COMPUTER VISION AND IMAGE UNDERSTANDING
Vol, 62, No. 1, July, pp. 1-10, 1995

Hypercube Algorithms for Parallel Processing of
Pointer-Based Quadtrees

FrANK DEHNE* AND ANDREW RAU-CHAPLINT

School of Computer Science, Carleton University, Qitawa K18 5B6, Canada

AND

AFONsO G. FERREIRAT

Laboratoire de I'Informatique du Parallelisme - CNRS, Ecole Norm. Sup. de Lyon, 69364 Lyon, Cedex 07, France

Received October 9, 1990: accepted June 13, 1994

This paper studies the parallel construction and manipulation
of pointer-based quadtrees on fine grained hypercube multiproces-
sors. Previous papers considered the parallel processing of linear
quadtrees. Here we show that parallel pointer-based quadtrees are
a viable alternative. We first solve the problem of efficiently con-
structing a pointer-based (or linear) quadtree from an image rep-
resented ¢ither by a binary matrix ar a houndary code. Then we
present efficient parallel manipulation algorithms for pointer-
based quadtrees, such as finding the neighbors of all leaves in a
quadtree or computing the union/intersection of two quadtrees.
These algorithms improve on existing time complexities and can
be implemented in fine grained hypercube systems (e.g., the Con-
nection Machine CM2). In the expected case, the space complex-
ity is the same as for previous methods. In the worst case (of a
degenerated quadtree), the space complexity increases by a factor
which, for the hypercube, is smaller than the time complexity
improvement. As a byproduct of our hypercube algorithms, we
also obtain some PRAM algorithms for quadtrees that improve on
known results. © 1995 Academic Press, Inc.

1. INTRODUCTION

A region quadtree is a well-known hierarchical data
structure for representing a binary image of size VM x
VM (VM = 2’ for some positive integer r). The root of
the quadtree represents the entire image and has a value
“‘black,” *“white,”” or “‘gray’” depending on whether the
entire image is black, white, or composed of both types of

* Research partially supported by the Natural Sciences and Engi-
neering Research Council of Canada.

t Research partially supported by the Bell-Northern Research Grad-
uate Award Program.

§ Part of this work was done while on leave from the University of
Sao Paulo {Brazil), project BID/USP. Research partialty supported by
CAPES/COFECUB {(Grant 503/86-9). Support from the French C3 is
acknowledged.

pixels, respectively. If the root is gray, it has four chil-
dren which are the roots of quadtrees recursively repre-
senting the four quadrants of the image; otherwise it has
no children. For the remainder, we do not differentiate
between a node of a quadtree and the portion of the im-
age represented by that node.

There are two widely used representations of quad-
trees. A pointer-based quadtree uses the standard tree
representation. A linear quadiree can be either a preor-
der traversal of the nodes of a quadtree or the sorted
sequence (with respect to the preorder of the tree) of the
quadtree’s leaves. Some linear quadtree representations
of the second type store with each leaf also a code se-
quence representing the path from the root to that leaf
(linear quadtree with path encoding) while others store
for each leaf only its size and location (firear quadtree
without path encoding). For an overview and bibliogra-
phy on quadtrees and applications we refer to the work of
Samet ([18]).

Quadtirees are a very useful and widely used data struc-
ture for image processing, and quadtree algorithms for a
number of image-processing tasks have been developed
[18]. Recently, researchers have also started to consider
quadtree algorithms for parallel modeis of computation
(2, 7, 9, 12, 13]. While some papers [12, 13] consider
parallel architectures designed (ot reconfigured) particu-
larly for quadtree manipulation, others [2, 9] consider the
general purpose architectures mesh-connected computer
and PRAM, respectively. Hung and Rosenfeld [9] study
mesh-connected computer algorithms for constructing
and manipulating linear quadtrees without path encoding,
while PRAM algorithms for manipulating linear quad-
trees with path encoding are studied by Bhaskar ¢z al. [2].

Table 1 lists the parameters that will be used for the
remainder of this paper. Best results on the mesh are
listed in Tables 2 and 3 (rightmost column). PRAM algo-

1077-3142/95 $12.00
Copyright © 1995 by Academic Press, Inc.
All rights of reproduction in any form reserved.

2 DEHNE, RAU-CHAPLIN, AND FERREIRA

TABLE 1
Overview of Parameters

M Number of pixels in the original image

Length of the boundary code

Size of the pointer-based quadtree

Size of the linear guadtree with path encoding
Size of the linear guudtree without path encoding
Height of the quadtree

Time complexity

Total memory space

Number of processors

LTI -

rithms for manipulating linear quadtrees are listed in Ta-
ble 3 (second column from the right). The hypercube time
and space complexities listed in Table 3 for manipulating
linear quadtrees with path encoding are obtained from [2]
by using standard PRAM simulation on a hypercube, as
described by Nassimi and Sahni [14], together with
Cypher and Plaxton’s deterministic hypercube sorting al-
gorithm [4].

In this paper, we study parallel construction and ma-
nipulation of quadtrees on fine grained hypercube multi-
processors (hypercubes with a large number—more than
10,000—of small processors). The Connection Machine
CM2 is an example of an existing fine grained system. We
extend previous results for the hypercube in two direc-
tions.

(1) We study parallel quadtree construction algorithms
for the hypercube. We describe algorithms for converting
images, represented by either a binary array or a bound-
ary code, into pointer-based as well as linear quadtrees.
Table 2 summarizes these results.

(2) We study parallel hypercube methods for manipu-
lating pointer-based quadtrees. We show that, for parallel
processing, pointer-based quadtrees are an attractive al-

pointer-based guadtrees presented in this paper improve,
in the expected case, on previously presented methods.
Table 3 summarizes our contribution. Note that the algo-
rithms in [2] apply to linear quadtrees with path encoding.
In the expected case, the height, A, of the quadtiree is
O(log N) ([1, 8, 10]. Hence, N = O(N'); i.e., the linear
and pointer-based quadtrees have, asymptotically, the
same space requirement. In this case, we obtain improve-
ments in the time complexity for several problems, such
as computing the neighbors of all leaf nodes and the pe-
rimeter of an image [O(h log N) vs O(# log*Nlog?log N)]
or computing the union/intersection of two quadtrees
[O(h log N) vs O(h log’N loglflog N)]. In the worst case,
h = O(N), the linear quadtree with path encoding needs
to store one path requiring O(h) bits, while the pointer-
based quadtree needs O(h) pointers of Q(log k) bits each;
that is, N = Q(N' log k). Then, we obtain a time space
trade-off between the above time complexity improve-
ments and increased storage for pointer-based quadtree
algorithms. Note that the space increases by a factor
smaller than the time complexity improvement.

As a byproduct of our hypercube algorithms, we also
obtain some PRAM algorithms for quadtrees (see Table
3). Note that the emphasis of this paper is on hypercube
algorithms, and these straightforward observations for
the PRAM are not necessarily optimal. They are listed
only because ¢ither no previous PRAM algorithm existed
or they improve on existing results.

The remainder of this paper is organized as follows. In
Section 2, we discuss some preliminaries concerning the
models of parailel computation and describe a technique
called the dvramic multiway search paradigm. In Sec-
tion 3, we present efficient hypercube algorithms for con-
structing a (pointer-based or linear) quadtree from a bi-
nary image or from an image represented by its boundary
code. In Section 4, we introduce efficient parallel hyper-
cube algorithms for manipulating pointer-based quad-

ternative to the linear quadtrees studied in the previous trees.

literature.

The parallel manipulation algorithms for

TABLE 2

Parallel Quadtree Construction Methods (New Results Are in Boldface)

Section 5 contains some observations for the
PRAM, and Section 6 concludes the paper.

Pointer-based quadtree

Linear quadtree

Problem Hypercube PRAM Hypercube PRAM Mesh
Convert image to quadtree s=p=M, s=M, s=p=M, s=M, s=p=M,
t = Olog* M) p = Mllog M, £ = O(log* M)* p = Mllog M, t=0(VM)
t = O(log M) t = O(log M) [
Convert boundary code to quadtree s=p=h, =p=b, s=p=bh, =p=bh,
t = O(hlog b) = Oh log by t = O(hlog b) = Ok log b)*

< Simple consequence of the respective hypercube result.

HYPERCUBE ALGORITHMS FOR POINTER-BASED QUADTREES 3
TABLE 3
Parallel Quadtree Manipulation Methods (New Results Are in Boldface)
Pointer-based quadtree Linear quadtree
Problem Hypercube PRAM Hypercube PRAM Mesh
Determine neighbors of ail s=p=N, s=p=N, s=p=N', s=p=N", s=p=n,
teaf nedes/compute t= Ohlog N) 1 = Othye t = Othlog? N’ t=O0thlog N 1= O{W)
perimeter logllog N*) [9}
s = p 0@ = O(N),
s=p=0@=O0N), =00kt logN)
t = O(h log N’ logllog [2]
N+ log? N’ logflog
Ny
compute area/centroid s=N =N, s=p=N", s=N' s=p=n,
p=N, p = Nilog N, t=0O(log N')* p=N' = 00Vn)
t = O(log N): t = Olog N t=O(log N &J]
2]
Rotate by i*90° s=p=N, s=p=N,
t= 06+ 1logN) +=0MH"
Compute union intersection s=p=N, 5= N, s=p=N', s=p=N'", s=p=n,
t=0OthlogN) p= NilogN, t= O(h logt N') t=0hlog N t=0(Vn)
t = Olog N) [11] log’log N ") [2] 9]
Compute complem. s=p=N, s=p=N, s=p=N", s=p=N’, s=p=a,
t = O{1)d t=0() t=0hlog N’ t= Ok t= O(\/H)
logllag N’y 2] 19]
Determine connected comp. §=p=an,
1= 0(Vn)

9]

2 Simpie consequence of the respective hypercube result.

4 Follows from {2] by standard PRAM simulation on a hypercube as described in [12], together with [4].

¢ Obvious, and lsted for completeness only,

¢ Assumes (1) time host to nodes instruction broadcast (e.g., connection machine).

2. PRELIMINARIES

Before presenting our quadtree algorithms, we intro-
duce some notations and previous results which will be
used in the remainder. We start by defining the parallel
models of computation used in this paper.

2.1. The Hypercube Multiprocessor

A hypercube multiprocessoris aset Py, ..., P, of p
processors connected in a hypercube fashion; i.e., P; and
P; are connected by a communication link if and only if
the binary representations of 7 and j differ in exactly 1 bit.
In a hypercube, there is no shared memory. The eatire
storage capability consists of constant size local memo-
ries, one attached to each processor (s = O(p)).

2.2. Storing Pointer-Based Quadtrees on a
Hypercube Multiprocessor

For the hypercube, we require a scheme for distribut-
ing a quadtree over its local memories. Consider the level
order numbering of the nodes of a quadtree as indicated
in Fig. 1. For the remainder we will assume that each
node with level order number i, together with the at-
tached data and pointers to its children, is stored at pro-
cessor F;.

In most of the algorithms presented henceforth, we will
use the shuffled row-major (SRM) numbering of a binary
image represented in a grid . Contrarily to the row-
major (RM) numbering, where pixels are numbered row
after row, from left to right (as shown in Fig. 2a), the
SRM numbering is obtained from the RM numbering as
follows. Let i be the RM number of position G(j,), and

4 DEHNE, RAU-CHAPLIN, AND FERREIRA

FIG. 1. Level order numbering of the nodes of a quadiree.

let byby - - - b, be the binary representation of (i — 1).
Further, let b, b(q/2)+1b2 b(qj2)+2 v bq,'z bq {the shuffling of
biby - -+ by) represent the integer i'. Then i’ is the SRM
number of G{(j, k). See Fig. 2b.

On the hypercube, the conversion between SRM and
RM numbering can be performed in time O(log N) by a
bit-permute-complement operation as described in [15],
provided that the SRM/RM number and hypercube ad-
dress are identical.

2.3

Let T = (V, E) be a tree of size &, height %, and out-
degree O(1), and let I/ be a universe of possible search
queries on T. A search path for a query g € Uis a
sequence path(q)y = (v, . . ., vy) of h vertices of T de-
fined by a successor function f: (V U {start})) x U > V.
That is, fis a function with the property that f(start, g} €
V and for every vertex v € V, (v, f(v, q)) € Eor f(v, q),
v) € E. A search process for a query g with search path
(v, . . ., vy is a process divided into / time steps ¢, <
f; << - - - < tysuch that at time ¢;, | < { < k, there exists a
processor which contains (in its local memory) a descrip-
tion of both the query g and the node ©;. Note that we do
not assume that the search path is given in advance. We
assume that it is constructed “‘online’’ during the search
by successive applications of the function f. Given a set
O={qi,...,q. C Uof mqueries, m = O(k), then the
multivay search problem consists of executing (in paral-
lel} all m search processes induced by the m queries.!

The best way to visualize this process is to depict each
search process as a pebble, representing the respective
query and moving through the tree T. A pebble may only
move along edges of T, but it can traverse them in both
directions. The multiway search problem consists of m
such pebbles moving simultaneously through the tree. At
each time step, every pebble decides which node to
“visit’> next, and then all pebbles are simultaneously

Multiway Search on a Tree

! In subsequent sections, queries will also be referred to as messages.

moved. Note that, each node of the tree may be visited,
at any time, by an arbitrary number of pebbles.

On a PRAM (of size max{k, m}) multiway search can
be casily implemented in time @(4). Each query (pebble)
is simply represented by one processor, navigating it
through the tree, stored in the shared memory. The
PRAM’s concurrent read capability ensures that queries
visiting the same node do not interfere.

For hypercube multiprocessors, it was shown in [6]
that the multiway search problem can be solved in time
O(h log (max{k, m})) on a hypercube of size max{k, m}.
The algorithm applies to a class of graphs called ordered
h-level graphs |see [6] for a precise definition) which in-
cludes the class of all trees with constant degree. The
following outlines the global structure of the algorithm
{applied to the special case of search trees): Initially, the
tree is stored as indicated in Section 2.2. The m search
queries are stored in arbitrary order (with each processor
storing at most on¢ query). The m search processes for
the m queries g, . . ., ¢, are executed simultaneously in
phases, each requiring time O(log (max{k, m})). Each
phase moves all queries one step ahead in their search
paths. In each phase, the queries are permuted such that
they are sorted with respect to the level order number of
the respective node they want to visit next. Furthermore,
a copy of the search tree is created and its nodes are
permuted such that, at the end of each phase, each pro-
cessor containing a query g also stores a copy of the
node the query wants to visit next. See [6] for a full
description of the algorithm.

Consider the problem of changing the tree T or the set
© of queries during the execution of a multiway search.
That is, during the search (more precisely, at the end of
each phase of the algorithm outlined above) leaves may
be added to T, subtrees may be deleted from T, and que-
ries may duplicate or delete themselves. This problem is
referred to as the dvnamic muftivay search problem. In
[5] it has been shown that this problem can be solved, for
the hypercube, such that the time complexity of each
phase is still O(log (max{k, m})). That is, the time com-
plexity of the entire multiway search procedure for the
dynamic case is still O(h log (max{k, m}})). For the

1 12 |3 |4 1 |12 |5 {6
718 314 |7
9 (10]11]12 9 |10]13314
13114]15]16 11]12]15]|16
a b
) FIG. 2. (a) Row-major numbering. {b} Shuffled row-major number-
ing.

HYPERCUBE ALGORITHMS FOR POINTER-BASED QUADTREES 5

PRAM, the dynamic version also requires time O(h log
(max{k, m})). The problem here is that the assignment of
processors to new queries and the assignment of storage
space of deleted nodes to newly created ones may require
a partial sum operation for each phase of the algorithm,
which slows down the static solution by a factor of O(log
(max{k, m})).

3. HYPERCUBE ALGORITHMS FOR CONSTRUCTING
QUADTREES FROM IMAGES AND BOUNDARY CODES

3.1. Quadtree from Binary Image

Consider a VM X VM binary image stored on a hy-
percube (with M processors) in row-major numbering.
That is, processor P; stores the pixel with row-major
number i.

Computing a pointer-based quadtree from a binary im-
age representation in Oflog M) is immediate on the
PRAM, with s = M and p = M/log M. Thus, simulation
gives an upper bound of O{log? M (log log M)?) for solv-
ing the same problem on a hypercube multiprocessor
with s = p = M.

The following is an outline of an O(log?> M) time paral-
lel hypercube algorithm for computing a pointer-based
quadtree from a binary image representation. (The imple-
mentation details will be presented afterward.)

(I) For each pixel (in parallel} its SRM number {(as
indicated in Section 2.2) is computed.

{2) All pixels are ordered according to the SRM num-
bering.

(3) A complete 4-ary tree, with the sorted sequence of
pixels as leaves, is built.

(4) From each leaf a message is sent along the path to
the root of the tree. The messages move synchronously
upward from level to level. At each level, the following is
executed:

If all four messages reaching a node x come from black
{white} children, then x is set to black {white} and its
children are marked ‘“to be deleted.” If the messages
reaching x are from children with different color, x is set
to gray.

(5) All nodes marked to be deleted are deleted, the
remaining nodes are compressed to form a consecutive
sequence, and all pointers are updated.

THEOREM [. The pointer-based quadrtree representa-
tion of a VM x VM binary image can be computed in
time O(log? M) on a hypercube with s = p = M.

Proof. From the definition of quadtrees it follows that
the tree generated by the above algorithm is the correct
quadtree. What remains to be shown is that the above
steps can be implemented within the claimed time com-

plexity bounds. Step 1 requires only the local computa-
tion of the shuffled-row-major number of the respective
pixel at each processor. For a VM x VM image, this
takes O(log M) local computation steps. Step 2 requires
time O{log M) because it reduces to the bit-permute-com-
plement operation described in [15]. Step 3 can be imple-
mented by building the tree level by level, starting with
the leaves (which are given). Since it is a complete tree,
at each stage the addresses of the nodes of the subse-
quent level can be immediately computed. This results in
an O(k log M) = O(log? M) time algorithm, because rout-
ing the nodes of the subsequent level to their respective
positions reduces to a concentrate and distribute opera-
tion of [14]. Step 4 is a multiway search operation as
outlined in Section 2.3, with traveling messages repre-
sented by query processes. Hence, it requires time
O(h log M) = O(log* M). Note that Step 4 does not
change the topology of the tree but marks only the nodes
to be deleted. In Step 5, the marked nodes are deleted by
compressing the sequence of the remaining (nonmarked)
nodes. This can be accomplished by a concentrate opera-
tion [14]. The problem of updating the pointers (address
references between three nodes) can be solved by reper-
muting the tree to its original shape, communicating the
new addresses between adjacent nodes through concen-
trate and distribute operations, and recompressing the
tree. Hence, Step 5 requires time C(log M), =

Linear quadtrees without path encoding can be con-
structed in essentially the same way by marking in Step 4
also gray nodes as to be deleted. For linear guadtrees
with path encoding, we also need to compute (between
Steps 4 and 5) the path encoding for each leaf by applying
one additional multiway search procedure. Therefore,
the linear quadtree representation (with or without
path encoding) of a VM x VM binary image can also
be computed in time O(log? M) on a hypercube with
s=p=M.

3.2, Quadtree from Boundary Code

Consider an image 7 described by a boundary code of
length b; i.e., a sequence a;, ... , @, of b boundary
elements a; & {r, |, u, d} as shown in Fig. 3 (see [16]). The
image I consists of the entire area inside the boundary
line defined by the boundary code. The unit size pixels of
1 that are adjacent to the boundary line are called bound-
ary pixels (see Fig. 3). For the remainder, let 5; denote a
smallest (isothetic) square containing I. Note that §; has a
width of at most b.

Our hypercube algorithm for computing the pointer-
based quadtree from the boundary code consists of two
phases, each of which is outlined below.

Phase 1 computes a quadtree representing only the
boundary pixels of I. We will refer to it as the quadtree

6 DEHNE, RAU-CHAFPLIN, AND FERREIRA

starting point boundary code

boundary pixel

white outside

E & g B €

FIG. 3. Boundary code and boundary pixels of an image,

template. What remains to be done in Phase 2 is the
creation of leaf nodes corresponding to the black and
white area inside and outside the boundary line, respec-
tively. The missing children of an internal node x, at the
end of Phase 1, will be referred to as absent children of x
Note that all absent children are leaves.

Phase 1. (1) For each boundary element, its absolute
address (in ;) is computed, and the adjacent boundary
pixels are created (see [16]).

(2) The SRM number of each boundary pixel with re-
spect to §; is computed.

(3) All boundary pixels are ordered with respect to
their SRM number.

(4) A quadtree with the above sequence of boundary
pixels as leaves is built. For nodes with less than four
children, for each missing child a pointer with value ‘“‘ab-
sent’’ is created.

In order to build the final quadtree from the template
created in Phase 1, we recall the following from [16].

LEMMA 1. [16] After Phase 1, if an absent child of a
node is black {white}, then alf other absent children of a
node are black {white},

LEMMA 2. [16] After Phase 1, consider a node, x,
with at least one absent child. Choose an absent child R
adjacent to a nonabsent (black or gray) sibling Q, and a
nonabsent leaf q in the subtree rooted at Q which is
adjacent to R. If q is white then R is white. If q is black
and adjacent to the boundary line, then R is white if the
boundary line is between g and R, and black if the bound-
ary line does not separate them. If g is black and not
adiacent to the boundary line, then R is black.

The following outlines the remainder of the algorithm.

Phase 2. (1) From each leaf, a message is sent to the
root of the tree. The messages move synchronously up-
ward from level to level. For each node, a value Node-
tvpe is determined which indicates for each side of its
respective quadrant whether it is completely inside the
image [, completely outside of 7, or intersected by the

border line (see also [16]). Note that, the Nodetype value
for every boundary pixel (leaf of template quadtree) is
given: for every internal node, given the Nodetype values
of all its children, its Nodetype value can be easily deter-
mined in constant time. For each internal node x with at
least one absent child, the absent children are created and
their values are determined as follows:

(a) An absent child R adjacent to a nonabsent child
Q is sclected. The color of R is determined according to
Lemma 2. However, the color of R is determined directly
from the Nodetype value of rather than from the leaf g
referred to in Lemma 2. All other absent children of x are
assigned the same color as R (Lemma 1).

(b) The Nodetype values of the previously absent
children are determined. Finally, the Nodetype value of x
is computed.

(2) From each leaf, a message is sent to the root of the
tree. The messages move synchronously upward from
level to level. (This is ensured by wait loops for messages
starting at leaves of smaller depth.) At each level, the
following is executed:

If all four messages reaching a node x come from black
{white} children, then x is set to black {white} and its
children are marked to be deleted. If the messages reach-
ing x are from children with different color, then x is set
to gray.

(3) All nodes marked to be deleted are removed, the
remaining nodes are compressed to form a consecutive
sequence, and all pointers are updated.

THEOREM 2. The pointer-based quadtree representa-
tion of a binary image described by a boundary code of
length b can be computed in time O(h log b) on a hyper-
cube with s = p = b,

Proof. The correctness of the algorithm follows from
[16]. What remains to be shown is that the individual
steps listed in the above two phases can be implemented
with the claimed time complexity. We start with describ-
ing the hypercube implementation of Phase 1. For Step 1,
the x coordinates of the absolute addresses are computed
by assigning a value 1, —1, 0, and 0 to the boundary
elements r, I, u, d, respectively, and computing the par-
tial sums of this sequence. All y coordinates are com-
puted analogously. For each boundary element, the crea-
tion of the boundary pixels requires only information
about the directly adjacent boundary elements; other-
wise, it is a local O(1) time operation. Hence, Step 1 can
be executed in O(log b) time. Step 2 requires O(log b)
local computation steps at each processor. Step 3 re-
quires time O(log b) [14]. Step 4 can be implemented by
building the tree level by level. starting with the leaves
(which are given). At each level, every node (initially
leaves) examines its three neighbors to the right and left

HYPERCUBE ALGORITHMS FOR POINTER-BASED QUADTREES 7

and determines (using the shuffled row-major numbering
the current level information) with whom a common an-
cestor is to be created. This can be implemented on the
hypercube with O(log b) time per level, by using a con-
stant number of partial sum as well as concentrate and
distribute [14] operations. At the beginning of Phase 2,
we have a quadtree template representing only the
boundary pixels of the image /. The nodes corresponding
to the black and white area inside and outside the bound-
ary line, respectively, are now created by successive dy-
namic multiway search procedures. In Szep [, a dynamic
multiway search procedure is used to add and update the
absent children {cost: O(k log b)]. Step 2 and Step 3 are
respectively the same as Step 4 and Step 5 of the algo-
rithm in Section 3.1, Therefore, Step 2 can be imple-
mented in time O(k log ») and Step 3 requires time
O(log). =

Linear quadirees without path encoding can be con-
structed in essentially the same way by marking in Step 2
of Phase 1 also gray nodes as to be deleted. For linear
quadtrees with path encoding, we also need to compute
(between Steps 2 and 3 of Phase 2) the path encoding for
each leaf by applying one additional multiway search pro-
cedure. Therefore, the linear quadtree representation
(with or without path encoding) of a binary image repre-
sented by a boundary code of length b can also be com-
puted in time O(h log b) on a hypercube with s = p = 5.

4. HYPERCUBE ALGORITHMS FOR OPERATIONS
ON QUADTREE

Numerous region properties of images such as the area
or centroid, which are simply associative functions of the
leaves (and do not need neighboring information), can be
immediately calculated by partial sum operations (see
[2]). This requires time ({iog N) on a hypercube with s =
Nandp = N,

4.1. Finding Neighbors in Quadtrees and Computing
Region Properties

One of the main advantages of using the pointer-based
quadtree is that, once the quadtree has been constructed,
parallel searching algorithms on quadtrees can be easily
adapted from the existing sequential methods by using
the dynamic multiway search technique outlined in Sec-
tion 2.3. One of the most important building blocks of
quadtree applications are neighbor finding techniques.
For a leaf x representing a quadrant X, a neighbor of x isa
leaf y representing a quadrant that is adjacent to X (with
respect to the image) and has at least the same size as X
[17). The muitiple neighbor-finding problem consists of
finding the neighbors of all leaves of the quadtree.

LEMMA 3. Given a pointer-based quadiree of size N
stored on a hypercube with s = p = N, then the mul-
tiple neighbor finding problem can be solved in time
O(h log N).

Proof. The sequential method described in [17] for
finding the neighbor y of one single leaf x traverses the
tree from x upward, along path 7 (x}, to the lowest com-
mon ancestor of x and y; then it descends downward to y
by using the ‘‘mirror image’* of the upward path #(x).
The main problem with parallelizing this method to parai-
lel traversals for all leaves of the tree, using multiway
search, is that a message used in multiway search may
only be of constant size and, thus, cannot store the path
7 (x). Assume w.l.0.g. that the right neighbor of x is to be
determined. Let e denote the right border of the quadrant
associated with x, and let 8 denote the line defined by
extending &. We observe that a query can also be routed
from a leaf x to its right neighbor y (along the same path
as described above) as follows: The query moves upward
from x until it reaches a node whose associated quadrant
intersects 8. Then it descends downward by selecting
always the child whose associated quadrant is adjacent to
«. Hence, a query process to be routed from x to its
neighbor y needs to store only o and 8. With this, multi-
ple neighbor finding reduces to multiway search and,
thus, the theorem follows, =

Once the neighbors of each leaf in all four directions
have been determined, the calculation of, e.g., the perim-
eter of the image follows immediately (see [2]).

THEOREM 3. Given a pointer-based quadtree of size
N stored on a hypercube with s = p = N, then the perim-

eter of the associated image can be computed in time
O(h log N).

4.2. Rotating Quadtrees by 9°

Given a pointer-based quadtree T, the following algo-
rithm computes the quadtree T for the image of T rotated
by 90° on a hypercube or PRAM, with s = p = N,

(1) For each node, the position of the rotated associ-
ated quadrant is computed.

(2) For each rotated quadrant, the shuffled row-major
number (with respect to the partitioning into quadrants of
the same size) is computed.

(3) The nodes are sorted by major key fevel and minor
key SRM number.

(4) All nodes are resorted to their original position in
the old tree. Each node sends its new address to its
parent.

(5) All nodes are again sorted by major key level and
minor key SRM number.

8 DEHNE, RAU-CHAPLIN, AND FERREIRA

THEOREM 4. Given a pointer-based quadtree T of size
N stored on a hypercube or PRAM withs = p = N, then
the quadtree T' representing the image, associated with
T, rotated by H°, can be computed in time O(h+ log N
logZlog N) and O(h+ log N), respectively.

Proof. The correctness of the algorithm follows from
the observation that if a node v is the parent of a node w
in T then the node in 7' representing the rotated quadrant
of v is also the parent of the node in T’ representing the
rotated quadrant of w. The computation of the shuffled
row-major number in Step 2 requires O(#) local computa-
tion steps at each processor. The remainder of the algo-
rithm reduces to a constant number of sorting operations.
Therefore, the time complexities follow. ®

4.3. Constructing Union and Intersection

The union (intersection) of two quadtrees T4 and T is
defined as the quadtree T4up (T4rp) representing the im-
age composed of the bitwise OR (AND) of the two origi-
nal images. In this section, we study the parallel compu-
tation of the union and the intersection of two
pointer-based quadtrees. A work-optimal O(log N) time
PRAM algorithm with s = N and p = N/log N was intro-
duced in [11]. The hypercube algorithm we will describe
here represents an improvement on the hypercube simu-
lation of this algorithm. Below, we introduce some defini-
tions that will be used in the remainder of this section.

A tree T4.pis called an overlay of T, and Ty if it is the
smallest 4-ary tree such that for each node v of T, or Ty
there exists a node 8(v) in T,.p representing the same
image area (assuming that T, g represents an image sub-
division defined in standard quadtree fashion). The com-
bined level order numbering of T, and Ty is defined as
follows: For each node v of T, or Ty, the combined level
order number n,4.3(v} is the level order number of §{v) in
T4+5. The shuffled row-major number of a node v of T,
(or Tp) is the shuffled row-major number of the associated

D &

&) @

oo 6bow

quadrant with respect to the subdivision of the image
plane into quadrants of the same size.

We assume that both quadtrees are stored by level or-
der number as indicated in Section 2.2. As a preprocess-
ing, we convert this storage scheme into a combined level
order numbering scheme, where every node v of T, or Ty
is stored at processor number 7n4+5{v). Note that every
processor stores at least one node, but at most two
nodes, one of each tree. The new relative order of the
nodes of one tre¢, say T, , is the same as their order in the
initial level order numbering of 74. The combined level
order numbering scheme can be obtained as follows: All
nodes are permuted inside their levels according to their
SRM number. For any two nodes within the same level
that have the same SRM number and are stored in two
adjacent processors P; and P;,,, the node in P, is moved
to P;. Finally the contents of the processors are shifted
leftward so that processors without data are avoided.

Given this storage scheme for the two quadtrees T, and
Tz, the following is an outline of a parallel algorithm for
computing the quadtree T,,z. Out algorithm uvses dy-
namic multiway search (see Section 2.3) with three differ-
ent types of messages: “‘compare,” ““copy,” and ‘‘up-
date” messages.

(1) From each of the roots of T, and Tz a wave of
compare messages is sent toward the leaves. That is, a
compare message is sent to each root and, each node
receiving a message duplicates it and sends one to each
child (within its own tree). Messages move synchro-
nously downward from level to level. During this pro-
cess, a new tree T is created, which will subsequently be
converted into T4p. At each level, the following is exe-
cuted:

(a} Each node x receiving a compare message com-
pares itself with the respective node y (representing the
same image area) of the other tree. The node y is stored at
the same processor P as node x and receives a compare

proc.#l O |1 |2 {3 |4 |5 (6|7 |8 |%|1011]12]13 |14 J15 |16

All A A3 A4l AS] Adl AT AB{AQ Al0 | All | Al12 | A13

content B1} B2] B3] B4| BS Be| B7) BE| BI| B1O § B11 { B12 | B13
level [1 |2 |2]2|2(3|3]3]3|313]|3]3]3 3 3 3

FIG, 4. Combined level order numbering scheme.

HYPERCUBE ALGORITHMS FOR POINTER-BASED QUADTREES 9

message at the same time as node x does. Unless x and y
are the roots of T, and Ty, respectively, let parent(x)} and
parent(y) denote their respective parents. Note that,
parent{x) and parent(y) are both gray nodes stored at the
same processor P’ and, previously, received a compare
message at the same time,

Case 1, x and y are both gray. A new gray node z for
T representing the same quadrant as x and y is created
and stored at processor P. Note that parent(x) and
parent(y) previously created a gray node z’ for 7. This
node z' is made the parent of z in T.

Case 2. x or y is black. A new black node z for T
representing the same quadrant as x and vy is created and
stored at processor P. The gray node z' created by
parent(x) and parent(y) is made the parent of zin 7. The
two compare messages which reached x and y are not
forwarded but deleted.

Case 3. One node, x or y, is gray and the other node
is white. A new gray node z for T representing the same
quadrant as x and y is created and stored at processor P.
The gray node z’' created by parent(x) and parent(y) is
made the parent of z in 7. The compare message which
reached the white node is deleted. The compare message
which reached the gray node is changed to a copy mes-
sage, duplicated, and forwarded to ali children.

Case 4. x and y are both white. A new white node z
for T representing the same quadrant as x and y is created
and stored at processor P. The gray node z' created by
parent(x) and parent(y) is made the parent of zin T. The
two compare messages which reached x and y are not
forwarded but deleted.

(b) Each node x receiving a copy message (in the
other tree there exists no node y representing the same
quadrant) creates a new node z for 7 with the same color
as x and representing the same quadrant. The node z'
created by parent(x) and parent(y) is made the parent of
z in T. A copy message is sent to each child, or the
message is deleted if x is a leaf.

(2) From each leaf an update message is sent to the
root of the tree. The update messages move synchro-
nously upward from level to level. (This is ensured by
wait loops for messages starting at leaves of smaller
depth.} At each level, the following is executed:

If all four update messages reaching a node x come
from black {white} children, then x is set to black {white}
and its children are marked to be deleted. If the update
messages reaching x are from children with different
color, x is set to gray.

(3) All nodes marked to be deleted are deleted, the
remaining nodes are compressed to form a consecutive
sequence, and all pointers are updated.

Computing the intersection of two pointer-based quad-
trees is analogous. All steps of the above algorithm re-
main unchanged except for Cases 2—-4 where black and
white should be exchanged.

THEOREM 5. Given two pointer-based quadtrees with
a total number of N nodes stored on a hypercube with
§ = p = N, then the union {intersection} of these quad-
trees can be computed in time O(h log N), where h de-
notes the maximum height of the two trees.

Proof. In order to observe the correctness of the al-
gorithm we first study the intermediate tree T created at
the end of Step 1. Consider two nodes x and y in T4 and
Ty representing the same quadrant. Then a node z in T is
created in Step 1a (a compare message reaches x and y),
and it is easy to see that through Cases 1 to 4 the right
color, representing the union {intersection} of x and y, is
assigned to z. Consider, on the other hand, a node x for
quadrant X in, say, T, with no node in Tj representing the
same quadrant. Then T has a leaf y for a quadrant ¥
containing X. Let x’ be the ancestor of x representing
quadrant Y, If Y is black {white} then no node needs to be
created in T, which is guaranteed by the deletion of the
compare messages reaching x’ and y (Step la, Case 2). If
Y is white {black} then the entire subtree rooted at x' has
to be copied into T. This is achieved by the copy mes-
sages started at x' (Step la, Case 3 and Step 1b).

In order to prove the claimed time complexity, we first
observe that the preprocessing reduces to a constant
number of partial sum, concentrate, and distribute opera-
tions [14]. Hence, its time complexity is O(log N). The
combined level order numbering scheme used to store the
trees Ty, Tp, and T allows simultaneous multiway search
on all three trees, because T, T, and T are subtrees of
T4+, and all nodes are stored with respect to their level
order number in T,+5 (see Section 2.2 and 2.3). Hence,
Step 1 can be implemented on a hypercube using the
dynamic multiway search procedure outlined in Section
2.3. That is, Step 1 requires time Q(k log N). Steps 2 and
3 are equivalent to Steps 4 and 5 of the algorithm in
Section 3.1. Hence, from Theorem 1, their time complex-
ity is O(h log N). =

5. SOME OBSERVATIONS FOR THE PRAM

A (CREW) PRAM consists of a set Py, ..., P, of p
processors, with constant size local memories, con-
nected to a shared memory of size s. An arbitrary number
of processors can read concurrently from the same
shared memory location, but concurrent write accesses
are not possible.

Some of our results can be immediately extended to
the PRAM. A straightforward implementation of multi-
search (Section 2.3) on the PRAM, together with Theo-

10 DEHNE, RAU-CHAPLIN, AND FERREIRA

rems 2-4, yields the following observations for the
PRAM.

Observation 1. The pointer-based quadtree represen-
tation of a binary image described by a boundary code of
length b can be computed in time Ok log) on a PRAM
withs = p = b,

Observation 2. Given a pointer-based quadtree of
size N stored on a PRAM with s = p = N, then the
perimeter of the associated image can be computed in
time Q(h).

Observation 3. Given a pointer-based quadtree T of
size N stored on a PRAM with s = p = N, then the
quadtree 7' representing the image, associated with 7,
rotated by 90° can be computed in time O(%).

Note that the emphasis of this paper is on hypercube
algorithms, and these straightforward observations for
the PRAM are not necessarily optimal, They are listed
only because either no previous PRAM algorithm existed
{Observations 1 and 3) or they give an improvement on
existing results (Observation 2),

6. CONCLUSION

In this paper we have demonstrated that, for parallel
processing, pointer-based quadtrees are an attractive al-
ternative to linear quadtrees. We presented efficient hy-
percube algorithms for constructing and manipulating
quadtrees. These algorithms can be easily implemented
in hypercube-based SIMD parailel machines.

REFERENCES

1. 1. L. Bentley and D. F. Stanat, Analysis of range searches in quad
trees, Inform. Process. Lett. 3(6), 1975, 170-173.

2. 8. K. Bhaskar, A. Rosenfeld, and A. Y. Wu, Parallel processing of
regions represented by linear quadtrees, Comput. Vision Graphics
Image Process. 42, 1988, 371-380.

3. R. Cole Parallel merge sorting, SIAM J. Comput. 17(4), 1988, 770
785,

4. R. Cypher and C. G. Plaxton, Deterministic sorting in nearly loga-
rithmic time on a hypercube and related computers, in Proceedings
22nd Annual ACM Symposium on Theory of Computing, 1990, pp.
193-203.

5. F. Dehne, A. Ferreira, and A. Rau-Chaplin, Parallel branch and
bound on fine grained hypercube multiprocessors, Paratlel Com-
put., to appear.

6. F, Dehne and A. Rau-Chaplin, Implementing data structures on a
hypercube multiprocessor and applications in parallel computa-
tional geometry, J. Paralle! Distrib. Comput. 8, 1990, 367-375.

7. 8. Edelman and E. Shapiro, Quadtrees in concurrent prolog, in
Proceedings International Conference on Parallel Processing,
1985, pp. 544-551.

8. R. A, Finkel and J. L. Bentley, Quad trees— A data for retrieval on
composite keys, Acta Inform, 4(1), 1974, 1-9.
9. Y. Hung and A. Rosenfeld, Parallel processing of linear quadtrees

on a mesh-connected computer, J. Parallel Distrib. Comput. 1,
1989, 1-27.

10. K. J. Jacquemain, The complexity of constructing quad-trees in
arbitrary dimensions, in Proceedings 7th Conference on
Graphtheoretic Concepts in Computer Science (WG8I), 1982 (J.
Miihibacher, Ed.), pp. 293-301.

11. S. Kasif, Efficient paralle]l quad-tree algorithms, Proceedings of the
1988 ICAI, Tel Aviv, Israel, 1988, pp. 353-363.

12. M. Martin, D. M. Chiarulli, and S. S. Iyengar, Parallel processing
of quadtrees on a horizontally reconfigurable architecture comput-
ing system, in Proceedings International Conference on Parallel
Processing, 1986, pp. 895-902,

13. G.-G. Mei and W. Liu, Parallel processing for quadtree problems,
in Proceedings International Conference on Parallel Processing,
1986, pp. 452-454.

14, D. Nassimi and S. Sahni, Data broadcasting in SIMD computers,
IEEE Trans. Comput. 30(2), 1981, 101-106.

15. D. Nassimi and S. Sahni, A self-routing Benes network and paralle]
permutation algorithms, IEEE Trans. Comput. 30{5), 1982, 332-
340.

16. H. Samet, Region representation: Quadtrees from boundary codes,
Commun, ACM 23(3), 1980, 163-170.

17. H. Samet, Neighbor finding techniques for images represented by
quadtrees, Comput. Graphics Image Process. 18(1), 1982, 37-57.

18. H. Samet, The quadtree and related hierarchical data structures,
Comput. Surv. 16(2), 1984, 187-260.

