PARALLEL FRACTIONAL CASCADING ON A HYPERCUBE
MULTIPROCESSOR

FRANK DEHNE!, AFONSO FERREIRAZ, AND ANDREW RAU-CHAPLIN]
Center for Parallel and Distributed Computing, School of Computer Science,
Carleton University, Ottawa, Canada K18 5B6.

Laboratoire de I'Informatique Parallele, Ecole Normale Superieure de Lyon,
69364 Lyon cedex 07, France.

ABSTRACT: In this paper we present a paralle] implementation of fractional cascading for
hypercube multiprocessors. We show that, if the underlying catalog graph is monotone (as
defined in the paper), N multiple look-up queries (including catalog look-ups) can be executed
independently, in parallel, in time O(tg log N) on a hypercube multiprocessor of size N, where
ts is the sequential time complexity for one multiple look-up query. We apply our method to
various problems for which we obtain new efficient hypercube algorithms. ’

1 INTRODUCTION

For the design of parallel algorithms, many researchers prefer the PRAM model over
processor network models. Efficient parallel algorithms for the PRAM are not constrained by
_ the need for efficient data routing mechanisms; furthermore, the PRAM memory can be used to
store and access data structures in essentially the same way as on a standard sequential
machine. Once the processors have collectively built a data structure, each of them can
individually execute a query on this structure (as if it was a single processor architecture)
without interfering with the other query processes. This method allows to apply results from
sequential data structures to the design of PRAM algorithms (see, e.g., [ACG], [ACGD],
[AG], [DK], [GD).

For processor networks, the parallel execution of independent queries on one joint data
structure is not as straight forward. Algorithms designed for processor networks are usually
not as elegant; they use only very simple data structures, if any, and are mainly concerned with
solving the routing and collision avoidance problem. A more elegant approach is to simulate
PRAM algorithms on processor networks; the obtained results are however in most cases less
efficient than algorithms designed directly for specific networks.

In this paper we show that for hypercube multiprocessors it is also possible to design
elegant yet extremely efficient algorithms based on parallel implementations of data structures.

We study the class of those data structures that are special cases of fractional cascading
[CG1]. Consider a catalog graph of size N and bounded (fixed) degree, and a set of N multiple
look-up queries along paths of length at most p [CG1]. We show that, if the graph is monotone
(to be defined in Section 2), such N multiple look-up queries (including catalog look-ups) can
be executed independently, in parallel, in time O(ts log N) on a hypercube multiprocessor of
size N, where tg=O(p + log N) is the sequential time complexity for one multiple look-up query
as described in [CG1]. Note that, our solution allows an arbitrary number of search queries to
access the same node and its catalog at the same time. (This can not be achieved by, e.g.,
embedding graphs into hypercubes.) The requirement that the graph needs to be monotone is
not overly restrictive; such graphs include e.g. all k-nary trees (for fixed k).

In Section 3 we apply our method to the problem of determinating all intersections of n lines
with a simple polygonal path of length n; the Multi Slanted Range Search problem is solved in
Section 4. In Section 5, we implement a segment tree [BW], [M], [PS] for next element search
(n segments, m _queries, N = max{n,m}) on a hypercube of size N log N. Our approach
provides O(log2N) time hypercube algorithms for the next element search problem, the
trapezoidal map construction problem, and the triangulation problem.

2 PARALLEL FRACTIONAL CASCADING
2.1 REVIEW OF SEQUENTIAL FRACTIONAL CASCADING
Consider a directed graph G=(V,E) with bounded (fixed) degree; i.e., there exist constants
Hout and Ujn such that for every vertex ve V, the out-degree and in-degree of v are at most
Kout and ip, respectively. Assume that G is connected and has n vertices (and therefore O(n)
edges). As in [CG1], we associate with each vertex v of G a catalog Cy consisting of an

F. Dehne, A. Ferreira, and A. Rau-Chaplin, "Parallel fractional cascading on a hypercube
multiprocessor,” in Proc.. Allerton Conference on Communication, Control and
Computing, 1989, pp. 1084-1093,

ordered collection of records from a totally ordered domain U. The graph G together with its
catalogs is referred to as a catalog graph of size N=max{n,s}, where s is the sum of the sizes
of all catalogs.

A path m in G (of length p) is a sequence of vertices v1, v2, ..., vp such that for each
1<i<p, either (vi, vi+1)€E [forward edge] or (vi+1, vi)€ E [backward edge]. A multiple look-
up query is a pair (q,n) where q is a value of U and =« is a path in G. For each catalog C we
denote by ¢(q,C) the successor of q in C, that is the first record of C whose value is greater
than or equal to q. The iterative search problem consists of executing a multiple look-up query
(q,w) by following the path n in G and determining for every vertex v on the path the successor
of q in Cy. The path w is assumed to be specified on-line, that is the successor vi+] of the
vertex vi in T is only known after the query has reached vi and determined o(q,Cy.).

The above definition of fractional cascading follows the one given in [CGl],lbut assumes
fixed degree catalog graphs (instead of catalog graphs with locally bounded degree, see [CG1])
and uses a restricted definition of the considered type of paths. For the above case it follows
from [CG1] that in O(N) time and space it is possible to construct, for the standard sequential
machine model, a data structure that allows to solve the iterative search problem for one single -
multiple look-up query with path length p in ime O(p + log N).

2.2 A HYPERCUBE IMPLEMENTATION OF FRACTIONAL CASCADING
We now study how to obtain a parallel implementation of fractional cascading on a
hypercube multiprocessor of size N; that is a set of N synchronized processors PE(1), 0<i<N-
* 1, where two processors PE(i) and PE(j) are connected by a communication link if the binary
. representations of 1 and j differ in exactly one bit. (We assume that every processor has the
same constant number of registers; for every register A available at each processor, A(i) will
refer to register A at processor PE(1).)

Compared to the sequential methods presented in [CG1], we need to impose a restriction on
the type of catalog graphs. Consider a catalog graph G=(V,E) of size N with n vertices. G is
called a monotone catalog graph if there exists a (one-to-one) index function Index: V=> {1,
..., n} with the following property: if (v,v') and (w,w') are two edges of G with
Index(v)<Index(w) then Index(v")<Index(w").

In the remainder of this section we will show how, given a monotone catalog graph of size
N and a set Q={q1,...,qN} of N multiple look-up queries along paths of length at most p, these
N multiple look-up queries can be executed independantly, in parallel, in time O((p + log N)
log N) on a hypercube multiprocessor of size N. We assume, w.l.0.g., that N=29; all results
obtained can be easily generalized. We first give an overview of the algorithm, including the
assumed initial configuration of the hypercube, and how the results of the N multiple iterative
search queries are reported. We will then present some more details for the different phases of
the algorithm.

Algorithm Overview

The graph G is assumed to be stored in the hypercube such that each vertex v with
Index(v)=i is stored in register v(i) of processor PE(i). For every vertex v, let pred(v) and
succ(v) be the sets of predesessors and successors in G; i.e., the sets of at most Lin and Loyt
vertices w such that (w,v)eE and (v,w)e E , respectively. We assume that register v(i)
contains fields v.index(i), v.successori(i), ..., v.successory (i) and v.predecessori(i), ...,
v.predecessory. (i) storing Index(v) and (in sorted order) the1ndices of the vertices in succ(v)
and pred(v), respectively .

We assume that each PE(i) also has a register c(i) to store a catalog record. The catalogs are
stored in sorted order with respect to the index of the associated vertices, and each catalog is
internally sorted with respect to the order on U. Each record c(i) contains a field c.index(i)
storing the index of the associated vertex of G.

Every register v(i) also has a field v.EndCat(i) storing the address (processor number) of the
last record of the associated catalog.

The set Q={(q1,71), ..., (@N,® N)} of N multiple look-up queries is given as follows:
Every processor PE(1) stores in its register q(i) one arbitrary query value gj. The search paths
7j (15)<N) are determined on-line by the following two functions
o start: U= {1, ..., n}

e 2:VxUxU= {-Uin,....-1,1,...,.0Lout}.
For each gj, start(qj) is the index of the first vertex v] in its path xj.

Assume that the xth vertex vx of 7j is stored in register v(i) of processor PE(i), and that the
successor 6(qj,Cy,) of gj in Cv, has been determined; let y = g(v(i), gj, 6(qj,Cv.)). If y<O
then v.predeces7s(or- (1) is the index of the (x+1)St vertex vx+] of s Stherwise,
v.successory(i) is the index of the (x+1)St vertex.

It is required that both functions, start and g, can be calculated in constant time.

Multi Iterative Search:
(1) Phase 1: Match every query with the 1% node in its search path and perform the
respective catalog lookup.
(2) Forx:=2topdo
3) Phase x: Match every query with the x* node in its search path and perform
the respective catalog lookup.
Figure 1: Global Structure of the Multi Iterative Search Algorithm

The global structure of the multi iterative search algorithm is described in Figure 1. The
iterative search processes for all N queries q1, ..., QN are executed in p phases; each phase
moves all queries one step ahead in their search paths. '

The general idea is that, in Phase x (1<x<p), instead of routing the queries to the respective
nodes (possibly resulting in collisions), these nodes are duplicated and routed to the respective
queries. In order to obtain the desired time complexity, the algorithm first permutes the queries
(in registers q(i)) such that they are sorted with respect to the index of the xth node in their
_search path. It then creates, in registers v'(i), copies of the respective nodes such that each
processor PE(i) containing a query gj in its register g(i), contains in its register v'(i) a copy of
* the xth node in the search path of qj (we will call this a match of gj with the xt node in its
search path). Finally, for each node v all queries that have v as the xth vertex in their search
path and Cy are merged into one sorted list, and for each query its successor in Cy 1s
determined.

In the following we will present some details of Phase 1 and Phase x (2<x<p), respectively.
The first phase is different from the remaining phases. When ordering the queries with respect
to the index of the first node in their search path, the first phase has to start with an arbitrary
permutation of the queries, whereas each subsequent phase will utilize the ordering of the
previous phase (in order to improve the time complexity of the algorithm).

The algorithm assumes that, in addition to the registers mentioned above, every processor
PE(i) also has a register v'(i) to store another vertex of G as well as other auxiliary registers
R(@), NG), q'(1), "), ¢'(@), N'(1), N"(1), LS(@), Shift(i) and Dest(i).

Phase 1 of the Multi Iterative Search Algorithm
An outline of Phase 1 is given in Figure 2. The algorithm consists of five steps; consult
Appendix A for a describtion of the standard hypercube operations referred to in the figure.

Phase 1:
(1) Every PE(i): N(i):=f(Start,q(i),>)
(2) Sort([q(), N(@)], N(1))
(3) MoveVerticesToQueries
(4) SelectCatalogs
(5) SearchCatalogsForQueries
Figure 2. QOutline of Phase 1.

First, every processor PE(i) calculates the index of the first node in the search path of its
query q(i), and stores this value in the register N(i). Then in Step 2, the queries are sorted by
the index of the first node in the search path, i.e. N(i). In Step 3 (see Figure 3), the source
nodes are copied to the queries for which they are the first node in their search path. Finally, in
Steps 4 and 5 (see Figures 4 and 5, respectively), the catalogs associated with the current
vertices are selected and, for each query the successor record in the respective catalog is
determined, respectively. Steps 3-5 can be performed in O(log N) time.

MoveVerticesToQueries:
(1) Every PE(i): N'(1):=N(); Dest(1) :=-1
(2) Route([N'D)], i-1, 1>0)
(3) PEM): N'(N):=N(N) + 1
(4) Every PE@) with N'({)#N(i): Dest(i):=1
(5) Route([Dest(i)], N(@), N'({)#N(1))
(6) Every PE(i): v'(1):=v(1)
(7) RouteAndCopy([v'(i)], Dest(i), Dest(i)#-1)
Figure 3. Sketch of Procedure MoveVerticesToQueries.

SelectCatalogs:
(1) Every PE(®i): N'(1):=N(); Dest(i) :=-1
(2) Route([N'(D)], i-1, 1>0)
(3) PEQ): NN):=NN) +1
(4) Every PE(@i) with N'()#N(i): Dest(i):=v'.EndCat(i)
(5) RouteAndCopy([Dest(i)], Dest(i), Dest(i)#-1)
Figure 4. Sketch of Procedure SelectCatalogs.

SearchCatalogs:
(1) Every PE(i) with Dest(i)#-1 : ¢'(i):=c(1)
(2) Number(H(@), Dest(i)»-1)
(3) Concentrate([c'(1),Dest(i)], Dest(i)=-1)
(4) Reverse([c'(), Dest(i)], N, H(i)+N-1) .
(5) BitonicMerge2([q'(i),¢'(),r'())],v'index(i),q'(),c'index(i),c'(1),0,N-1,0,H(i)-1)
(6) Every PE(i) : flag'(i):=flag(i)
(7) Route([flag'(i)], i+1, i<N)
(8) RouteAndCopy([c'()].(),flag'(i)=flag(i) and flag(i)=c)
Figure 5. Sketch of Procedure SearchCatalogsForQueries.

Phase X (2<x<P) of the Multi Iterative Search Algorithm

As indicated above, the purpose of each subsequent phase is to advance, in time O(log N),
all queries by one step in their search paths. After Phase x-1 has been completed, all queries are
sorted (in registers q(i)) with respect to the index of the (x-1th node in their search path. Each
processor PE(i) contains in its register v'(i) a copy of the (x-l)th node in the search path of the
query stored in q(i). In register ¢'(i), PE(i) stores a copy of the successor catalog element of
query q(i) in catalog Cy'(i). The desired effect of Phase x is to have all queries sorted (in
registers q(i)) with respect to the index of the xth node in their search path, and have each
processor PE(i) contain (in its register v'(i)) a copy of the xth node in the search path of query
q(i) and (in register c'()) a copy of the successor of g(i) in Cy'(j).

An outline of the algorithm for Phase x is given in Figure 6. First (in Step 1), every PE(i)
computes for the query currently stored in its register q(i) which edge to use for the next step in
the search path as well as the index of the next node, and stores these two numbers in the
auxiliary registers R(i) and N(i), respectively. Note that if the query has to be routed backward
in the graph G then a negative value is stored in the register R(i). In Step 2, all queries are
sorted by the index of the next node in their search paths. By sorting first the backward moving
queries and then the forward moving queries, this sorting operation can use the properties of
the previous permutation of the queries and be performed by a procedure
OrderQueriesByNextVertex in time O(log N). Once this ordering has been obtained, the nodes
can be matched with the queries, and the respective catalogs can be selected and searched, in
time O(log N) in the same way as above.

Phase x , 2<x<p:
(1) Every PE(D): R(1):=g(v'(1),q(1),c'(1));
If RG>0
THEN N(1):=v'.successorgg(1)
ELSE N(i):=v'.predecessor.gg(1)
(2) OrderQueriesByNextVertex
(3) MoveVerticesToQueries
(4) SelectCatalogs
(5) SearchCatalogsForQueries

Figure 6. Overview of Phase x, 2<x<p.

What remains to be discussed is procedure OrderQueriesByNextVertex. This procedure,
which is sketched in Figure 7, creates in time O(log N) the new ordering of the queries with
respect to the indices of the next nodes in the search paths.

We first consider all forward edges to next vertices in the search paths; the backward edges
are handled analogously. Let (v,w) and (v',w') be two such edges for two queries q and q', |
respectively, with the property that g(v,q,6(q,Cy))=g(v,q,0(q,Cy")). From the monotonicity
of G it follows that if Index(v)<Index(v') then Index(w)<Index(w'). Therefore, the
subsequence of queries q for which g(v,q,6(q,Cy)) has the same value r is already sorted with
respect to the index of the next vertex. Furthermore, since each node has an outdegree of at
most Uoyt, there are at most [Loyt=0(1) such subsequences. The new ordering of the queries
.can therefore be created in time O(llout log N)=0(log N) by extracting these Uoyt ordered

subsequences and mergeing them in Moyt bitonic merge steps. For the backward edges the
- same idea applies because a monotone graph has the same monotonic properties forwards or
backwards.

OrderQueriesByNextVertex:

(1) Initialize all shift registers.

(2) Every PE(i): Shift(i):=0

(3) FOR r:= -Uiny-.-,»-1,1,...,out DO

@) Every PE(i) with R(i)=r: q'(i):=q(i), N'(1):=N()
(5) Concentrate([q'(1), N'(1)], N'(i)=r)

6) Number(LS(i), N(@i)=r)

7 1s := LS(0)

(8) shift ;= Shift(0)

® Reverse([q'(i), N'(1)],0,1s)

(10) Route([q'(i), N'(i)], i+Shift(i), N'(i)=r)

(11) Every PE(i) with N'()=r: q"(1):=q'(Q), N"(1):=N'(Q)
(12) BitonicMerge([q"(i), N"(1)],N"(i),0,shift,shift+1s)
(13) Every PE(i): Shift(i):=Shift(i)+LS()

(14) Every PE(®1): q(i):=q"(), N(1):=N"(1)

Figure 7. Sketch of Procedure OrderQueriesByNextVertex.

Theorem 1. For a monotone catalog graph of size N (and bounded degree), N iterative search
queries along paths of length at most p can be executed independantly, in parallel, in time O((p
+ log N) log N) on a hypercube multiprocessor of size N.

For the algorithm presented above, it is in fact not necessary that all catalogs are given a
priori. It is easy to see that for each phase only those catalogs to be accessed by at least one
query need to be available, provided that these catalogs are stored in sorted order with respect
to the indices of the respective nodes.

3 DETERMINATION OF ALL INTERSECTIONS OF n LINES WITH A SIMPLE
POLYGONAL PATH OF LENGTH n

Consider the problem of determining, for a given simple polygonal path P of length n, all
intersections with a given query line 1. Chazelle gnd Guibas [CG2] have presented an O(n)
space, O(n log n) preprocessing time, and O(k log 1) query time sequential solution (where k is
the number of reported results) based on sequential fractional cascading. They introduce a
convex hull decomposition tree T with a root node representing the convex hull of P;
recursively, P is then split into two halves represented by each subtree. The convex hull at each

vertex 1is stored as follows: at every leaf, the respective line segment is stored; for every
internal node the at most two merge lines for creating the convex hull for this node (from the
convex hulls of the two direct children) are stored. Line queries are answered in a branch-and-
hound fashion; the subtree Hj of T traversed by a query line 1 is shown to have at most O(k log
E) vertices. The decision to be made at each node of T consists mainly of locating the slope of 1
11 a sorted list of slopes of convex hull edges, and hence fractional cascading can be applied.

We observe that for a line 1, instead of traversing Hj in a branch-and-bound fashion as in
[CG2], we can also traverse Hjin an inorder traversal with exactly the same type of decision to
be made at every node. Such a traversal (as well as the tree T) meet the requirements for
parallel fractional cascading on a hypercube described in Section 2.

It is easy to see that on a hypercube of size n, the convex hull decomposition tree T can be
constructed in time O(log?n). Applying Theorem 1, we obtain

Theorem 2. Given a simple polygonal path P of length n and a set of n arbitrary query lines,
then for all query lines all intersections with P (with a maximum of k results per query) can be
determined on a hypercube multiprocessor of size N in time O((k log 7 log n) log n).

Note: We assume that at the end of each phase of parallel fractional cascading, every
processor can report a result without having to store it. Otherwise, after each phase the reported
results need to be concentrated in order to obtain an even data distribytion, and the number of
processors and time complexity increase to O(n+M) and O((k log T log n) log (n+M)),
‘respectively, where M denotes the total output size for all queries. A simnilar argument holds for
. Section 4.

4 MULTI SLANTED RANGE SEARCH

Consider a set S of n points in the Euclidean plane and n slanted range queries as described
in [CG2]. Chazelle and Guibas present a sequential fractional cascading algorithm that allows
to answer one slanted range queries in time O(k + log n), where k is the size of the output, with
O(n) and O(n log n) space and preprocessing, respectively. Their algorithm is based on a tree T
representing S as follows: the root of T represents the lower hull of S; the left and right subtree
represent the lower hulls of the left and right half, respectively, of the set S minus its lower hull
points. A slanted range search query is again executed by a branch-and-bound type search on
T, where the decision at each node reduces to a catalog look-up of the angle of a border
segment of the range in the sorted list of angles of the lower hull edges for the that node.

n. We observe that if we replace this type of traversal by an inorder traversal of length O(k log
) we meet the requirement of parallel fractional cascading on a hypercube multiprocessor

escribed in Section 2. Since the convex hull of n points can be obviously computed on a
hypercube of size n in time O(log2n) by using the standard divide and conq3uer approach
together with bitonic merging, it follows that T can be computed in time O(log”n). Applying
Theorem 1, we obtain

Theorem 3. Given a set of n points in the Euclidean plane then, with a preprocessing of
O(log3n), n slanted range search queries [CG2] (with a maximum of k results per query) can be
solved on a hypercube of size N in time O((k + log N) log N).

5 A HYPERCUBE IMPLEMENTATION OF A SEGMENT TREE FOR NEXT
ELEMENT SEARCH, AND APPLICATIONS

We will now use the results obtained in Section 2 to present an efficient parallel
implementation, for the hypercube multiprocessor, of a well known data structure: the segment
tree [BW]. The segment tree is a widely used structure which has for example been used to
obtain efficient implementations of plane sweep algorithms in computational geometry [BW],
[M], [PS]. Here, we consider an application of the segment tree to the next element search
problem.

The next _element search problem is a well known problem in computational geometry.
Given a set S of n non intersecting line segments I1,...,In and a direction Dnext (without loss
of generality we will assume that Dpext 1s the direction of the posttive Y-axis), the next element
search problem consists of finding for each point pj of a set of m query points p1,....pm the
line segment [first intersected by the ray starting at pj in direction Dpext (m=0(n)).

A well known method for solving the next element search problem is to apply a plane sweep
in direction Dpext using a segment tree [BW], [M], [PS]. Let ;(X) [pi(*)] be the projection of
line segment Ij [point pji, respectively] onto the x-axis, and let (x1,x2,...,Xx2n) be the sorted
sequence of the projections of the 2n endpoints of 11,...,In onto the x-axis. The segment tree
T(S) = (Vs,Es) for S is the complete binary tree with leaves x1,...,Xx2n. For every node v of
T(S), an interval xrange(v) is defined as follows:

- if v is a leaf xj, then xrange(v) = [x{,xi+1). ([X2n,x2n+1)=[x2n,x2n])
- if vis an internal node, then xrange(v) is the union of all intervals xrange(v') such that v' is
a leaf of the subtree of T(S) rooted at v.

With every node v of a segment tree T(S) there is associated a node list NL(v) ¢ S which is
defined as follows: NL(v) = { I e S| xrange(v) ¢ I(X) and not (xrange(father of v) ¢ I(X))}.
For the remainder let h denote the height of T(S).

A segment tree T(S) is a monotone catalog graph with respect to the following index
function: assume all nodes being sorted by height as major key and xrange as minor key, then
the index of each node is its rank with respect to this ordering.

For every query point p, we define path(p) to be the path in T(S) from the root to the leaf v
such that p X)e xrange(v). In order to solve the next element search problem, each query point
p is routed along path(p). At every node v on the path, the successor of p in NL(v) is
determined (this process will be referred to as locating p in NL(v)). Hence, the next element
search problem for n query points reduces to n multiple look-up queries on T(S). We show
next how to build T(S), in particular how to build the node lists (catalogs) NL(v).

Note that each line segment can occur in O(log n) node lists and, thus, the sum of the
- lengths of all node lists is O(n log n) [M]. Hence, storing the segment tree with all its node lists
in a hypercube multiprocessor requires O(n log n) processors.

Fora segmentl e S with I X) = [a,b] we define l-path(I) to be the path from the root of
T(S) to the leaf v of T(S) with ae xrange(v). Likewise we define r-path(I) to be the path from
the root of T(S) to the leaf v of T(S) with be xrange(v). We observe that, if a line segement I is
contained in a node list NL(v), then exactly one of the following four cases applies:
(1) ve l-path()
(2) vistheright child of a node v' € I-path(I)
(3) ve r-path(])
(4) v isthe left child of a node v' € r-path(I)
We define NLy(v), r € {1,2,3,4}, to be the set of all I € NL(v) for which case r applies.

The algorithm for constructing the segment tree T(S) consists of four parts. In Part r,
1<r<4, all line segment are routed through T(S). When they arrive at the nodes of height i,
1<i<h, the node lists NLy(v) of all those nodes are created. In order to efficiently
determine, for a query point, the next line segment in a node list NL(v), the segments have
to sorted with respect to the above-below relation within the vertical slab defined by
xrange(v). We will create every sublist NLj{(v) in sorted order; at the end of Part 4, the
node lists NL(v) in sorted order are obtained from the sublists NLj(v) by applying bitonic
merge.

We will show how to execute Parts 1 and 2; Parts 3 and 4 follow by symmetry. We assume
a hypercube of size N=max{n,m} where initially every processor stores one line segment and
one query point; w.l.o.g., m=n=N=2¢,

We first present Part 1 of the algorithm, i.e. how to create the node list NL1(v) for all nodes
v with Level(v)=i.

This problem is solved by taking as the set of queries (for our parallel fractional cascading
algorithm) the set of line segments, and route every segment Ie S along 1-path(I). At the end of
Phase i (1<i<h) for every node v with Level(v)=i there exists a block of consecutively
numbered processors containing all line segments s such that ve l-path(s). From these, we can
immediately extract all line segments se NLj(v).

What remains to be discusses is how to obtain a sorted ordering of the node lists NL(v).
We observe that our fractional cascading algorithm applied to a segment tree T(S) is stable in
the following sense: if two queries (line segments) q; and qp are initially stored in processors
PE(j;) and PE(j3) with ji<jo, and the iy, node in l-path(q;) is the same as the ith node in 1-
path(qp), then at the end of Phase 1 the queries q; and q; are stdred in two processors PE(j;")
and PE(j") with j;'<j,'. Therefore, we initially sort all line segments by the y-coordinates of
their left endpoints. Then, at the end of each Phase i all line segments which were routed to a

node v are ordered by y-coordinate; i.e., NLi(v) is in the desired order. Applying the results
from Section 2.2 we therefore obtain the following.
Lemma 1. Part I of the segment tree construction algorithm can be executed in time O(logZN)
on a hypercube of size N log N.

We now turn to Part 2 of the algorithm; i.e., constructing the node lists NL2(v). As in Part
1, each line segement I in a node list NL2(v) still has the property that xrange(v) ¢ 1(X), but in
contrast to the former case a total ordering of the line segements in NL2(v) can not be obtained
by using the sorted order of the left (or right) endpoints of the segments.

Figure 8. The Trees T(S) and T'(S).

Let T'(S) be the "shifted” version of T(S) as shown in Figure 8. For each line segement
Ie S let 1-path'(I) be the path in T'(S) either from the last node v of 1-path(l), if v is a right child
“in T(S), or otherwise from the right sibling of v in T(S), to the root of T'(S).
.~ From the above definitions it follows that if a segment Ie S is in a node list NL2(v) then v is
a node in l-path'(I).

We also observe that if 1-path'()=(w1, ..., wh) and I¢ NL2(wj), then I¢ NL2(wj) for all
j=i. Thus, for three nodes w(, w1, and w2 in T'(S) such that (w1,wQ)e Es' and (w2,w()€ Eg'’
it follows that NL2(w() ¢ NL2(w1) U NL2(w2). Let xrange(w()=[a,b) and consider the
ordering of NL2(w() obtained by sorting the line segments by the y-coordinate of their
intersection with the line x=a. This ordering can be constructed from the analogous orderings
of NLp(w1) and NL2(w?) by eliminating from these sequences the elements not contained in
NL2(w() and merging the so obtained subsequences.

The idea for Part 2 of the algorithm is to route all line segements along l-path'(l). Since
T'(S) is a monotone (catalog) graph with O(n) sources, this can be implemented in time
O(log2N). It is easy to see that during this search, it is possible to delete some line segments
(i.e., eliminate them from further consideration) in any phase of the parallel fractional
cascading algorithm without changing the time complexity. In this particular case, we delete a
line segment [S if it has been routed to some node v with [& NL2(v).

At the end of Phase i, 1<i<h, for each node w(in G with Level(w())=h-i+1 there exists a
consecutive sequence of processors containing all line segments Ie NL2(w(). In Phase i-1,
these line segments have been routed to at most two different nodes w] and w2. If NLa(w1)
and NL2(w?2) where previously ordered as described above, then the same ordering for
NL2(w() can be obtained by extracting the two subsequences of segments previously routed to
NL2(w1) and NL2(w?2), respectively, and merging these subsequences using a bitonic merge.
Since only two line segements where initially routed to every source of T'(S), the orderings of
all lists NL2(v) can be maintained through all phases with an overhead of O(log N) steps per
phase.

This yields
Lemma 2. Part 2 of the segment tree construction algorithm can be executed in time O(logZN)
on a hypercube of size N log N.

Summarizing, we obtain
Theorem 4. The segment tree construction problem can be solved on a hypercube of size N
log N in time O(log“N); N=max{m,n}.

Our strategy for solving the next element search problem has five phases. In phase one, we
construct the segment tree T(S) as described above. In phase #wo, we route the query points
down T(S), constructing a query list QL(v) for each node v by storing copies of all queries that
visit it. The query lists are stored in the same manner as the catalogs (see Section 2.2). Phase

three converts in O(log? N) time the catalogs NL(v) into a forest of binary trees, one for each
catalog. Each NL(v), which is sorted as described above, is represented by a balanced binary
search tree. This step can be completed by having each catalog element calculate its level and
position in its tree. A single O(log?N) sort can then be used to construct the forest of binary
trees. Each Catalog lookup can now, in part four, be performed by executing a multiple binary
search in which each query in each query list is routed through the respective binary search
tree. Finally, in phase five, the partial results generated in phase four, are sorted by the
original query points, and the final results are calculated by choosing the best answer for each
query point.
Summarizing, we obtain

Theorem 5. The next element search problem for a set of n disjoint line segments and m
query points can be solved on a hypercube of size N log N in time O(log2N); N=max{m,nj.

Theorem 5 implies an efficient hypercube solution for another fundamental geometric
problem: the construction of the trapezoidal map [TW].

Given a set S of n disjoint line segments in the plane; for any endpoint p of a segmentin S,
the trapezoidal segments for p are the (at most two) line segments first intersected by the rays
emanating from p in direction of the positive and negative y-axis, respectively. The
construction of the trapezoidal map consists of finding for each endpoint of the segments in S
its trapezoidal segments.

This problem is fundamental in computational geometry and is frequently used to solve
‘other geometric problems; see e.g. [G], [TW], and [Y]. Atallah, Cole, and Goodrich [ACG],
~[G] presented an O(log n) time algorithm for computing the trapezoidal decomposition on a
PRAM with O(n) processors (and O(n log n) space). As a consequence of Theorem 5, we
obtain
Corollary 1. For a set of n disjoint line segments, the trapezoidal map can be computed on a
hypercube with n log n processors in time O(log<n).

Yap [Y] has shown that on a PRAM with O(n) processors (and O(n log n) space), the
triangulation of a simple polygon (see [TW]) can be computed in time O(log n) by essentially
applying two calls of the trapezoidal map algorithm (of [ACG], [G]). By combining the result
in [Y] with Corollary 1, we obtain
Corollary 2. An n-vertex simple polygon can be triangulated on a hypercube multiprocessor
of size n log nin time O(log“n).

REFERENCES

[ACG] M.J. Atallah, R. Cole, and M.T. Goodrich, "Cascading divide-and-conquer: a
technique for designing parallel algorithms", SIAM J. Comput. 18:3, pp. 499-532,
1989.

[ACGD] A. Aggarwal, B. Chazelle, L. Guibas, C. O'Dunlaing, and C. Yap, "Parallel
computational geometry", Algorithmica 3:3, 1988, pp. 293-327.

[AG] M.J. Atallah, M.T. Goodrich, "Efficient plane sweeping in parallel”, in Proc. ACM
Symp. Computational Geometry, 1986, pp. 216-225.

[B] K.E. Batcher, "Sorting networks and their applications"”, in Proc. AFIPS Spring Joint
Computer Conference, 1968, pp. 307-314.

[BW] J.L. Bentley and D. Wood, "An optimal worst case algorithm for reporting
intersections of rectangles", IEEE Transactions on Computers 29:7, 1980, pp. 571-
576.

[CG1] B. Chazelle, L.J. Guibas, "Fractional cascading: I. A data structuring technique",
Algorithmica 1:2, 1986, pp. 133-162.

[CG2] B. Chazelle, L.J. Guibas, "Fractional cascading: II. Applications", Algorithmica 1:2,
1986, pp. 163-192.

[DK] N. Dadoun and D.G. Kirkpatrick, "Parallel processing for efficient subdivision
search", in Proc. ACM Symp. on Computational Geometry, 1987, pp. 205-214.

[DR] F. Dehne, A. Rau-Chaplin, "Implementing data structures on a hypercube
multiprocessor, and applications in parallel computational geometry", Tech. Rep.
SCS-T%—ISZ, School of Computer Science, Carleton Univ., Ottawa, Canada
K1S5B6. 4

[G] M.T. Goodrich, "Efficient parallel techniques for computational geometry", Ph.D.
thesis, Department of Computer Science, Purdue University, 1987.

M] K. Mehlhorn, "Data structures and algorithms 3: multi-dimensional searching and
computational geometry", Springer Verlag, 1984,

[NS] D. Nassimi, S. Sahni, "Data broadcasting in SIMD computers”, IEEE Trans. on
Computers 30:2, 1981, pp. 101-106.

[PS] F.P. Preparata and M.L. Shamos, "Computational geometry - an introduction”,
Springer Verlag, 1985.

[TW] R.E. Tarjan and C.J. Van Wyk, "An O(n log log n) time algorithm for triangulating a
simple polygon”, STAM Journal of Computing 17, 1988, 143-178.

(Y] C.-K. Yap, "Parallel triangulation of a polygon in two calls to the trapezoidal map",
Algorithmica 3:2, 1988, pp. 279-288.

APPENDIX A: BASIC HYPERCUBE OPERATIONS

The following is a list of slightly generalized versions of well known hypercube operations,
as used in Section 2. (In addition to those registers listed below, the actual implementation of
these operations may require a constant number of auxiliary registers.)

Rank(Reg(i),Cond(1)): Compute, in time O(log N), in register Reg(i) of every processor PE(i)
the number of processors PE(j) such that j<1iand Cond(j) is true [NS].
Number(Reg(i).Cond(i)); Compute, in time O(log N), in register Reg(i) of every processor
PE(@) the number of processors PE(j) such that Cond(j) is true.
‘Concentrate([Reg](i).....Regz()].Cond(i)): This operation includes an initial Rank(R(1),
- Cond(i)) operation. Then for each PE(i) with Cond(i) = true, registers Reg1(i),...,Regz(1) are
copied to PE(R(1)), z=O(1). The time complexity of this operation is also O(log N) [NS].
Route([Reg](i).....Regz(1)].Dest(i).Cond(i)): Every processor PE(i) has z=O(1) data registers
Reg1(i),...,Regz(1), a destination register Dest(i), and a boolean condition register Cond(i). It
is assumed that the destinations Dest(i) are monotonic; i.e., if i<j then Dest(i)<Dest(j). This
operation routes, for every processor PE(i) with Cond(i) = true, all registers
Reg1(),...,Regz(i) to processor PE(Dest(i)); it can be implemented with an O(log N) time
complexity by using a Concentrate operation followed by a Distribute operation described in
[NS].

RouteAndCopy([Reg1()....Regz(i)].Dest(i).Cond(i)): Under the same assumptions as for the
Route operation, this operation routes, for every processor PE(i) with Cond(i) = true, a copy
of registers Reg1(i),...,Regt(i) to processors PE(Dest(i - 1) + 1), ..., PE(Dest(1)), each; it can
be implemented with an O(log(N)) time complexity by using a Concentrate followed by a
Generalize operation described in [NS].

Reverse([Reg1()....Regz())].Start End): This operation routes for every PE(i) with Start <1
< End, its registers Reg1(i), ..., Regz(i), z=0(1), to PE(Start + End - i); i.e., it reverses the
contents of those registers for the sequence of processors between PE(Start) and PE(End).
Reversing, in the entire hypercube, a sequence of n values (each stored in one processor)
corresponds to routing each value stored at processor PE(i) to processor PE(i"), where 1’ is
obtained from i by inverting all bits in its binary representation. Hence, this operation can be
implemented in time log(n) similarly to the Concentrate/Distribute operation described in [NS].
BitonicMerge([Reg1().....Regz(1)] Key(i).Left,Peak. Right): This operation is the well known
bitonic merge [B]. It converts in time O(log N) a bitonic sequence (with respect to register
Key(i)) into a sorted sequence; it simultaneously permutes the registers Reg] (i),....Reg(i)
(z=O(1)). Here, we apply it to a particular bitonic sequence consisting of an increasing
sequence starting at PE(Left) and ending at PE(Peak) followed by a decreasing sequence
starting at PE(Peak+1) and ending at PE(Right).
BitonicMerge2([Reg1(i).Regr(i).Reg3(1)l.Kev11().Key12().Key21().Keyr2(i).Left]1 . Right
1.Left2.Right2): This operation simulates a 2N hypercube. It merges the sorted sequences
stored 1n registers Reg] and Reg), and stores the resulting sequence into register Reg3(1), ...,
Reg3((Right1-Left] + 1) + (Right2-Left + 1)). The principal keys for merging are Key11(1)
and Key?21(1), while the secondary keys are Key12(i) and Key22(i). The first sequence is
stored in processors PE(Left]) to PE(Right1) while the second sequence is stored in PE(Left2)
to PE(Right)). .
Sort([Reg1().....Regz(1)].Key(i)): This operation refers to O(logzn) time bitonic sort [B] with
respect to Key(i); it simultaneously permutes the registers Reg1(i)....,Regz(i) (z=0(1)).

10

