
Construction of d-Dimensional Hyperoctrees on a

Hypercube Multiprocessor �

Frank Dehne y Andreas Fabri z Mostafa Nassar x

Andrew Rau-Chaplin y Rada Valiveti y

Abstract

We present a parallel algorithm for the construction of the hype-
roctree representing a d-dimensional object from a set of n (d� 1)-
dimensional hyperoctrees, representing adjacent crossections of this
object. On a p-processor SIMD hypercube the time complexity of our
algorithm is O(m

p
logp logn), where m is the maximum of input and

output size.

1This work was partially supported by the Natural Sciences and Engineering Research
Council of Canada and the ESPRIT Basic Research Actions Nr. 3075 (ALCOM) and Nr.
7141 (ALCOM II).

2School of Computer Science, Carleton University, Ottawa, Canada K1S 5B6
3INRIA | B.P.93 | 06902 Sophia-Antipolis cedex, France
4Jodrey School of Computer Science, Acadia University, Wolfville, Canada B0P 1X0

1

1 Introduction

In many applications a description of an object is given as a set of cross sec-
tions. For example in medical diagnosis, planar cross sections are obtained
via tomography systems. In this paper we consider the problem of comput-
ing the 3-dimensional representation of an object given as such a set of cross
sections. There exist two primary versions of this problem depending on
what is known about the input. If the cross sections are known to be widely
spaced or we have no spacing information at all, i.e. the information about
the 3-dimensional object consists only of planar contours extracted from
the cross sectional images, then we have an interpolation problem (see for
example [Bo88]). Alternatively, if the cross sections are known to lie close
together, i.e. they can be considered as interpolations of the volume lying
between themselves and the following cross section, then we have a merging
problem. In this paper we consider the latter version of the problem.

The representation of 2 and 3 dimensional objects has been extensively
studied ([R80, M88, S89]). One commonly used representation scheme,
based on recursive subdivision, is the quadtree. A binary image I is rep-
resented by a 4-ary tree consisting of black, white, and grey nodes. The
root r of the tree represents the entire image I . If I is entirely black or
white, the r is black or white, respectively, and has no children. Otherwise,
r has four children recursively representing the four quadrants of I . We
refer to [S84] for an overview and bibliography on quadtrees (incl. its many
variants) and quadtree applications. The 3-dimensional and d-dimensional
generalizations (for �xed constant d) are called octrees and hyperoctrees, re-
spectively [YS83]. Since quadtree applications in image processing, solid
modeling etc. are typically data intensive, the application of parallelism to
such a fundamental data structure is of both theoretical and practical in-
terest. While some papers ([MCI86, ML86]) consider parallel architectures
designed (or recon�gured) particularly for quadtree manipulation, others
consider general purpose architectures, such as PRAMs ([BRW88]), mesh-
connected computers ([HR89]) and hypercubes ([DFR91, IK92]). Many of
the construction and manipulation algorithms given in these papers can be
easily adapted to work for d-dimensional hyperoctrees.

In this paper we present a parallel algorithm for the construction of the
hyperoctree representing a d-dimensional object from a set of n (d� 1)-
dimensional hyperoctrees, representing adjacent crossections of this object.
On a p-processor SIMD hypercube, the time complexity of our algorithm
is O(m

p
log p logn) where m is the maximum of the input and output size.

2

Note that both the input and output hyperoctrees may be based either
on a pointer based or on a linear representation (to be explained below).
The sequential algorithm [YS83] has a running time of O(m logn). Our
parallel algorithm follows the basic merging strategy of [YS83]. The main
contribution of this paper is to solve the non trivial problem of merging
\hybrid trees" in parallel.

The remainder is organized as follows. In the next section we describe our
model of computation and some basic operations. In Section 3 we recall the
de�nition of hyperoctrees and give a formal de�nition of a new data structure
called hybrid trees. Section 4 brie
y recalls the sequential algorithm and
is followed by a section describing a merging algorithm for hybrid trees.
Section 6 describes in detail our parallel hypercube algorithm.

2 The Model of Computation

In this section, we present two abstract models of a SIMD hypercube and
some basic algorithms for this type of architecture.

A SIMD hypercube of dimension d consists of p = 2d processors which
are indexed 0 through 2d�1. Two processors are connected along dimension
i, if and only if the binary representation of their indices di�er in exactly
the ith bit. The processors are synchronized and may be enabled or disabled
to execute a common instruction. Each processor has some local memory.
Note that we neither assume a constant amount of memory per processor
(as is done by exclusively �ne-grained algorithms) nor a �xed non-constant
amount of memory (as is assumed by exclusively coarse-grained algorithms).
Our algorithms are suitable for implementation on either �ne-grained or
coarse-grained SIMD hypercubes and therefore could be implemented on
machines ranging from Intel's iPSC/860 [In] (using additional synchroniza-
tion) to Thinking Machines Corporation's CM2 [St87].

On constant size data, arithmetic operations on each processor and com-
munication between processors which are adjacent along a �xed dimension
take time O(1).

In this paper we will use many basic vector operations such as parallel
pre�x, monotonic routing and bitonic merge [NS81, B68]. The parallel pre�x
sum of a vector V is the vector W , with W [k] :=

Pk
i=0 V [i], 0 � k < p.

Instead of summing we can perform any binary associative operation, e.g.
copying. A further generalization is the segmented parallel pre�x. The
vector is split into segments and the parallel pre�x starts at the beginning

3

of each segment. In this paper we also use an operation called segmented
broadcast, that is in each segment all elements are replaced by the �rst
element in the segment.

Monotonic routing refers to the following operation. Given a data vector
V , a destination vector D and a Boolean vector selecting some elements of
V , the selected data elements V [i] are moved to V [D[i]] under the condition
that D[i] < D[j] for all selected elements 0 � i < j < p. That is, the
selected data elements remain in the same order.

The bitonic merge algorithm transforms a bitonic sequence (in our case,
the keys are �rst increasing and then decreasing) into a sorted sequence.
This operation can be used to merge two sorted sequences.

All these vector operations are presented for vectors of length p and they
take time O(log p). They can easily be generalized for vectors of length n,
n � p, and take then time O(n

p
log p).

The second model under consideration is the pipelined hypercube. Arith-
metic operations again take time O(1), but processors can communicate
with all adjacent processors in time O(1). Thus we can pipeline the above
basic vector operations and get O(n

p
+ log p), n � p, as time bounds. The

CM2 from Thinking Machines Corporation is an example of such a machine
[BLM*91].

3 Hyperoctrees and Hybrid Trees

The d-dimensional hyperoctree [YS83], or for short 2d-tree, is a quadtree
generalization for the representation of a d-dimensional discrete grid of side-
length n, where n is assumed to be a power of 2. Instead of splitting the
2-dimensional grid (image) into four quadrants, the d-diensional grid is split
into 2d subgrids of half the sidelength each. The subgrids are split recursively
and recursion stops when subgrid of uniform colour are reached. Nodes are
either grey, black or white, representing nonuniform, black or white subgrids.
The level of a node v is de�ned recursively as follows: level(v) := log2 n if v
is the root, otherwise level(v) := level(father(v))� 1.

For our algorithm we need a further generalization of 2d-trees, since we
want to represent discrete grids where the lengths of the sides in the d-th
dimension vary.

To understand why this generalization is necessary consider the following
naive algorithm for combining n 2d�1-trees to form a 2d-tree.

1. Convert each of the 2d�1-trees that represents a slice into an equivalent

4

2d-tree.

2. Perform a union operations on all the 2d-trees formed in the previous
step.

The problem with the naive algorithm is that it can result in a considerable
and unnecessary \blow up" in the amount of data that must be processed.
Consider for example the situation in which all of the (d � 1)-dimensional
slices are completely black. In the �rst step of the naive algorithm each of
the fully black (d�1)-dimensional slices would be broken up in nd�1 volume
elements of sidelength 1, as the width along dimension d is only 1. Thus we
would return to a representation in image space. When in the second step
of the naive algorithm the union of all n slices is computed the resulting
2d-tree is of size O(1). It is exactly this unnecessary increase or \blow up"
in data size that any e�cient algorithm must seek to avoid.

We need to represent not only d-dimensional cubes but also cuboids with
the same sidelength k in dimensions 1 through d � 1 and sidelength j � k

in dimension d, where j is the number of already joined slices, and k and j

are powers of 2.

De�nition 1 A phase i hybrid tree T i is a colored tree with two kinds of
nodes. The nodes at levels l, i � l � logn, form a 2d�1-tree and represent

cuboids of size (2l)
d�1

� 2i, and the nodes at levels 0 through i form a forest

of 2d-trees and represent cubes of size (2l)
d
.

Notice that phase 0 or logn hybrid trees can be considered as 2d�1-trees
or 2d-trees, respectively. Further note that nodes at level i are at the same
time leaves of the 2d�1-subtree and roots of the 2d-subtrees. Figure 1 shows
a phase i = 2 hybrid tree for d = 2. The nodes at level l > 2 represent
rectangles of height 2i = 4 and length 2l, nodes at levels l � 2 represent
squares of sidelength 2l.

4 Sequential Algorithm

The above de�nition of hybrid trees formalizes an intermediate state of the
sequential algorithm presented in [YS83]. The basic structure of their al-
gorithm is to consider each 2d�1-tree as a phase 0 hybrid tree and perform
logn pairwise merge phases. More precisely, in phase i + 1 of the merge
algorithm, 0 � i < logn, pairs T i

1 and T i
2 of phase i hybrid trees are merged

into a phase i+ 1 hybrid tree T i+1
1;2 .

5

Figure 1: A hybrid tree

In the following section, we present a modi�ed version of this merge
phase, which we will use in our parallel algorithm.

5 Merging Hybrid Trees

We describe an algorithm to join two hybrid trees T i
1 and T i

2 in phase i+1 of
the merge. For this algorithm to be e�cient it must avoid performing work
that will later have to be undone. In particular, the decision to break up a
cuboid should be postponed as long as possible, i.e. until it is certain that
the cuboid will never become part of a uniformly coloured cube. When a
cuboid is broken up, it must be broken up into cuboids which are maximal
and which also �t this criterion.

Before we can join the trees we overlay the 2d�1-subtrees of T i
1 and T i

2

and expand them to the same shape. While expanding the trees, we consider
three di�erent cases for all corresponding nodes v1 and v2 at levels l > i in
the two trees.

Case 1: If v1 is black or white and v2 is grey, then the cuboid of v1 must
be broken up to the same level of resolution as the cuboid of v2. Therefore
we replace v1 with a copy of the 2d�1-subtree rooted at v2, where leaf nodes
get the colour of v1. We do not have to copy nodes below level i, as nodes
in level i already represent cubes.

Case 2: If v1 is black and v2 white, they must both be broken up into cubes
of sidelength 2i. We thus replace each of them with the complete 2d�1-tree
of height l� i with leaf nodes coloured as v1 and v2, respectively.

6

Figure 2: Case 1 for d = 2

Case 3: If they are both either black or white, they represent cuboids of the
same length and form together a cuboid of height 2i+1. Thus, no expansion
is necessary.

The 2d�1-subtrees of the two trees are now of the same shape and cor-
responding nodes on levels l � i + 1 have the same colour. We use the
overlayed trees to construct the 2d-tree nodes on level i+ 1 by joining the
children of corresponding grey 2d�1-tree nodes at level i+ 1. Keeping only
one copy of the expanded 2d�1-trees we obtain the hybrid tree T i+1

1;2 .
On a sequential machine the above merge operation can be easily im-

plemented in time O(max(jT i
1j + jT i

2j; jT
i+1
1;2 j)) by performing simultaneous

tree traversals [YS83]. As the overall algorithm consists of logn phases,
the input set of n (d� 1)-dimensional hyperoctrees can be transformed into
the corresponding d-dimensional hyperoctrees T in time O(m logn), with
m = max(jT j;

Pn
j=1 jTjj).

Figure 3: Case 2 for d = 2

7

6 Parallel Algorithm

In the parallel setting, an e�cient implementation of hybrid tree merge is
not as straightforward. Since the sequential time complexity is bounded
below by
(m), an optimal parallel algorithm, even for the PRAM model,
can not achieve a time better than O(m

p
). In the following, we present an

O(m logn
p

log p) time hypercube algorithm.
We will use a linear representation instead of the pointer based repre-

sentation of hybrid and 2d-trees used in the sequential setting. A linear tree
is a collection of just the leaf nodes, ordered according to the inorder traver-
sal of the pointer based tree. We will later show how to convert between
this linear representation and the level-order pointer-based representation
described in [DFR91].

Consider a 2d�1-subtree T 0 of a hybrid tree and a node v in T 0. Let
�T be the expansion of T 0 to a complete (d � 1)-ary tree of height logn,
and �v be the corresponding node of v in �T . We de�ne the position of
v, pos(v), to be the inorder traversal number of �v in �T . Let cover(v) be
the interval [lm(v), rm(v)], where lm(v) and rm(v) are the inorder traversal
numbers (with respect to the complete tree �T) of the leftmost and rightmost
descendants (in �T) of �v. For each node in a 2d-subtree we de�ne anci(v) to
be the position of the ancestor of v in level i. Note that the size of these
numbers is at most (d� 1) logn bits.

We now show how to merge two hybrid trees T i
1 and T

i
2 to perform phase

i+ 1 of the algorithm. We assume w.l.o.g. that the slice represented by T i
1

lies above the one represented by T i
2. Let seq(T

i
1) and seq(T i

2) be the node
sequences of the linear tree representations of T i

1 and T i
2, respectively. The

following describes the parallel implementation of cases 1, 2 and 3 from
Section 3. In our algorithm, the expansion step and the join step are not
performed separately.

Case 1: In this case each black or white node, v1, in T i
1 corresponding to a

grey node, v2, in T i
2 is replaced by a tree of the shape of Tv2 , the 2

d�1-subtree
of the tree T i

2 rooted at v2. As internal nodes are not represented by the
linear representation, this is equivalent to replacing v1 by the leaves of Tv2 .
We perform this operation in two steps.

In the �rst step we detect every black or white node v1 in levels l > i of
T i
1, which corresponds to grey node v2 of T

i
2. Such a black or white node v1

is called a covering node. The leaves of the subtree of T i
2 rooted at v2 are

called covered by v1. All covering nodes are detected as follows: We merge

8

the tree sequences seq(T i
1) and seq(T i

2) by assigning pos(v) as the key to
each node in a level l > i and anci(v) as key to each node in a level l � i.
Let � be the resulting sorted sequence. We observe the following. A node v1
in a level l > i is a covering node, if and only if one of its neighbours in � has
a di�erent pos value and is contained in the interval cover(v1). Thus, every
node performs a comparison with its two neighbours. We then unmerge the
sequence �, i.e. extract the two original sequences seq(T i

1) and seq(T i
2).

In the second step we determine for each covering node v1 the set of leaves
of the subtree Tv2 rooted at the corresponding node v2. We �rst create a
copy of each covering node and store it at the same processor. Every node
v in T i

1 or T
i
2 is then assigned a key, key(v) = (x; y), where x and y are the

primary and secondary keys, respectively. We de�ne key(v) as follows:

key(v) =

8>>><
>>>:

(lm(v); 0) if v is the 1st copy of a covering node at level l > i,
(rm(v); 3) if v is the 2nd copy of a covering node at level l > i,
(pos(v); j) if v is a noncovering node in T i

j , j = 1; 2, at level l > i;

(anci+1(v); j) if v is a node in T i
j , j=1,2, at level l � i.

Lemma 1 The nodes in the linear hybrid trees form a monotonic sequence

with respect to key(v).

Proof: The nodes are ordered by their pos value. As only leaf nodes are
represented, all lm(v) and rm(v) values are unique and no pos value of
another node is contained in the interval cover(v). Noncovering nodes at
level l > i do not change their key. Let (u1 : : :uk) be a maximal subsequence
of nodes of the linear tree Tj , which are at level l � i and receive the same
key. Let w be their ancestor in level i+ 1, then pos(u1) <pos(w) <pos(uk).
2

Thus, we can join the two trees using a stable bitonic merge. The follow-
ing lemma states some observations on the resulting sequence S. We omit
the proof of the statements as they are a direct consequence of the choice of
key(v).

Lemma 2 The sequence S has the following properties:

(a) The �rst copy of a covering node v appears immediately to the left

of the �rst node of the subsequence of nodes covered by v, the second copy

immediately to the right of the last node of the subsequence of nodes covered

by v.

(b) The 2d-trees which become children of a node in level i+1 of the resulting
hybrid tree T i+1

1;2 are in the order required for T i+1
1;2 .

9

(c) Corresponding black or white 2d�1-tree nodes of T i
1 and T i

2, respectively,

are neighbours in S.

We use Lemma 2(a) to compute for all covered nodes their respective
covering nodes. We do so by performing a segmented broadcast of covering
nodes, where the segments are de�ned by the two copies of the covering
nodes. As cover intervals do not overlap, any node is covered by at most
one node. Then both copies of covering nodes are removed from S.

We now create the copies of the leaves of Tv2 , the 2
d�1-subtree rooted at

v2, for the covering node v1. Each covered subsequence Ŝ of 2d-tree nodes
with the same key forms the set of leaves of a subtree rooted in level i+1. We
thus insert 2d�1 copies of the covering node before or behind Ŝ, depending
on whether the covering node comes from T i

1 or T
i
2.

Case 2: We expand corresponding nodes v1 and v2 where one of the nodes is
black the other node white. According to Lemma 2(c) corresponding nodes
can be determined by a comparison with the neighbour in the sequence S.
Let the two corresponding nodes be at level l. Instead of replacing them
�rst by two 2d�1-trees which are then joined in a second step, we directly
construct the 2d-tree. To achieve this we replace them by 2i�l groups of
2d�1 nodes at level i. The groups alternate their colours as v1 and v2 do.

Case 3: The removal of one copy of corresponding black or white nodes
completes the joining of two 2d�1-trees and yields the tree T i+1

1;2 .

This concludes our discussion of a phase i+1 merge of two trees T i
1 and

T i
2. As we start with n hyperoctrees T1; : : : ; Tn, we need logn such phases to

obtain the �nal 2d-tree, T . The time we need to perform one phase depends
on the input size as well as on the output size. This can be illustrated with
the following examples. If all slices are black, we start with n single node
trees and end up with one node representing a black block. On the other
hand, if slices are alternating black and white, we start with n single node
trees and end up with one tree of size nd. As the algorithm only constructs
nodes which either appear in the �nal output tree T or which are further
re�ned, we can bound the data size by m = max(jT j;

Pn
i=1 jTij).

The processor load may change in each phase, and the insertion and
deletion of nodes is in fact a reallocation of processors. This can be per-
formed with parallel pre�x and monotonic routing operations. Since the
nodes always remain in the same order it requires time O(m

p
log p).

In a preprocessing step we compute the keys pos with local operations
in time O(m

p
logm). For each node v we start with the position of the root

10

and follow the path from the root to v. It takes time O(1) to compute the
position of a child of node v, given the position of v. The height of the tree
is O(logm) = O(d logn) = O(logn).

Given pos, the value of lm and rm can be computed in time O(1) using
closed formulas as the tree is a complete tree.

In each phase we have to compute keys for nodes which were either
inserted or which changed from the 2d�1-subtree to a 2d-subtree. Nodes
which are inserted obtain their keys from the nodes which caused their
insertion. Given anci, the value of anci+1 can be computed in time O(1).

This results in the following theorem.

Theorem 1 The construction of a linear d-dimensional hyperoctree from

a set of n linear (d � 1)-dimensional hyperoctrees on a hypercube with p

processors takes time O(m logn
p

log p), where m is the maximumof input and

output size.

We now describe how to construct a d-dimensional pointer-based hyper-
octree from a set of n (d� 1)-dimensional pointer-based hyperoctrees. The
pointer- based representation is at times an attractive alternative to the lin-
ear representation, even in the parallel setting [DFR91]. Our approach will
be to convert the given pointer-based representation into a linear represen-
tation, apply the algorithm given above to perform the merging, and then
convert back to a pointer-based representation. We will assume that the n
(d� 1)-dimensional pointer-based trees are given in level-order. That is, for
each tree the nodes are ordered by hight, and nodes with the same hight are
ordered \left-to-right". For more details see [DFR91].

To convert a pointer-based tree Tp into its equivalent linear representa-
tion Tl, all we need to compute is the inorder number of each node v in Tp
and then sort the leaves of Tp by this value. The resulting sequence of nodes
is Tl.

To convert a linear tree Tl into its equivalent pointer-based representation
Tp, we start by computing for each node v of Tl the values pos(v) and
anci+1(v) as previously described. The tree Tp is constructed level-by-level
starting with the leaves. To form each level i of Tp we concentrate all level i
nodes of Tl, and identify segments (groups) of nodes within this set having
the same parents (i.e. anci+1(v)). The �rst node in each such segment then
creates its parent node, together with their pos and anc values. Finally, the
newly created parent nodes are merged with the nodes of Tl at level i + 1
(and should be considered in the construction of the next level).

11

Clearly, both conversion algorithms run in time O(n logn
p

log p) as they
consist of logn phases each requiring at most O(n

p
log p) time. We can

therefore state the following corollary to Theorem 1.

Corollary 1 The construction of a pointer-based d-dimensional hyperoc-

tree from a set of n pointer-based (d � 1)-dimensional hyperoctrees on a

hypercube with p processors takes time O(m logn
p

log p), where m is the max-

imum of input and output size.

Given that the merging algorithm and the two conversion algorithms
described above use only basic hypercube operations that can be pipelined,
we immediately get the following corollary for both linear and pointer- based
representations.

Corollary 2 The construction of a d-dimensional hyperoctree from a set of

n (d� 1)-dimensional hyperoctrees on a pipelined hypercube with p proces-

sors takes time O(m logn
p

+ log p logn), where m is the maximum of input

and output size.

7 Conclusion

In this paper we presented a parallel algorithm for the construction of a
d-dimensional hyperoctree from a set of n (d� 1)-dimensional hyperoctrees,
representing adjacent \slices". On a p-processor SIMD hypercube the time
complexity of our algorithm is O(m logn

p
log p), where m is the maximum

of input and output size. This parallel algorithm represents, to our knowl-
edge, the �rst parallel algorithm for the construction of octree based data
structures from anything but binary images or chain-codes.

References

[B68] K.E. Batcher. Sorting networks and their applications. Proc. AFIPS
Spring Joint Computer Conference, pp. 307{314, 1968.

[BRW88] S. K. Bhaskar, A. Rosenfeld, and A. Y. Wu. Parallel processing
of regions represented by linear quadtrees. Computer Vision, Graphics,
and Image Processing, Vol. 42, pp. 371{380, 1988.

[Bo88] J.D. Boissonnat. Shape Reconstruction from Planar Cross Sections.
Computer Vision, Graphics and Image Processing 44, pp. 1{29, 1988.

12

[DFR91] F. Dehne, A. Ferreira, and A. Rau-Chaplin. Parallel processing
of pointer based quadtrees. Proc. International Conference on Parallel
Processing, 1991.

[HR89] Y. Hung and A. Rosenfeld. Parallel processing of linear quadtrees
on a mesh-connected computer. Journal of Parallel and Distributed
Computing, Vol. 7, pp. 1{27, 1989.

[IK92] O.H. Ibbarra and M.H. Kim Quadtree Building Algorithms on an
SIMD Hypercube. Proc. Int. Parallel Processing Symp. pp. 22{27,
March 1992.

[In] Intel Scienti�c Computers iPSC System Overview.

[M88] M. M�antyl�a. An Introduction to Solid Modeling. Comp. Sci. Press,
1988.

[MCI86] M. Martin, D. M. Chiarulli, and S. S. Iyengar. Parallel process-
ing of quadtrees on a horizontally recon�gurable architecture computing
system. Proc. Int. Conf. on Parallel Processing, pp. 895{902, 1986.

[ML86] G.-G. Mei and W. Liu. Parallel processing for quadtree problems.
Proc. Int. Conf. on Parallel Processing, pp. 452{454, 1986.

[NS81] D. Nassimi and S. Sahni. Data broadcasting in SIMD computers.
IEEE Trans. on Computers 30:2, pp. 101{106, 1981.

[R80] A. G. Requicha. Representation for Rigid Solids: Theory, Methods
and Systems. ACM Computing Surveys, Vol. 12, No. 4, 1980.

[S84] H. Samet. The quadtree and related hierarchical data structures. Com-
puting Surveys, Vol. 16, No. 2, pp. 187{260, 1984.

[S89] H. Samet. Applications of Spatial Data Structures. Addison-Wesley,
1989.

[St87] C. Stan�ll. Communications Architecture in the Connection Machine
System. Thinking Machines Corporation | TR HA87-3, 1987.

[BLM*91] G. E. Blelloch, C. E. Leiserson, B. M. Maggs, C. G. Plaxton,
S. J. Smith, M. Zagha. A Comparison of Sorting Algorithms for the
Connection Machine CM-2. ACM Symp. on parallel algorithms and
architectues, pp. 3-16, 1991.

13

[YS83] M. Yau and S. N. Srihari. A Hierarchical Data Structure for Mul-
tidimensional Digital Images. Comm. of the ACM, No. 1, Vol. 26, July
1983.

14

Figure 4: Merging linear trees T1 and T2 (thick black lines). In the �rst
merge v1 ends up between covered nodes. In the second merge its two copies
deliniate the start and end of the sequence of covered nodes. Further the
trees u1, T 0

1, u2 and T 0
2 become neighbours and form thus a linear quadtree

rooted in level i+ 1.

15

