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Abstract

In this paper we describe scalable parallel algorithms for building the Convex Hull and a

Triangulation of a n co-planar points. These algorithms are designed for the coarse grained

multicomputer model: p processors with O(n
p
) � O(1) local memory each, connected to some

arbitrary interconnection network. They scale over a large range of values of n and p, assuming

only that n � p1+� (� > 0) and require time O(
Tsequential

p
+ Ts(n; p)), where Ts(n; p) refers to

the time of a global sort of n data on a p processor machine. Furthermore, they involve only

a constant number of global communication rounds. Since computing either 2d Convex Hull

or Triangulation requires time Tsequential = �(n logn) these algorithms either run in optimal

time, �(n logn

p
), or in sort time, Ts(n; p), for the interconnection network in question. These

results become optimal when
Tsequential

p
dominates Ts(n; p) or for interconnection networks like

the mesh for which optimal sorting algorithms exist.

1 Introduction

Most existing multicomputers consist of a set of p state-of-the-art processors, each with considerable

local memory, connected to some interconnection network. These machines are usually coarse

grained, i.e. the size of each local memory is �considerably larger� than O(1). Despite this fact,

until recently most theoretical parallel algorithms, in particular those for solving geometric problems,

assume a �ne grained setting, where a problem of size n is to be solved on a parallel computer with
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p processors such that n
p = O(1). However, to be relevant in practice such algorithms must be

scalable, that is, they must be applicable and e�cient for a wide range of ratios n
p .

Recently, there has been a growing interest in coarse grained computational models [10, 11, 15,

35] and the design of coarse gained algorithms [15, 21, 13, 16, 25, 14, 19]. The work on computational

models has tended to be motivated by the observation that �fast algorithms� for �ne-grained models

rarely translate to fast code running on coarse grained machines. The BSP model, described by

Valiant [35], uses slackness in the number of processors and memory mapping via hash functions to

hide communication latency and provide for the e�cient execution of �ne grained PRAM algorithms

on coarse grained hardware. The LogP model was then introduced which, using Valiant's BSP model

as a starting point, focuses on the technological trend from �ne grained parallel machines towards

coarse grained systems and advocates portable parallel algorithm design [10]. Other coarse grained

models focus more on utilizing local computation and minimizing global operations. These include

the C3 model [11], and the Coarse Grained Multicomputer (CGM) model used in this paper [15].

In this mixed sequential/parallel setting, there are three important measures of any coarse grained

algorithm:

1. The amount of local computation required;

2. The number and type of global communication phases required;

3. The scalability of the algorithm, that is, the range of values for the ratio n
p for which the

algorithm is e�cient and applicable.

This paper describes scalable parallel algorithms for two fundamental geometric problems,

namely the 2d Convex Hull and Triangulation problems within the coarse grained multicomputer

model that behave almost optimally with respect to all three measures above (See Table 1).

The Model

The Coarse Grained Multicomputer model, or CGM(n; p) for short, is de�ned in [15]. It consists of

a set of p processors treating a problem of size n. Each processor has O(np ) local memory and they

are connected to some arbitrary interconnection network or a shared memory. The term �coarse

grained� refers to the fact that (as in practice) the number of words of each local memory O(np )

is de�ned to be �considerably larger� than O(1). This is clearly true for all currently available
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coarse grained parallel machines. In the following, when determining time complexities both local

computation time and inter-processor communication time are considered in the standard way.

In this model, all global communications are performed by a small set of standard communi-

cations operations - Segmented broadcast, Segmented gather, All-to-All broadcast, Personalized

All-to-All broadcast, Partial sum and Sort, which are typically e�ciently realized in hardware. If a

parallel machine does not provide these operations they can be implemented in terms of a constant

number of sorting operations [15].

Moreover, recently it was shown that, given p < n1�
1
c (c � 1), sorting O(n) elements distributed

evenly over p processors in the BSP (or LogP) model can be achieved in O(log n= log(h+ 1)) com-

munication rounds and O(n log n=p) local computation time, for h = �(np ), i.e. with optimal local

computation and O(1) h-relations, when n
p � p [21]. Therefore, using this sort, the communication

operations of the CGM(s; p) can be realized in the BSP (or LogP) models in a constant number of

h-relations, where h = �( sp).

Finding an optimal algorithm in the CGMmodel is equivalent to minimizing the number of global

communication rounds as well as the local computation time. It has been shown that minimizing

the number of round also results in improved portability across di�erent parallel architectures[35, 36].

The 2D Convex Hull and Triangulation Problems

The 2D Convex Hull problem is perhaps the most fundamental problem in computational geometry

and certainly the most studied [2]. In fact, it appears to be the �rst problem in computational

geometry for which parallel algorithms were designed [32, 9, 1]. In the �ne grained parallel setting,

algorithms have been described for many architectures including the CRCW PRAM [1], the CREW

PRAM [9], the Hypercube [31] and the Mesh [30]. In the coarse grained setting, there has recently

been many of new results, as shown in Table 1. All of these new coarse grained results assume

a machine with n data elements evenly over p processors and require O(n log n
p ) local computation

time. Let � be a �xed constant such that � > 0.

In [15], a deterministic convex hull algorithm requiring O(log n) communication phases, and

being applicable for n � p2, was presented. This algorithm had the advantage of being simple,

deterministic and scalable over a large range of values of the ratio n
p , but required a non-constant

number of communication rounds.
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Algorithm Communication Scalability

Type Phases Assumption

Simple Merge Deterministic O(log n log p) n � p2

Dehne, Fabri, Rau-Chaplin (1993) Deterministic O(log n) n � p2

Dehne, Fabri, Kenyon (1994) Randomized O(1) n � p3+�

Deng, Gu (1994) Deterministic O(log p) n � p3+�

Randomized O(1) n � p3+�

This paper Deterministic O(1) n � p1+�

Figure 1: Comparison of Recent Coarse Grained Convex Hull Algorithms.

Then, in [14], a randomized convex hull algorithm was designed, requiring with high probability

O(1) communication phases and being applicable for n � p3+�. This algorithm had the signi�cant

advantage of being able to solve the convex hull problem for points in more than two dimensions,

but assumed that the points were uniformly distributed, worked in O(1) communication phases only

with high probability, and was only scalable over a signi�cantly reduced range of values of the ratio

n
p in that it required n � p3+�.

Finally, two new 2D convex hull algorithms, requiring n � p3+�, were shown in [16]. Their

deterministic algorithm required O(log p) communication phases, while their randomized algorithm

required with high probability O(1) communication phases. These algorithms had the advantage

of not being restricted to uniformly distributed point sets, but still required more than a constant

number of communication phases in the deterministic case, were rather complex, and again were only

scalable over a signi�cantly reduced range of values of the ratio n
p in that they required n � p3+�.

The Convex Hull algorithm described in this paper is deterministic, requires only O(1) com-

munication phases in the worst case and is highly scalable in that it is e�cient and applicable for

n � p1+�.

The Triangulation Problem of a planar point set has many practical applications as in the �nite

element method and in numerical analysis. Several parallel algorithms have been proposed to solve

it work-optimally in PRAM's [29, 37], time-optimally in linear arrays [8] and in sorting time in

hypercubes [27]. All these algorithms are for �ne-grained models. The coarse grained triangulation

algorithm described in this paper is again deterministic, requires only O(1) communication phases
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in the worst case and is highly scalable in that it is e�cient and applicable for n � p1+�.

The Results

In this paper we �rst describe a scalable coarse-grained deterministic algorithm for solving the 2d

convex hull problem. Our algorithm requires time O(n log n
p + Ts(n; p)). Furthermore, it involves

only a constant number of global communication rounds and local memory space n
p � p�. Based on

this algorithm we also give an algorithm for solving the triangulation problem for points in R2 for

the same model and with the same space and time complexities.

Since computing either 2d convex hull or triangulation requires time Tsequential = �(n log n) [33]

our algorithms either run in optimal time �(n log np ) or in sort time Ts(n; p) for the interconnection

network in question. Our results become optimal when
Tsequential

p dominates Ts(n; p) or when Ts(n; p)

is optimal.

Consider, for example, the mesh architecture. For the �ne grained case (np = O(1)), a time

complexity of O(
p
n) is optimal. Hence, simulating the existing �ne grained results on a coarse

grained machine via Brent's Theorem [26] leads to a O(np
p
n) time coarse grained method. Our

algorithm runs in time O(np (log n+
p
p)), a considerable improvement over both simulation and the

existing methods.

For the problems studied in this paper, we are interested in algorithms which are optimal or at

least e�cient for a wide range of ratios n
p . We use a new technique for designing e�cient scalable

parallel geometric algorithms which depends neither on the partitioning technique of [15] nor the

randomized techniques used in [14, 13, 16]. The key idea is to use �splitters�, as introduced in [31],

to sample local data and to perform computation (of supporting lines) that would be redundant

in the sequential setting, but which reduces communication in our parallel setting. Our results are

independent of the communication network. A particular strength of this approach (which is very

di�erent from the one presented in [4, 22]), is that all inter-processor communication is restricted to

a constant number of usages of a small set of simple communication operations. This has the e�ect

of making the algorithms both easy to implement, in that all communications are performed by

calls to a standard highly optimized communication library, and very fast in practice (see Section 5

for evidence of this).
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Outline of the Algorithms

Convex hull

Our Convex Hull algorithm is described below and has the following basic structure. The entire data

set for a given problem is assumed to be initially distributed into the local memories and remains

there until the problem is solved. Given a set S of n points and a p processor coarse grained

multicomputer we show how to compute the upper hull of S. The lower hull, and therefore the

complete hull, can be computed analogously. In the remainder we assume without loss of generality

that all points are in the �rst quadrant.

Upper Hull(S)

Input: Each processor stores a set of n
p
points drawn

arbitrarily from S.

Output: A distributed representation of the upper hull

of S. All points on the upper hull are identi�ed and

labeled from left to right.

1. Globally sort the points in S by x-coordinate. Let

Si denote the set of
n
p
sorted points now stored on

processor i.

2. Independently and in parallel, each processor i

computes the upper hull of the set Si. Let Xi

denote the result on processor i.

3. Compute for each upper hull Xi, 1 � i � p, the

upper common tangent lines between it and all

upper hulls Xj , i < j � p, and label the upper

hull of S by using the upper tangent lines.

Step 1 of algorithm UpperHull(S) can be completed by using a global sort operation as described

in Section 2. Step 2 is a totally sequential step and can be completed in time O(n log np ) using well

known sequential methods [33]. The main challenge is in performing Step 3. This step amounts to

a merge algorithm in which p disjoint upper hulls are merged into a single hull. We present two

di�erent merge procedures: MergeHulls1 and MergeHulls2. The �rst, described in Section 3.4, is

a straightforward merge requiring a constant number of global communication rounds and n
p � p2

local memory per processor. The second merge procedure (MergeHulls2), described in Section 3.5,

is a more complex merge that uses the �rst merge as a subprocedure but has a higher degree of

scalability in that it can be implemented with only n
p � p� local memory, while still requiring a
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constant number of communication rounds. Both algorithms use the idea of selecting splitter sets

which was introduced in the context of solving convex hulls in [31].

Triangulation

Our algorithm for triangulating n points in R2 is based on our convex hull algorithm and the

observation that a set S of points can be triangulated by �rst triangulating x-disjoint subsets from

S and then triangulating the regions between the convex hulls formed by these triangulated regions,

which is a simpler subproblem as these regions belong to a class of simple polygons called funnel

polygons [37]. The algorithm is as follows.

Triangulate (S)

Input: Each processor stores a set of n
p
points drawn

arbitrarily from S.

Output: A distributed representation of a triangulation

of S. All segment lines of the triangulation are identi�ed

and labeled.

1. Globally sort the points in S by x-coordinate. Let

Si denote the set of
n
p
sorted points now stored on

processor i.

2. Independently and in parallel, each processor i

computes the convex hull of the set Si, and the

triangulation of its convex hull.

3. Compute upper and lower common tangent lines

between every pair of convex hulls, and horizontal

extreme points of consecutive convex hulls.

4. Label the upper funnel polygons.

5. Identify each point to its upper funnel polygon.

6. Triangulate the upper funnel polygons.

7. Repeat Steps 4-6 for the lower funnel polygons.

The remainder of this paper is organized as follows. In the next section we describe some

basic operations for the coarse grained multicomputer model. Section 3 presents our Upper Hull

algorithm, while Section 4 describes how the Upper Hull algorithm can be adapted to solve the

triangulation problem. In Section 5 we show the results obtained with a PVM implementation of

one of the versions of our algorithms on a Cray T3E. In Section 6 we present concluding remarks

and ways for further research.
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2 The Coarse Grained Model: Basic Operations

The Coarse Grained Multicomputer, CGM(n; p), considered in this paper is a set of p processors

numbered from 1 to p with O(np ) local memory each, connected via some arbitrary interconnection

network or a shared memory. We will assume that n
p � p� as was assumed in [14].

Global sort refers to the operation of sorting O(n) data items stored on a CGM(n; p), O(np ) data

items per processor, with respect to the CGM's processor numbering. Ts(n; p) refers to the time

complexity of a global sort.

Note that, for a mesh Ts(n; p) = �(np (log n+
p
p)) and for a hypercube Ts(n; p) = O(np (log n+

log2 p)). These time complexities are based on [5] and [28], respectively. For the hypercube an

asymptotically better deterministic algorithm exists [12], but it is of more theoretical than practical

interest. We refer the reader to [5, 7, 24, 26, 28, 34] for a more detailed discussion of the di�erent

architectures and routing algorithms.

We will now outline four other operations for interprocessor communication which will be used

in the remainder of this paper. All of these operations can be implemented as a constant number

of global sort operations and O(np ) time local computation. Note that, for most interconnection

networks it would be better in practice to implement these operations directly rather than using

global sort as this would typically improve the constants in the time complexity of the algorithms

described in the remainder.

Segmented broadcast: In a segmented broadcast operation, q � p processors with numbers

j1 < j2 < : : : < jq are selected. Each such processor, pji , broadcasts a list of 1 � k � n
p data items

from its local memory to the processors pji+1 : : : pji+1�1.

Segmented gather: In a segmented gather operation, q � p processors with numbers j1 < j2 <

: : : < jq are selected. Each such processor, pji , receives a data item from processors pji+1 : : : pji+1�1.

This operation is the inverse of a segmented broadcast. Note that care must be taken to ensure

that the selected processors have enough memory to receive all sent messages.

All-to-All broadcast: In an All-to-All broadcast operation, every processor sends one message to

all other processors.

Personalized All-to-All broadcast: In a Personalized All-to-All broadcast operation, every pro-

cessor sends a di�erent message to every other processor.

Partial sum (Scan): Every processor stores some values, and all processors compute the partial

sums of these values with respect to some associative operator.
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In [15], it was shown that for any CGM(n; p) with n
p � p these operations are no more complex

than sorting plus a linear amount of sequential work, i.e., they require O(np+Ts(n; p)). These results

extend easily to the case where n
p � p�, provided that each processor is to receive no more than p�

data elements.

Therefore, using the sorting procedure from [21] all the above operations can be implemented

also in the BSP model with a constant number of communication rounds.

3 Merging Convex Hulls in Parallel

In this section we show how to perform Step 3 of the upper hull algorithm given in the Introduction,

by merging p disjoint upper hulls stored on a p-processor CMG, one per processor, into a single

upper hull.

We denote by ab the line segment connecting the points a and b and by (ab) the line passing

through a and b. A point c is said to be dominated by the line segment ab if and only if c's x-

coordinate is strictly between the x-coordinates of a and b, and c is located below the line segment

ab. De�nitions 1 and 2, as illustrated by Figure 2, establish the initial condition before the merge

step.

De�nition 1 Let {Si}, 1 � i � p be a partition of S such that 8x 2 Sj; y 2 Si; j > i, the

x-coordinate of x is larger than that of y (see Figure 2).

De�nition 2 Let Xi = fx1; x2; : : : ; xmg be an upper hull. Then, predXi(xj) denotes xj�1 and

sucXi(xj) denotes xj+1 (see Figure 3). We de�ne predXi(x1)= x1 and sucXi(xm)= xm.

3XS S X S X1 1 2 2 3

Figure 2: In this example S = fS1; S2; S3g and the points in Si that are �lled in are the elements

of the upper hull of Si, namely Xi.

Given two upper hulls Xi = UH(Si) and Xj = UH(Sj) where all points in Sj are to the right

of all points in Si, the merge operations described in this paper are based on computing for a point
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q 2 Xi the point p 2 Xi [Xj which follows q in UH(Si [ Sj). The following de�nitions make this

idea more precise (See Figure 3).

De�nition 3 Let Q � S. Then, NextQ : S �! Q is a function such that NextQ(p) = q if and

only if q is to the right of p and pq is above pq0 for all q0 2 Q, q0 to the right of p.

De�nition 4 Let Y � Si. Then, lm(Y ) is a function such that lm(Y ) = y� if and only if y� is the

leftmost point in Y such that NextY [Sj ;j>i(y
�) 62 Si.

1

x 2

x 3

x 4 x 6

x 7

x 8

x 5

1y

y 2

y 3

y 4

y
x 5

Si Si+1

Figure 3: Let S0 = Si
S
Si+1 then suc(xj) = xj+1, x3 = NextS0(x2), NextS0(x3) = x4,

NextS0(x4) = x5, NextS0(x5) = NextS0(x6) = NextS0(x7) = y3, NextS0(x8) = y2, and

lm(Si) = x5.

Let X represent the upper hull of a set of n points. Let also c be a point located to the left of this

set. For the sake of completeness, we present below a sequential algorithm called QueryFindNext

to search for q = NextX(c). Figure 4 illustrates one step of this algorithm. This binary search

process takes time O(log jXj) [33].

Procedure QueryFindNext(X,c,q)

Input: an upper hull X = fx1; : : : ; xmg sorted by x-

coordinate and a point c to the left of x1.

Output: a point q 2 X, q = NextX(c).

1. If X = fxg then q  x and halt.

2. If xdm=2esuc(xdm=2e) is located below the line

(cxdm=2e)

then QueryFindNext(fx1; : : : ; xdm=2eg,c,q), else

QueryFindNext(fxdm=2e; : : : ; xmg,c,q).
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1

x 2

x 3

x 4

x 5

x 6

x 7

x 8

x

4

c

line(cx  )4

4x succ(x  )

Figure 4: One step in the binary search procedure QueryFindNext. Since the line segment x4suc(x4)

is above the line (cx4) the algorithm will recurse on fx4; : : : ; x8g.

3.1 Characterization of the upper hull

A classical way of characterizing the upper hull of a point set S, as given in [33], is based on the

observation that �A line segment ab is an edge of the upper hull of a point set S located in the �rst

quadrant if and only if all the n� 2 remaining points fall below the line (ab)�. We will work with a

new characterization of the upper hull of S based on the same observation, but de�ned in terms of

the partitioning of S given in De�nitions 1 and 4.

Consider sets S, Si and Xi as given in De�nitions 1 and 2.

De�nition 5 Let S0 = fc 2 SXi j c is not dominated by a line segment x�iNextSXj ;j>i
(x�i ); 1 �

i < pg, where x�i = lm(Xi).

We then have the following characterization of UH(S).

Fact 1 S0 = UH(S).

3.2 Parallel merge algorithms

In this section we describe two parallel merge algorithms based on the characterization of UH(S)

given in the previous section and analyze their time and space complexity for the coarse grained

model. The following de�nitions and lemma are needed in the description of the algorithms.

De�nition 6 Let Gi � Xi and g�i = lm(Gi). Let R�
i � Xi be composed of the points between

predGi(g
�
i ) and g

�
i , and R

+
i � Xi be composed of the points between g�i and sucGi(g

�
i ) (see Figure 5).

We have then the following lemma.
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i
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-

R

Figure 5: Filled points are element of Gi which is a subset of Xi composed of both of hollow and

�lled points. Let p = predGi(g
�
i ) and s = sucGi(g

�
i ). Since the R

+
i does not contain any point above

the line (g�i b) we have Ri = R�
i .

Lemma 1 One or both of R+
i or R�

i is such that all its points are under the line (g�iNextXj ;j>i(g
�
i )).

The proof of this lemma is direct, otherwise g�i 62 Xi.

De�nition 7 Let Ri denote the set R
+
i or R�

i that has at least one point above the line (g�iNextXj ;j>i(g
�
i ))

(see Figure 5).

Note that the size of the sets Ri is bounded by the number of points laying between two

consecutive points in Gi.

3.3 Computing g�i and x�i in parallel

In the following we shall show how to compute g�i = lm(Gi), where Gi � Xi. The key idea in

Procedure FindLMSubset, described below, is to send the elements of Gi, at Step 2, to all larger-

numbered processors so that processors receiving G =
S
Gj; j < i can sequentially compute, at Step

3, the required points using Procedure QueryFindNext described in Section 3, and send the answers

back at Step 4. Then, the processors can independently compute all g�i .

When the processors are divided into groups, let qiz denote the z-th processor of the i-th group.
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Procedure FindLMSubset(�i; k; w;Gi; g
�
i )

Input: Upper hulls �i; 1 � i � pk; represented each in

pw consecutively numbered processors qiz; 1 � z � pw,

and a set Gi � �i.

Output: The point g�i = lm(Gi). There will be a copy

of g�i in each qiz; 1 � z � pw.

1. Gather Gi in processor qi1, for all i.

2. Each processor qi1 sends its Gi to all processors q
j
z ,

j > i; 1 � z � pw. Each processor qiz, for all i; z,

receives Gi =
S
Gj ; 8j < i.

3. Each processor qiz, for all i; z, sequentially com-

putes Next�i
(g) for every g 2 Gi, using procedure

QueryFindNext.

4. Each processor qiz, for all i; z, sends back to all

processors q
j
1, j < i, the computed Next�i

(g),

8g 2 Gj . Each processor qi1, for all i, receives for

each g 2 Gi the computed Next�j
(g), 8j > i.

5. Each processor qi1, for all i, computes for each

g 2 Gi the line segment with the largest slope

among gsucGi
(g) and gNext�j

(g), j > i, �nd-

ing NextGi[�j ;j>i(g). Then, it computes g�i =

lm(Gi).

6. Each processor qi1, for all i, broadcasts g�i to

qiz; 1 � z � pw.

Lemma 2 Procedure FindLMSubset computes g� = lm(Gi) in a constant number of communication

rounds. Furthermore, it requires local memory space n
p � pkjGij.

Proof: The correctness of FindLMSubset stems from De�nitions 3 and 4, and Procedure

QueryFindNext. Its space requirements are: jGij at Step 1, pkjGij at Step 2, and pk at Step 4,

amounting to a total of O(pkjGij) space. All sequential operations are in O(pkjGij log n) time and

only four communication rounds are needed. 2

3.4 Merge algorithm for the case n=p � p2 (i.e., � = 2)

In this section, we describe an algorithm that merges p upper hulls, stored one per processor on a p

processor CGM, into a single upper hull using a constant number of global communication rounds.

This algorithm requires that n
p be greater than or equal to p2 and thus exhibits limited scalability.

This limitation on the algorithm scalability will be lifted in the next section.

In order to �nd the upper common tangent between an upper hull Xi and an upper hull Xj

(to its right) the algorithm computes the Next function, not for the whole set Xi but for a subset

of p equally spaced points from Xi. We call this subset of equally spaced points a splitter of Xi.
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This approach based on splitters greatly reduces the amount of data that must be communicated

between processors without greatly increasing the number of global communication rounds that are

required. Indeed, there are only �ve communication rounds, performed in three di�erent phases,

namely:

Phase 1: every processor sends a regular sample (the splitters) of size at most p (less than p if the

local convex hull is of size smaller than p) of its data to all larger numbered processors. The

supporting tangents are then computed and sent back.

Phase 2: every processor sends the data laying between two splitters to all larger numbered pro-

cessors. The supporting tangents are then computed and sent back.

Phase 3: every processor send its NextS to all larger numbered processors. They can then compute

their own points in the �nal upper hull.

Algorithm MergeHulls1(Xi(1 � i � p); S; n; p; UH)

Input: The set of p upper hulls Xi consisting of a total of

at most n points from S, where Xi is stored on processor

qi, 1 � i � p.

Output: A distributed representation of the upper hull

of S. All points on the upper hull are identi�ed and

labeled from left to right.

1. Each processor qi sequentially identi�es a splitter

set Gi composed of p evenly spaced points from

Xi.

2. The processors �nd in parallel g�i = lm(Gi). This

is done via a call to Procedure FindLMSubset.

3. Each processor qi computes its own R�
i and

R+
i sets according to De�nition 6, and the

set Ri of points which are above the line

(g�iNextGi[Xj ;j>i(g
�
i )), according to Lemma 1.

4. The processors �nd in parallel x�i = lm(Ri [ g
�
i ),

using Procedure FindLMSubset. Note that by

de�nition NextS(x
�
i ) 62 Xi.

5. Each processor qi broadcasts its NextS(x
�
i ) to all

qj , j > i, and computes its own S0i according to

De�nition 5.

Lemma 3 Algorithm MergeHulls1 computes UH(S) in O(n log n
p +Ts(n; p)) time. It requires n

p � p2

local memory space and a constant number of communication rounds.

Proof: By Fact 1, the sets S0
i computed at Step 5 are a distributed representation of UH(S).

Algorithm MergeHulls1 calls Procedure FindLMSubset twice. At Step 2, the parameters can be set
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as �i = Xi, k = 1, w = 0 and Gi = Gi, implying that jGij = p. At Step 4 they are the same

again, but for Gi = Ri
S
g�i . Therefore, jGij = jRi

S
g�i j = jXij

p � n
p2 . Thus, the required local

memory space is n
p � p2, by Lemma 2. The same lemma guarantees that the sequential operations

in MergeHulls1 take O(p2 log n) = O(np log n) time and that only �ve communication rounds are

used. 2

3.5 General case n=p � p�

In this section, we describe an algorithm, MergeHulls2, that merges p upper hulls, stored one

per processor on a p processor CGM, into a single upper hull using a constant number of global

communication rounds. Unlike the algorithm MergeHulls1, this algorithm requires only n=p � p�

memory space per processor, 0 < � � 1. For instance and the sake of clarity, imagine that � = 1.

The algorithm would be as follows.

1. In the �rst phase, the algorithm MergeHulls1 is used to �nd the upper hull of groups of
p
p

processors, in �ve communication rounds, with jGij equal to pp. Note that the space required
in this phase is O(p).

2. The second phase merges these
p
p upper hulls of size at most

n
p
p

p each, instead of the p

initial ones. Thus, with jGij = p
p again, Step 2 requires only p space. However, we should be

careful, because the size of each set Ri is, in the worst case,
n
p
p

pjGij , implying that Step 4 requires

up to
n
p
p

p space, which is too much. Thus, a further reduction of their sizes is needed. This

is accomplished through the simple observation that the sets Ri are upper hulls themselves,

and we can recursively apply to the Ri, for all i, the same method used in MergeHulls1 to

�nd x�i = lm(Ri [ g�i ). Only seven communication rounds are required in this phase.

Applying the same idea further we get a generalization to the case where n
p � p�. The algorithms

are described and analysed in the following. Recall that the processors are divided into groups, and

qiz denote the z-th processor of the i-th group.
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Procedure BuildHulls(�i ;	j ; p; k; w; �)

Input: Upper hulls �i; 1 � i � p
pw

; represented each in

pw consecutively numbered processors qiz; 1 � z � pw.

The parameter � re�ects the size of the local memory of

each of the p processors.

Output: Upper hulls 	j = UH(
Sjpk

i=(j�1)pk+1
�i), for

1 � j � p

pw+k
.

1. Gi  � �i.

2. While jGijp
k > p� do

(a) Each group of processors qiz, 1 � z � pw,

identi�es a splitter set G0
i composed of p�=2

evenly spaced points from Gi.

(b) FindLMSubset(�i; k; w; Gi; g
�
i ).

(c) If g�i suc�i(g
�
i ) is above g�iNext�j ;j>i(g

�
i )

then Ri is composed of all points of �i be-

tween g�i and sucGi
(g�i ); else Ri is composed

of all points of �i between predGi
(g�i ) and

g�i .

(d) Let Gi  � Ri [ fg
�
i g.

3. FindLMSubset(�i; k; w;Gi; x
�
i ).

4. Each processor qi1 broadcasts its x
�
i to all qhj , h =

(imod(pk + 1))pk + 1; : : : ; (imod(pk + 1))pk + pk

and 1 � j � pw.

5. Each processor computes its own S0i according to

De�nition 5.

Lemma 4 Procedure BuildHulls computes 	j = UH(
Sjpk

i=(j�1)pk+1
�i), for 1 � j � p

pw+k
in

O(n log n
p + Ts(n; p)) time. Let � = maxf(k + �=2); �g. It requires n

p � p� local memory space

and a constant number of communication rounds.

Proof: The memory requirements of Procedure BuildHulls are as follows. At Step 2(b),

n
p � pk+�=2. At Step 3, np � p�. And at Step 4, np � pk. The computation takes O(np log n+p

kjGij) =
O(np log n) time. With respect to the number of communication rounds, notice that at Step 2 there

are at most p�+w points in �i. Each passage at Step 2(a) reduces this size by a factor of p�=2. Thus,

there are 2(�+w)
� phases, where a phase is a call to Procedure FindLMSubset. 2
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Algorithm MergeHulls2(Xi; S; n; p; UH(S); �)

Input: The set of p upper hulls Xi consisting of a total of

at most n points from S, where Xi is stored on processor

pi, 1 � i � p. The parameter � re�ects the size of the

local memories.

Output: A distributed representation of the upper hull

of S. All points on the upper hull are identi�ed and

labeled from left to right.

1. Let k = �
2
, w = 0, and X0

i = Xi.

2. Do

(a) BuildHulls(Xw
i ; X

w+k
j ; p; k; w; �).

(b) w w + k.

Until w � 1.

Theorem 1 Algorithm MergeHulls2 computes UH(S) in O(n log n
p + Ts(n; p)) time. It requires

n
p � p� local memory space and a constant number of communication rounds.

Proof: Lemma 4 implies that n
p � pk+�=2, and so n

p � p�. With respect to the number of

communication rounds, Procedure BuildHulls is called 2
� times. By Lemma 4, there are 2(�+w)

�

phases in each call. Hence, since in the t-th passage at Step 2(a) it holds that w = (t � 1) �2 ,

then there is a total of �
2=�
t=1t = O((2� )

2) communication rounds. Finally, this implies that local

computation takes O( 1
�2

n
p log n) time. 2

Corollary 1 The convex hull of n planar points can be computed on a CGM(n,p) in time O(
Tsequential

p +

Ts(n; p)), where Ts(n; p) refers to the time of a global sort of n data on a p processor machine. Fur-

thermore, they involve only a constant number of global communication rounds and n=p � p�, for

an arbitrarily small but constant � > 0.

4 Triangulation of a Point Set

In this section we describe how the same ideas developed in the previous section can be used

to �nd a triangulation of a planar point set. The algorithm is based on geometric observations

originally used in a PRAM algorithm [37]. We extend their basic technique in order to ensure

that the resulting algorithm is both scalable over a large range of the ratio n=p, and uses only a

constant number of global operations rounds. Note that the triangulation yielded by the algorithm

Triangulate presented below is not the same as the one obtained in [37].
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A funnel polygon consists of two x-monotone chains and a top and a bottom line segment (see

Figure 6). Given p x-disjoint convex hulls, Xi 1 � i � p, and a set of upper and lower common

tangent lines the regions between the hulls form a set of funnel polygons if the horizontal extreme

points of consecutive upper hulls Xi are connected (see Figure 7). Funnel polygons can easily be

triangulated as will be shown in the following algorithm. For details on funnel polygons in the

context of triangulations, we refer the interested reader to [37].

Triangulate (S)

Input: Each processor stores a set of n
p
points drawn

arbitrarily from S.

Output: A distributed representation of a triangulation

of S. All segment lines of the triangulation are identi�ed

and labeled.

1. Globally sort the points in S by x-coordinate. Let

Si denote the set of
n
p
sorted points now stored on

processor i.

2. Independently and in parallel, each processor i

computes the convex hull of the set Si, and the

triangulation of its convex hull.

3. Compute upper and lower common tangent lines

between every pair of convex hulls, and horizontal

extreme points of consecutive convex hulls.

4. Label the upper funnel polygons.

5. Identify each point to its upper funnel polygon.

6. Triangulate the upper funnel polygons.

7. Repeat Steps 4-6 for the lower funnel polygons.

In Step 1 the points of S are globally sorted and the local convex hulls are computed in Step

2. Step 3 starts by connecting the horizontal extreme points of consecutive upper hulls Xi (see

Figure 7). Then, x�i = lm(Xi) and NextXj ;j>i(x
�
i ) are computed as in Section 3.5. Finally, an

all-to-all broadcast is performed so that each processor i knows x�j = lm(Xj) and NextXz;z>j(x
�
j ),

for all i � j. Clearly, the time complexity of this Step is dominated by the computation of x�i and

Next(x�i ), that can be implemented through the procedures FindLMSubset and FindLMSubHull

described in the Section 3.5.

Steps 4 and 5 are locally performed on each processor, using the information received at the end

of Step 2. Note that, each funnel polygon is delimited by the segment line x�iNext(x�i ), and labeled

Fi (see Figure 7). Given that each processor stores a table with all common tangent lines, they can

identify for each point of their hull the funnel polygon they are part of by a simple sequential scan

of their hull points.
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Step 6 is the most technical one. Let ai and bj denote the points in the left and right chain of

a funnel polygon, respectively (see Figure 6). Form records containing, for all points ai on the left

chain, the slope from a point ai to its successor ai+1 in the chain. Also, form records containing,

for all points bj on the right chain, the absolute value of the slope from bj to its successor bj+1 in

the chain. Note that if we sort the a's and b's together by �rst key: funnel polygon label; second

key: slope records; third key: left chain �rst, right chain next; then we get a sequence of the form

f: : : akak+1bhak+2bh+1bh+2bh+3bh+4ak+3 : : :g. The set of line segments that forms a triangulation of

the funnel polygon can be easily constructed by forming the set f(biaj) [ (arbs)g, where aj is the
�rst a to the left of bi and bs is the �rst b to the left of ar.

3
b2b3

b4

1a

a2 1b

a

Figure 6: Two funnel polygons.

In order to implement this step, we need only a global sort operation on the a's and b's, followed

by a segmented broadcast, where each a is broadcast to every element until the next a to its right

in the sorted list, and each b is broadcast to every element until the next b to its right in the sorted

list. The line segments composing the triangulation can thus be easily constructed.

Only global sort and global communication operations are used in addition to the call to Find-

LMSubset and FindLMSubHull. Therefore, procedure Triangulation above builds a triangulation of

a point set in R2 on a CGM(n; p) in time O(n log np +Ts(n; p)), where Ts(n; p) refers to the time of a

global sort of n data on a p processor machine. Furthermore, it only requires n=p � p local memory

(the all-to-all broadcast used in Step 3), and a constant number of global communication and sort

rounds. In order to reduce the local memory requirements to n=p � p�, 0 < � < 1, it su�ces to use

the technique introduced in Section 3.5, where groups of p��� processors were formed, 0 < � < �,

and this recursively for O((1� )
2) communication rounds.
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Figure 7: Note that the region between the hulls can be seen as a set of funnel polygons.

5 Experimental Results

To show the practical relevance and the scalability of our upper hull CGM algorithm, we have

implemented its �rst version, with n=p � p2, on a 256-processors T3E-CRAY computer [3], where

64 processing elements have been dedicated to our experiments in a single user mode. PVM routines

have been used for the communications1.

Most of our experimental analysis were conducted with sorted inputs, so that we could focus

on the behavior of the proposed algorithm. Nevertheless, we also provide some experiments with

unsorted data for readers who would want to compare our algorithm to others that would not use

sorting.

The sequential convex hull algorithm used in our coarse grained algorithm is an adaptation to

sorted inputs, of Clarkson's code [6]. This code is an implementation of a slight modi�cation of

Procedure 8.2 from [18]. Its time complexity is O(n log n) for an arbitrary set of points. However

in the case of pre-sorted data, the complexity becomes linear. Each point is implemented as a pair

of two single precision �oating point numbers (coordinates of the point).

We remark that if S is a set of uniformly distributed points in the plane, the upper hull of S

consists in average of just a few points of S [17]. This data reduction can considerably speedup our

parallel merging phase, since the amount of data remaining in this phase is, in average, signi�cantly

smaller than the size of the initial set S. Therefore, in the remainder we report the behavior of our

algorithm with respect to the worst case input (i.e., all the points of the initial set belong to the

upper hull), intermediate data sets (i.e., data sets with an important number of points on the upper

hull), and random data sets.

Recall that in the merging phase of the version where n=p � p2, there are three main phases:

Phase 1: every processor sends a regular sample (the splitters) of size at most p (less than p if the

1The codes are available upon request.
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local convex hull is of size smaller than p) of its data to all larger numbered processors. The

supporting tangents are then computed and sent back.

Phase 2: every processor sends the data laying between two splitters to all larger numbered pro-

cessors. The supporting tangents are then computed and sent back.

Phase 3: every processor send its NextS to all larger numbered processors. They can then compute

their own points in the �nal upper hull.

Processor p is the one receiving the largest amount of data i.e., (p � 1)p in Phase 1, (p � 1) np2

in Phase 2 and p� 1 in Phase 3. When sending back the results, the same amount of data moves

again and processor i plays the role of processor p� 1� i. Thus the total communication time is

Tcom = O(p2 +
n

p
): (1)

With respect to the local computation, every processor computes with its n=p local data and all

the data it receives from the others. Hence, the local computation time is

Tloc = O(
n

p
+ p2 log

n

p
+
n

p
log

n

p
); (2)

and the total time is

Ttot = Tloc + Tcom: (3)

In the following, we present our experimental results. The running time for the random points

set is the average of the running times on 10 di�erent random points sets. We notice that conclusions

are di�cult to draw in the case random data sets because of the unpredictable way in which data

reduction occurs. Therefore, we also experimented our algorithm with a worst case input, i.e., an

instance where all the points belong to the �nal upper hull. For that, we forced all the points to

lay on a straight line.

Figure 8 plots data for an increasing number of points when the number of processors is �xed.

Figure 8(a) shows both the random and the worst case. We can notice the divergence of the two

curves as n grows. According to Equations 2 and 1, the local computation time grows proportional

to n log n and the communication time grows proportional to n. As mentioned above, for random

points sets the data reduction plays an important role, and the computation time described in

Figure 8 accounts mainly for the computation of the initial upper hull.
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Figure 8: Fixed p (p = 32).

Figure 8(b) shows plotted data for the worst case. The local time grows proportional to n log n

(Equation 2). The total communication time grows very smoothly.
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Figure 9: Fixed n (n = 1,500,000).

Figure 9 plots data for an increasing number of processors when the number of points is �xed.

Figure 9(a) shows speedups for both random and worst cases. For the random case, a coherent

behaviour is observed when p is small. However, when p increases, so does the total number of

messages and the number of communication startups. Hence, the good behaviour can be maintained

until the communication time is no longer negligeable compared to the local computation time.

In the worst case (Figure 9(b)), the observed speedup is better because the amount of local
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computation (computation of the local hull and the supporting tangents) is large enough when

compared to communication, as shown in Equations 1 and 2.
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Figure 10: Fixed ratio n/p (n/p = 200,000).

Figure 10 shows the behaviour of the algorithm when there is a �xed amount of data per

processor and the number of processors increases, n
p = 200; 000. In both random and worst case,

the curves have the same shape. For small values of p we have a good scalability. But as p grows,

the p2 factor starts to appear (see Equation 3).
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Figure 11: Breakdown 1 (p = 8, n = 800,000).

Figure 11 gives the breakdown of our algorithm for the random, the intermediate and the worst

case data sets for p = 8 and n = 800; 000. The �rst group of vertical bars corresponds to the
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computation of the local hull; the second group to the total computation in the merging phase; and

the third group to the total communication time. We remark that the total computation time is

essentially composed of the computation time in the merging phase.
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Figure 12: Breakdown 2 (p = 8, n = 800,000).

Figure 12 shows the breakdown of the computation in the merging phase. The �rst group of

vertical bars corresponds to the computation time of the NextS of splitters. The second group to

the computation of the leftmost points and the data (between two splitters) to be sent during the

second communication phase. The third group, is the computation time of the NextS of those data

sent during the second communication phase. The last group corresponds to the computation time

of the points on the �nal hull. Hence, the computation time during the merging phase is almost

totally due to the computation of the NextS of data between two splitters. This computation phase

seems to be the bottleneck of our algorithm and, in case it comes of use in real application, further

work should try to improve this phase.

Figure 13 shows the evolution of run time when we pass progressively from a random points

set to the worst case points set. The curve was obtained with n = 800; 000 and p = 4. The time

corresponding to a totally random input set is shown by the dashed line and, as we can see, the

average number of points on the upper hull for this input set is roughly 25 percent of the total

number of points.

Finally, Figure 14 presents results of experiments on building upper hulls of unsorted data.

A sample sort algorithm [20] has been implemented. We have also implemented a parallel pre�x

algorithm at the end of the sorting procedure, to make sure that every processor holds n=p points.
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Figure 13: Fixed p and n (p = 4, n = 800,000).

These experiments are reported only for the sake of completeness, in order to allow for comparison

with other parallel convex hull algorithms that do not use sorting.

6 Conclusion

In this paper we described scalable deterministic parallel algorithms for building the Convex Hull and

a Triangulation of a planar point set using the coarse grained multicomputer model. Our algorithms

require time O(n log n
p + Ts(n; p)), where Ts(n; p) refers to the time of a global sort of n data on a

p processor machine. Furthermore, they involve only a constant number of global communication

rounds and scale over a large range of values of n and p, assuming only that n � p1+� (� > 0). The

algorithms proposed in this paper are based on a variety of techniques arising from more theoretical

models for parallel computing, such as the PRAM and the �ne-grained hypercube. It would be

interesting to identify those parallel algorithm design techniques for theoretical models that can be

extended to the very practical coarse grained multicomputer model.
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