processor determines for each of its ordered pairs
(xi , xj) # L a third point z(i, j) such that (xi , x j , z(i, j)) is an equally spaced collinear
triple with the xi<x j<z(i, j) . This is done in 3(n2�p) time.

5. Perform a parallel search to determine for each pair (xi , xj) whether
z(i, j) # S. If so, note the value of k such that z(i, j) =xk . This takes 3(Tsort (n2, p))
time.

6. For each (xi , xj) # L, create a record Li, j =(xi , x j , i, j, k, i, j), where k is as
determined in the previous step, if found; otherwise, k=�. This takes 3(n2�p) time.

7. Now we perform a component labeling-like step. The ordering of L above
allows the records Li, j to inherit the order of L such that

v members of [Li, j | 1�i< j�n] of the same length are consecutive, and

v if xk =z(i, j) , then Li, j<Lj, k .

Let M=[ms | s=1, ..., N] be an enumeration of the members of [Li, j | 1�
i< j�n], mi<mi+1 , where N=3(n2). Regard the third and fourth components of
each Li, j record as representing the indices of a line segment's endpoints; the fifth
component, if finite, as indicating the next vertex in a graph's component; and the
sixth and seventh components as forming a component label. We now perform a
parallel prefix operation, in 3(n2�p+Tsort ( p2, p)) time, to compute all of the
members of

[m1 , m1 b m2 , ..., m1 b m2 b } } } b mN],

where u b v is defined as follows.

v Suppose u=(xi , xj , i, j, k, a, b) and v=(xj , xk , j, k, l, c, d ). Then

u b v=(xj , xk , j, k, l, a, b).

v Otherwise, u b v=v.

8. At the end of the last step, the prefixes mi that are identical in the last two
components represent maximal equally spaced collinear subsets of S. Now, sort the
mi with respect to, in decreasing priority, the sixth, seventh, and third components
of the mi records, so that all members of a maximal equally spaced collinear set are
grouped consecutively (sixth and seventh components), and, within maximally
equally spaced collinear sets, the points are ordered (third components). This takes
Tsort (n2, p) time.

The running time of the algorithm is 3(Tsort (n2, p)). K

5. POINT SET PATTERN MATCHING

In this section, we give scalable parallel algorithms to solve the point set pattern
matching (PSPM) problem: Given a set S of points in a Euclidean space Rd and
a pattern P/Rd, find all subsets P$/S such that P and P$ are congruent. Serial
and fine-grained parallel solutions to this problem have been given in several
papers, including [Boxe92, Boxe96, Boxe98, dR6L95, G6K92, L6L92, SL6Y90].
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We assume that |S|=n, |P|=k�n, and that the coordinates of all members of
P=[a0 , a1 , ..., ak&1] and S=[s0 , s1 , ..., sn&1] are given as input to the problem,
with each of P and S evenly distributed among the processors of a CGM. In the
following, we give rather different algorithms for solving the point set pattern
matching problem for different values of d, the dimension of the ambient Euclidean
space. Roughly, this is because different dimensions produce different constraints on
the complexity of the output. We also give algorithms for PSPM restricted to
realization via rotation or translation in R2.

5.1. PSPM in R1

A serial algorithm for this case is given in [dR6L95], in which it is shown that
the worst case output complexity is 3(k(n&k)). Our CGM algorithm is based on
determining which translations (or, reflection followed by translations) T of a0 # P,
such that T(a0) # S, satisfy T(P)/S.

Theorem 5.1. The point set pattern matching problem in R1 can be solved on a
CGM(k(n&k), p) in 3(Tsort (k(n&k), p)) time.

Proof. We give the following algorithm.

1. Sort the members of S by their coordinates in Tsort (n, p) time.

2. Sort the members of P by their coordinates in Tsort (k, p) time.

3. Broadcast a0 to all processors. This takes O( p) time.

4. For j # [0, 1, ..., n&k&1], compute dj =sj &a0 . These values represent
translations T of a0 into a member of S such that at least k&1 members of S are
greater than T(a0). This takes 3((n&k)�p) time.

5. For i # [0, 1, ..., k&1], j # [0, 1, ..., n&k&1], define Ai, j to be true if and
only if (ai+dj) # S. If Ai, j is true, associate the index m(i, j) with Ai, j , where
sm(i, j) =a i+d j . These values can be computed by a parallel search operation in
3(Tsort (k(n&k), p)) time.

6. In Tsort (k(n&k), p) time, sort the Ai, j with respect to j as primary key
and i as secondary key.

7. Observe now that P is matched in S via a translation that sends a0 to sj

if and only if for all i, Ai, j is true. In 3(k(n&k)�p+Tsort ( p2, p)) time, perform a
parallel prefix operation on the Ai, j to determine which indices j yield such transla-
tions. Let Lq be the qth index j such that a translation { of P sending a0 to sj

satisfies {(P)/S. We note the members of S forming the set that matches P via this
translation are marked by the indices associated with the Ai, j above.

8. Another 3(k(n&k)�p)+Tsort ( p2, p) time parallel prefix operation can be
used to produce a list of indices Mq, r from the lists Ai, j and Lq such that Mq, 0 =Lq

and Mq, r =sm(r, Lq) , the index of the member of S to which ar is translated, for
1�r�k&1. Thus, the list M is an ordered list of the indices of translated copies
of P in S.

476 BOXER, MILLER, AND RAU-CHAPLIN



9. The steps above find all matches of P in S obtained by translating P. In
order to find matches obtained by reflecting and translating P, we compute the set
&P=[& p | p # P] and repeat the previous steps with &P substituted for P. This
takes 3(Tsort (k(n&k), p)) time.

10. It may happen that the same subset of S is found more than once as a
match for P. We may eliminate such duplication via the algorithm of Lemma 2.8 in
O(Tsort (k(n&k), p)) time.

Thus, the algorithm takes 3(Tsort (k(n&k), p)) time. This is optimal if we wish
our output to be ordered, as, in the worst case, there is 3(k(n&k)) output. K

5.2. PSPM in R2

Let b>0 be a fixed constant. In the Euclidean plane R2, the complexity of
the output in the point set pattern matching problem is, in part, limited by
the complexity of the function D2 (n), the number of line segments in R2 of
length b whose endpoints are in S/R2. The function D2 (n) was introduced in
[Erd46].

Proposition 5.2 [SST84]. D2 (n)=O(n4�3).

We have the following, which is implicit in [G6K92].

Proposition 5.3. The output of the point set pattern matching problem in R2 has
complexity O(kD2 (n)).

Proof. Let b be the length of the line segment from a0 to a1 . There are at most
D2 (n) line segments l/R2 of this length with endpoints in S. For each such l, let
the endpoints of l be [si0

, si1
]/S. A necessary condition for the existence of

[si2
, ..., sik&1

]/S such that [si0
, si1

, s i2
, ..., sik&1

] is a match for P is the existence of
i2 such that [s i0

, si1
, si2

] is a match for [a0 , a1 , a2]. There are at most two such
values of i2 , each of which determines at most one matching of P in S. Since every
matching has complexity k, the assertion follows. K

The sequential time necessary to find all the O(D2 (n)) line segments of length b
with endpoints in S is denoted by A2 (n). We have the following.

Proposition 5.4 [Agar90, Chaz91]. For any fixed $>0, A2 (n)=O(n4�3+$).

Theorem 5.5 [G6K92]. The point set pattern matching problem in R2 can be
solved sequentially in O(A2 (n)+kD2 (n) log n) time. K

Our CGM algorithm for solving the point set pattern matching problem in R2

is based on finding which rigid transformations T of the Euclidean plane, of those
that take a fixed line segment with endpoints in P to some line segment with
endpoints in S, satisfy T(P)/S. The algorithm is given below.
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Theorem 5.6. The point set pattern matching problem in R2 can be solved in

O \A2 (n)
p

+pTsort (n, p)+Tsort (kD2 (n), p)+
=O \Tseq

p
+pTsort (n, p)+Tsort (kD2 (n), p)+

time on a CGM(kD2 (n), p). For p=O(kD2 (n)�n), the running time is

O \A2 (n)
p

+Tsort (kD2 (n), p)+=O \Tseq

p
+Tsort (kD2 (n), p)+ .

Proof. Note it follows from Theorem 5.5 that A2 (n)�p=O(Tseq �p). We give the
following algorithm.

1. Broadcast [a0 , a1 , a2] to all processors and determine, in each processor,
b=d(a0 , a1), where d is the Euclidean distance function. This takes O( p) time.

2. Determine all the combinations [si , sj]/S such that d(si , sj)=b. This is
done as follows.

v In parallel, each processor Pi determines all of its pairs of members of S
that are at distance b from each other. Let Si be the subset of S contained in Pi .

v Perform p&1 circular rotations of S, keeping in processor Pi a copy of
Si . After each rotation operation, Pi has copies of Si and S j for some j{i. Pro-
cessor Pi finds all combinations [sq , sr], sq # Si , sr # S j , such that d(sq , sr)=b.

These operations take

A2 (n)
p

+( p&1) Tsort (n, p)=O \Tseq

p
+pTsort (n, p)+

time.

3. For each of the O(D2 (n)) pairs [si , sj] of members of S that are at dis-
tance b from each other, determine the two points zm (i, j), m # [0, 1], such that
(a0 , a1 , a2) matches (si , sj , zm (i, j)). This takes O(D2 (n)�p) time.

4. For each of the O(D2 (n)) pairs [si , sj] of members of S that are at
distance b from each other, determine for m # [0, 1] whether zm (i, j) # S. This may
be done via a parallel search operation in O(Tsort (D2 (n), p)) time.

5. For each of the O(D2 (n)) triples (si0
, si1

, si2
) such that (si0

, si1
, si2

)
matches (a0 , a1 , a2), determine whether there exist si3

, ..., sik&1
in S such that

(si0
, si1

, si2
, si3

, ..., sik&1
) matches P.

This is done as follows.

v For each such triple (si0
, si1

, si2
) and each j # [3, 4, ..., k&1], determine

the unique zj # R2 such that (si0
, si1

, si2
, z j) matches (a0 , a1 , a2 , aj). This takes

O(kD2 (n)�p) time.
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v For each such zj , determine whether zj # S. If so, let the j th component
of a k-tuple, whose components with indices 0, 1, 2 are, respectively, si0

, si1
, si2

, be
zj ; otherwise, let the j th component of this k-tuple be fail. This may be done a via
parallel search operation in Tsort (kD2 (n), p) time.

v Perform a parallel prefix operation to remove those k-tuples constructed
above that have at least one fail entry. The remaining k-tuples represent all the
matches of P in S. This step requires 3(kD2 (n)�p)+Tsort ( p2, p) time.

6. It may happen that the same subset of S is found more than once as a
match for P. We may eliminate such duplication by the algorithm of Lemma 2.8 in
O(Tsort (kD2 (n), p)) time.

Thus, the algorithm requires

O \A2 (n)
p

+pTsort (n, p)+Tsort (kD2 (n), p)+
=O \Tseq

p
+pTsort (n, p)+Tsort (kD2 (n), p)+

time. It follows from Lemma 2.1 that pTsort (n, p)=O(Tsort (np, p)), so for
p=O(kD2 (n)�n), hence for np=O(kD2 (n)), the running time reduces to

O \A2 (n)
p

+Tsort (kD2 (n), p)+=O \Tseq

p
+Tsort (kD2 (n), p)+ . K

5.3. PSPM in R3

In this section, we present a scalable parallel algorithm for solving the point set
pattern matching problem in R3. The following considerations are used to construct
an upper bound on the complexity of the output.

Let k be a fixed positive integer. Suppose the members of S are all polynomial
functions of degree at most k. Then the maximal number of polynomial pieces of
the minimum or lower envelope function of S is denoted by *(n, k). It was shown
in [Atal85] that *(n, k) is the maximal length of a Davenport�Schinzel sequence
[D6S65] defined by parameters n and k.

The function *(n, k) is, at worst, slightly more than linear in n. In the following,
:(n) is the extremely slowly growing inverse Ackermann function (c.f., [H6Sh86]).
In the current discussion, we only use k=6. We have the following, as an example
of a more general result.

Theorem 5.7 [AShSh89].

*(n, 6)=O(n } 2O([:(n)]2)).

Proposition 5.8 [CEGSW90]. Let S/R3 with |S|=n. The maximum number
of line segments in R3 of a given length with endpoints in S is O(n3�2[*(n, 6)�n]1�4).
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It follows from Theorem 5.1 that the expression *(n, 6)�n, which appears in the
analysis of our algorithm, is nearly constant. We have the following.

Proposition 5.9 [Boxe98]. The output of the point set pattern matching
problem in R2 has complexity O(kn2[*(n, 6)�n]1�2).

Theorem 5.10 [Boxe98]. The point set pattern matching problem in R3 can be
solved on a serial computer in

v O(n2+kn3�2[*(n, 6)�n]1�4 log n) time, if P is a collinear set;

v O(kn2[*(n, 6)�n]1�2 log n) time in the general case.

Next, we give an algorithm for a special case.

Proposition 5.11. Let P and S be finite subsets of R3. Let |P|=k�n=|S|.
Suppose there is a line L/R3 such that P/L. Then every subset P$ of S such that
P$ matches P can be identified on a CGM(n2+kn3�2[*(n, 6)�n]1�4, p) in

O \n2

p
+Tsort \kn3�2 _*(n, 6)

n &
1�4

, p++ time.

Proof. Let S=[s0 , s1 , ..., sn&1]. Let P=[ p0 , p1 , ..., pk&1]. We give the follow-
ing algorithm.

1. Sort P by lexicographic order. This takes Tsort (k, p) time.

2. Sort S by lexicographic order. This takes Tsort (n, p) time.

3. Form the list C of all the ordered pairs (si , sj), i{ j, of distinct members
of S. By Proposition 2.6, this takes 3(n2�p+p } Tsort (n, p)) time. Note |C|=3(n2).

4. In O( p) time, broadcast p0 and pk&1 to all processors.

5. Use a prefix operation to form the list C$ of members of C representing
line segments whose length equals the length of the line segment from p0 to pk&1 .
By Proposition 2.4, this takes 3(n2�p+Tsort ( p2, p)) time. By Proposition 5.1,
|C$|=O(n3�2[*(n, 6)�n]1�4).

6. For every (si , sj) # C$, to identify a subset of S that matches P including a
submatch of (si , sj) with ( p0 , pk&1), it is necessary and sufficient to determine if
there exists a (k&2)-tuple (si1

, ..., sik&2
) such that for each im , m # [1, ..., k&2],

v sim
# S,

v sim
belongs to the line segment sisj , and

v the length of si sim
equals the length of p0pm .

For all (si , sj) # C$ do the following:

v Determine the desired points [sim
]k&1

m=1 such that [si , sj] _ [s im
]k&1

m=1

match P. This may be done in 3(k |C$| �p)=O(kn3�2�p[*(n, 6)�n]1�4) time.
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v Perform a parallel search to determine (for all i, j, im) if sim
# S. By

Proposition 2.5, this may be done in

O \Tsort \k+n3�2 _*(n, 6)
n &

1�4

, p++=O \Tsort \kn3�2 _*(n, 6)
n &

1�4

, p++ time.

v Use a parallel prefix operation to consolidate the matches of P in S found
in the previous step into a contiguous list. This may be done in
O(Tsort (kn3�2[*(n, 6)�n]1�4, p)) time.

The list of matches of P in S has complexity O(kn3�2[*(n, 6)�n]1�4).

7. It may happen that the same subset of S appears in our list M of matches
of P twice. If we wish to eliminate the duplications of subsets of S represented in
M, we may do so via the algorithm of Lemma 2.8 in O(Tsort (kn3�2[*(n, 6)�n]1�4, p))
time.

Thus, our algorithm takes

O \n2

p
+Tsort \kn3�2 _*(n, 6)

n &
1�4

, p++ time. K

Proposition 5.9 follows from the next lemma, which we use to prove
Theorem 5.13.

Lemma 5.12 [Boxe98]. Let P and S be finite subsets of R3, with |P|=
3�n=|S|. Then a listing of all three-member subsets P$ of S such that two line
segments determined by P$ match two line segments determined by P, has
O(n2[*6 (n)�n]1�2) output.

Our CGM algorithm for solving the general point set pattern matching problem
in R3 may be described as follows. First, determine if P is a collinear set. If P is
collinear, apply the algorithm of Proposition 5.11. Otherwise, there is a (non-
collinear) triangle 2 in P, so we determine which rigid transformations T of R3, of
those that take 2 to some triangle with vertices in S, satisfy T(P)/S. The
algorithm is given below.

Theorem 5.13. Let P and S be finite subsets of R3. Let |P|=k�n=|S|. Then
every subset P$ of S such that P$ is congruent to P can be identified on a
CGM(kn2[*(n, 6)�n]1�2, p), in

v O[n2�p+Tsort (kn3�2[*(n, 6)�n]1�4, p)] time, if P is a collinear set;

v O(Tsort (kn2[*(n, 6)�n]1�2, p)) time in the general case.

Proof. Without loss of generality, i{ j implies ai {aj . We give the following
algorithm.

1. Use circular rotations of P among all processors so every processor has
a copy of P. This takes ( p&1) Tsort (k, p)=O(Tsort (kp, p)) time.

2. Determine whether or not P is a collinear set. This is done as follows.
Note each processor has a0 and a1 . For each k # [2, ..., k&1], determine if ak is
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collinear with a0 and a1 , in 3(k�p) time. P is a collinear set if and only if ak is
collinear with a0 and a1 for all k # [2, ..., k&1]. If P is not a collinear set, note an
index r such that a0 , a1 , and ar are not collinear. This may be done, e.g., by a mini-
mum (with respect to indices) operation on P"[a0 , a1] in 3(k�p+Tsort ( p2, p))
time (Proposition 2.3), followed by an O( p) time broadcast of ar to all processors.

3. If P is a collinear set, execute the algorithm of Proposition 5.1. This finishes
the current algorithm in an additional O[n2�p+Tsort (kn3�2[*(n, 6)�n]1�4, p)] time.
Otherwise, continue with the following steps.

4. Sort S lexicographically. This takes Tsort (n, p) time.

5. For every pair si , sj , i< j, of distinct members of S, form the line segment
(si , sj). Let L(S) be the set of such line segments. By Proposition 2.6, this step takes
O(Tsort (n2, p)) time.

6. Form the set L(P)=[?i]k&1
i=1 , where ?i =a0 ai is the line segment from a0

to ai . Since every processor has the value of a0 , this takes 3(k�p) time.

7. Sort the set L(S), using the lengths of the members as the primary key
and lexicographic order on the coordinates of the endpoints as the secondary key.
This takes Tsort (n2, p) time.

8. Let M be the number of members of L(S) whose length is equal to the
length of ?1 . Mark the sublist L1 of L(S) whose members' length equals the length
of ?1 and determine the value of M by performing a parallel prefix operation on
L(S). The time required is 3(n2�p+Tsort ( p2, p)). If M=0, the length of ?1 is not
matched by that of a member of L(S), so report failure and halt. Otherwise, note
by Proposition 5.8 that

M=O \n3�2 _*(n, 6)
n &

1�4

+ .

9. As above, mark Lr, the sublist of L(S) whose entries have length equal to
the length of ?r . This is done via a parallel prefix operation on L(S) in
3(n2�p+Tsort ( p2, p)) time. As above, if |Lr|=0, report failure and halt.

10. For each S ij=(si , sj) # L1, find all Sjm=(sj , sm) # Lr such that Sij _ Sjm

matches ?1 _ ?r . This may be done by a parallel search on Lr to find, for each
Sij # L1, the subrange of members of Lr that have sj as initial endpoint, then testing
each member Sjm of the subrange for the match. Since there are M members of L1,
each of which requires a search to determine a subrange of Lr containing suitable
candidates Sjm , the searches may be performed by a parallel search operation
in O(Tsort (M+ |Lr| , p)) = O(Tsort (n3�2[*(n, 6)�n]1�4, p)) time. It follows from
Lemma 5.2, that there are O(n2[*(n, 6)�n]1�2) pairs (S ij , Sjm) S ij # L1, Sjm # Lr, such
that Sij _ Sjm matches ?1 _ ?r . Such pairs (S ij , S jm) may be formed by circular rota-
tions of L1 accompanied by the formation of pairs in O( pTsort (M, p)+
n2�p[*(n, 6)�n]1�2) time. By Lemma 2.1, this is

O \Tsort (Mp, p)+
n2

p _*(n, 6)
n &

1�2

+=O \Tsort \n2 _*(n, 6)
n &

1�2

, p++
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(since p�n1�2) time to form the O(n2[*(n, 6)�n]1�2) such pairs (S ij , S jm). Note each
pair (S ij , Sjm) corresponds to a triple (si , sj , sm) of vertices in S that match
(a0 , a1 , ar).

11. Since a0 , a1 , and ar are not collinear, for each triple (si , sj , sm) of vertices
in S that matches (a0 , a1 , ar) we can describe in 3(1) time the unique rigid trans-
formation fijm of R3 such that f ijm (a0)=si , fijm (a1)=sj , and fijm (ar)=sm . Since
there are O(n2[*(n, 6)�n]1�2) such triples, creating all such descriptions takes
O((n2�p)[*(n, 6)�n]1�2) time.

12. If k>3, proceed as follows. For each of the O(n2[*(n, 6)�n]1�2) rigid
transformations fijm of R3 determined above, compute the set

Vijm =[ f ijm (aq) | 2�q�k&1, q{r]

and, for each of its members, determine via a search of S which, if any, member of S
it equals. Since each processor has P, these operations can be done by computation
of all the sets Vijm and a parallel search operation. Altogether, these operations
require, respectively, O(kn2�p[*(n, 6)�n]1�2) and O(Tsort (kn2[*(n, 6)�n]1�2, p)) time.
Thus, the operations required for this step take O(Tsort (kn2[*(n, 6)�n]1�2, p)) time.
If Vijm /S, then fijm (P)/S.

13. Among the sets fijm (P)/S that match P, there may be duplicate sets
determined by distinct fijm . If desired, we may eliminate such duplication by the
algorithm of Lemma 2.2 in O(Tsort (kn2[*(n, 6)�n]1�2, p)) time.

The algorithm requires

v O(n2�p+Tsort (kn3�2[*(n, 6)�n]1�4, p) time if P is a collinear set;

v O(Tsort (kn2[*(n, 6)�n]1�2, p)) time in the general case. K

5.4. PSPM in R2 under Rotations or Translations

In this section, we give scalable parallel algorithms for the PSPM problem in R2

under the restrictions that the pattern matching be realized via a rotation or a
translation of P. As above, we assume the pattern set P has cardinality k, the
sampling set S has cardinality n, and that 0<k�n.

We have the following.

Theorem 5.14 [G6K92]. v Every rotation r of P about the origin such that
r(P)/S may be found in O(kn+n log n) serial time.

v Every translation T of P in R2 such that T(P)/S may be found in
O(kn+n log n) serial time.

We give a scalable parallel version of Theorem 5.14. Our algorithm for rotations
is based on the observation that the set of rotations r of P about the origin such
that r(P)/S must be the intersection over all a # P of the set of rotations r of a
about the origin such that r(a) # S. A similar observation for translations is the key
to our algorithm for translations.
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Theorem 5.15. v Every rotation r of P about the origin such that r(P)/S may
be found in O(Tsort (kn, p)) time on a CGM(kn, p).

v Every translation T of P in R2 such that T(P)/S may be found in
O(Tsort (kn, p)) time on a CGM(kn, p).

Proof. Let R be the set of angles %, 0�%<2?, such that a rotation r% of P by
% about the origin satisfies r% (P)/S. For each a # P, let R(a) be the set of angles
%, 0�%<2?, such that a rotation r% of p by % about the origin satisfies r% (a) # S.
Then

R= ,
a # P

R(a),

and, in the worst case, |R(a)|=n for all a # P (this happens if P _ S is contained
in a circle centered at the origin). We give the following algorithm.

1. Sort S by distance from the origin as the primary key and angular coor-
dinate as the secondary key. This takes Tsort (n, p) time.

2. For all a # P, compute R(a) by forming O(kn) pairs (a, %), a # P, % an
angle by which a may be rotated into s # S such that a and s have the same distance
from the origin. This may be done in O(Tsort (kn, p)) time, as follows.

v Form P_S by the algorithm of Proposition 2.7 in O(Tsort (kn, p)) time.

v In 3(kn�p) time, each processor examines each of its pairs (a, s) # P_S
and, if a and s have the same distance from the origin, forms the corresponding pair
(a, %).

3. Sort �k
i=1 R(ai) with respect to the angular coordinate. This takes

O(Tsort (kn, p)) time.

4. Note that % # R if and only if % appears as the angular component of k
consecutive entries of the ordered list �k

i=1 R(ai). Thus, the set R may be com-
puted from a parallel prefix operation on �k

i=1 R(ai) in O(kn�p+Tsort ( p2, p)) time.

The algorithm to compute R thus takes O(Tsort (kn, p)) time.
A similar algorithm is used to find the set of all translations T of P in R2 such

that T(P)/S in O(Tsort (kn, p)) time. The modifications to the algorithm above are
the following:

v In the first step, S is sorted by lexicographical order.

v Replace the second step as follows. Define R(a) by

R(a)=[s&a | s # S].

The sets R(a) can all be computed after forming all pairs (a, s), where a # P, s # S,
in O(Tsort (kn, p)) time.

v �a # P R(a) is sorted as follows. Each R(a) is sorted lexicographically, then
the union of the lists R(a) (for all a # P) is sorted lexicographically.

v In the last step, a translation vector T takes P into a subset of S if and
only if T appears as the translation component of k consecutive entries of the
ordered list �a # P R(a). K
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6. FURTHER REMARKS

6.1. Summary

In this paper, we have given examples of optimal and efficient scalable parallel
algorithms for the following.

v Finding all rectangles determined by a set of planar points. (We have also
indicated solutions to some related problems.)

v Finding all maximal equally-spaced collinear subsets of a finite set in a
Euclidean space.

v Solving various versions of the point set pattern matching problem in
Euclidean spaces.

As far as we know, our algorithms are in all cases the first scalable parallel algo-
rithms given in solution to their respective problems. In many cases, they are the
first parallel algorithms given in solution to their respective problems for machines
of any granularity.
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