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Abstract—Property catastrophe insurance and reinsurance
companies are financial institutions that provide for the equi-
table transfer of the risk due to catastrophic events such as
earthquakes, hurricanes, and floods, in exchange for a premium.
Immediately after a catastrophic event these insurers face an
acute situational analysis and management challenge. They want
to immediately start to flow funds to their affected clients,
they need fast estimates of likely losses so they can reserve
the necessary capital, and they need to be able to communicate
their potentially changed financial situations to regulators, rating
agencies, and stockholders.

In this paper we explore the design of an analytical framework
for quantifying financial loss in the aftermath of catastrophic
events. The idea is to aggregate the thousands of Exposure
databases received by a single reinsurer into a giant loosely
structured exposure portfolio and then to use Big Data analysis
technology, originally developed in the context of web-scale
analytics, to rapidly perform natural but ad-hoc loss analysis
immediately after an event. As in many situational analysis
problems, the challenge here is to work with both categorical
and geospatial data, deal with partial data often at varying levels
of aggregation, integrate data from many sources, and provide
an analysis framework in which natural but ad-hoc analysis can
be rapidly performed in the hours, days, and weeks immediately
after an event.

Keywords—Risk analytics, framework, exposure data, post-
event, MongoDB, catastrophe, reinsurance.

I. INTRODUCTION

In 2013 two-hundred and ninety-six global natural disasters
(including earthquakes, floods, and hurricanes) caused a total
economic loss of $192 billion dollars (USD) [1]. Of this total
economic loss, $45 billion dollars was insured meaning that
the financial resources required to help effect rapid recovery
were available and being held in reserve by the insurance
and reinsurance companies who had underwritten the risk. In
the hours, days, and weeks immediately after the event these
insurers face an acute situational analysis and management
challenge. They want to immediately start to flow funds to their
affected clients, they need fast estimates of likely losses so they
can reserve the necessary capital, and they need to be able to
communicate their potentially changed financial situations to
regulators, rating agencies, and stockholders.

However, the situation on the ground after a natural dis-
asters is often unclear. The extent of the affected area, the

intensity of the hazard, and its impact on the value and
usability of buildings are all unknown. Eventually, when initial
claims have been filed, the buildings repaired or replaced, and
the insurance for lost use or business interruption covered,
the total loss will be know. Until then, insurers and reinsurers
need systems to help them estimate losses so that they can
quickly get initial funds to the right clients in the right amounts
and communicate their financial situation to counter parties,
regulators, and the public.

Exposure data, in the context of property catastrophe
insurance, refers to data that describes what is being insured
and under what terms. Broadly it consists of three types of
data: 1) Location data such as latitute/longitude, street address,
postal code, state, province, country, etc. 2) Physical data such
as building type, construction, number of stories, roof type,
age, etc. and 3) Contractual data such as coverage value, limits,
deductibles, and other financial terms defining the risk transfer
contract.

Primary insurance companies collect exposure data from
their clients (home owners and businesses), place it in Ex-
posure databases, and pass it on to reinsurance companies.
Thousands of these Exposure databases are collected by rein-
surance companies (from their clients - the primary insurers)
and are used in the pricing process. The reinsurers typically
take each individual database and run it through a pricing
model to produce an expected loss table (ELT) and then archive
it. The individual Exposure databases are currently considered
to be too big and granular to be of much further use in the
reinsurer’s analytical pipeline.

In this paper we explore the design of an analytical
framework for quantifying financial loss in the aftermath of
catastrophic events. The idea is to aggregate the thousands
of Exposure databases received by a single reinsurer into a
giant, loosely structured exposure portfolio, and then to use Big
Data analysis technology, originally developed in the context
of web-scale analytics, to rapidly evaluate natural, but ad-
hoc, loss analysis immediately after an event. As in many
situational analysis problems, the challenge here is to work
with both categorical and geospatial data, deal with partial
data often at varying levels of aggregation, integrate data from
many sources, and provide an analysis framework that in which
natural but ad-hoc analysis can be rapidly performed in the
hours, days, and weeks immediately following an event.



II. SCENARIOS

In this section to help illustrate the challenges of post-
event analytics and to build up a set of use cases and a
definition of core framework operations, we explore scenarios
built around three recent events. While governments, non-
governmental agencies, insurers, and reinsurers are all involved
in post-event exposure analysis, to keep our scope manageable
we will focus on analysis from a reinsurer’s perspective.

A. Tōhuku Earthquake, Tsunami, and Radiation Disaster

On March 11, 2011 a magnitude 9.0 earthquake occured
just off of the coast of Japan. The earthquake also caused a
subsequent tsunami whose total run-up height measured 38.9
meters, approximately the size of a 12 story building. The
combination of the earthquake and tsunami severely damaged
a number of the reactors in the Fukushima I Daiichi nuclear
power plant which caused a nuclear incident, leaking radiation
into the surrounding environment. This earthquake was the
fourth largest earthquake in recorded history, the largest in
Japan1, and resulted in 15,854 deaths and 3,203 missing
persons2 in Japan [2].

After a catastrophic event, reinsurance companies need to
calculate loss information and provide it to regulation agencies,
stockholders, and other parties. To do this they need to 1)
determine the boundary of the region impacted, 2) determine
a map of hazard intensities within that region, 3) estimate mean
damage ratios (MDR) maps for the impacted by building type,
and finally estimate losses taking into account financial terms
under a variety of assumptions.

For an event like the Tōhuku event, reinsurers would
overlay a variety of hazard maps to generate the affected
area. They would gather shakemaps for earthquake intensity,
inundation maps for tsunami intensity, and wind-borne debris
maps for the radiation fallout. Overlaying these maps provides
a picture of the affected event area and hazard intensities
sustained within it.

After constructing the boundary of the affected region,
reinsurers would then need to identify the impacted exposure.
In areas like the US, where detailed high quality exposure data
is typically available, this might be as simple as performing a
geospatial query in the Exposure portfolio to identify locations
with lat/longs within the boundary. In a case like the Tōhuku
event which involves Japanese exposure, the specific exposure
would likely be unknown. In this case, aggregated exposure
collected at a district or even prefecture level would need to be
spatially disaggregated using data such as daytime or nighttime
population numbers to produce detailed representative lat/long
based exposure.

Finally, by combining the identified exposure, the MDR
maps of for the event, vulnerability curves by exposure type,
and a financial terms simulator, an ad-hoc event specific loss
model can be constructed and used. This will provide loss
estimate summaries, a breakdown of losses by a set of filterable
fields, and a mapping of losses over the area. The reinsurer
can then use this information to drive reserving and early loss
settlement processes, as well as to provide updated solvency

1Since instrumental recordings began in 1900
2As of March 8, 2012

information to regulators, rating agencies, and other interested
parties.

B. 2011 Thailand Flood Disaster

While the Tōhuku Earthquake was an event that rapidly
unfolded, the 2011 Thailand Floods is an example of a slow
event that unfolds over months in which the issue is unknown
risk hidden in the exposure data.

In 2011 heavy rains throughout Thailand, the remnants
of tropical depressions Haima and Nock-Ten, and an active
monsoon season caused severe flooding across the country [3].
Although Thailand has a history of flooding, this was the most
expensive event resulting in approximately $45.7 Billion USD
in economic losses. The biggest contributor to these losses
was the manufacturing sector, contributing approximately $32
billion [4]. Many companies in Thailand’s manufacturing in-
dustry are hard drive manufacturers. The impact of flooding
was so extreme that it interrupted the global supply chain of
hard drives, driving up world prices substantially [5].

Before 2011, the average reinsurer would have told you that
they had little financial exposure to Thailand floods. Thailand’s
manufacturers were largely insured by Japanese primary in-
surers who provided reinsurers with only aggregated exposure
data. It was only when the early claims started trickling in that
the reinsurers realized they might have a problem. But how
much of a problem? How big were the eventual claims likely
to be? Answering such questions required an ad-hoc analysis
process that combined aggregate exposure data with publicly
available industry and economic data.

The first task was to estimate the commercial exposure,
and generate a detailed representative exposure set. Given
knowledge of the aggregate exposure and the average value
of a disk manufacturing facility, an estimate on the number
of facilities and their values could be obtained. Then using
a description of the transportation network and estimates of
daytime population (as a proxy for the spatial distribution
of commercial activity) detailed representative exposure sets
could be generated.

The second task was to create, from the early claims data,
industrial building vulnerability curves, and flood inundation
maps, a crude aggregate loss model. Such models could be
used for reserving (i.e. the process of reserving capital to pay-
out future claims). In addition, based on the detailed exposure
data, spatial accumulation modeling could be performed to
identify potential loss hotspots. Spatial accumulation modeling
identifies the largest exposure accumulations within circles of a
given radius. This helps companies model circles of maximum
potential loss, which is particularly important if the event may
spread.

C. Hurricane Sandy

On the evening of October 29, 2012 Hurricane Sandy,
a post-tropical cyclone, made landfall near Brigantine, New
Jersey. Although a minimal hurricane as measured by the
Saffir-Simpson scale, the storm covered a massive area and
caused high storm surge over large parts of the coastline. The
highest inundations were located in New York, New Jersey,
and Connecticut, with the above ground storm surge ranging



between 2-9 ft with an average of 4.5 ft in New York [6].
Although this was a low intensity event, the huge size of the
affected area and the high value of the exposure in the affected
region caused damages of approximately $50 billion USD,
resulting in Sandy being the second most expensive hurricane
in US history [7].

In the case of Hurricane Sandy, post event analysis was
greatly helped by the rich and detailed nature of the available
exposure data. When you know exactly what is being impacted
(ie. the exposure) you can concentrate your analysis on getting
a more detailed and closer to real-time view of the evolving
event. One interesting opportunity that became apparent during
Hurricane Sandy was the potential for building real-time event
intensity and impact maps from information gleaned from
social media data. Social media is a new form of data we
can look at for pre, peri, and post-event analysis. The idea
is to supplement physical intensity measures with observed
intensity measures using Geotagged tweets, Instagrams, and
Facebook posts as data sources. The goal is to try and
build up new high quality, real-time hazard maps from on-
the-ground observations. To do this we can use time-based
analysis to measure the intensity of the tides and the landfall,
and also use text analytics to help build these new observed
hazard maps. While this is a much more speculative form
of post-event analysis than those previously discussed, in an
increasingly networked world it has significant potential to
provide detailed real-time data for post-event situation analysis
and management.

III. THE EXPOSURE ANALYSIS FRAMEWORK

In this section we describe our approach to designing of
a framework that can make better use of existing exposure
data to provide new ways of storing and analyzing this data.
The framework provides a way of storing many types data,
operating on this data, and analyzing the results from these
operations all on a high-performance platform that can scale
to handle very large exposure portfolios.

A. The Data Life Cycle

Currently, exposure data is often only used as input into
pricing models. After being used for pricing, the exposure data
is not used again. This process is shown in Figure 1.

Fig. 1. The current data life cycle for exposure data.

With the Exposure Analysis Framework we hope to change
this life cycle and ensure that we can tap into this rich data
source. To do this we still use the exposure data for pricing,
but after generation we move the data into a data warehouse
where we can perform analytical operations on it. Not only

can we import exposure data, but we can also store client,
claims, event, and historical data inside this warehouse. By
importing this other data we can perform many new types of
cross analysis, and visualize an exposure portfolio and risk in
ways that were not possible previously. Figure 2 shows the
proposed data life cycle.

Fig. 2. The proposed data life cycle for exposure data using the framework.

B. Operations

The analytical framework is designed around five funda-
mental types of operations, namely: 1) Aggregation, 2) Dis-
aggregation, 3) Geospatial, 4) Loss Modeling, and 5) Spatial
Accumulation.

1) Aggregation Operations: The framework supports both
standard and specialized aggregation operations. All aggre-
gation operations group the data by some specified key or
compounded key, then perform some meaningful calculations
on the data in order to reduce it to some generalized data value.
Typical aggregation operations include minimum, maximum,
average, total values, element count, difference, and percent
difference operations. Specialized aggregation operations per-
form actuarial and insurance-specific financial calculations.

2) Disaggregation Operations: Disaggregation operations
take aggregated industry data and transform it into meaningful,
finer-detailed exposure data. These operations are particularly
useful when you have aggregated data and want to run it
through a model. Since aggregated data is a coarse grained
representation of data, and models require data with finer
details, desegregation is used to transform this coarse data into
finer detail. The disaggregation process is shown in Figure 3.

The idea for the disaggregation is to transform this high-
level, coarse data into some reasonable finer granularity, ending
up into geographical point-based exposure data. Disaggrega-
tion operations can transform data by in a variety of ways by
first dividing it and distributing the exposure data randomly
within a smaller region, or distributing the data based on
population density.



Fig. 3. A graphical representation of how a disaggregation operation works.

3) Geospatial Operations: Geospatial operations provide
a set of tools that can execute geographical queries and
handle region data. With these operations you can perform
point location queries in polygonal subdivisions, geocoding
operations, and geometric operations on points and polygons.
These operations also provide regional comparison tools. For
example, these tools provide a way to ”redistrict” the regional
boundaries of older, aggregated exposure data into newer
regions in order for the data to be correctly represented in
the new model. This process is shown in Figure 4. This is
done by disaggregating the data and turning it into point-based
exposure data, and placing the new data points onto the old
regional boundary map, either by assuming an even spread of
points, or by weighting the point data based on population.
Lastly the new boundaries are placed on top of the points and
the regions are aggregated to reflect the new boundary changes.

4) Loss Model Operations: Post-event loss modeling oper-
ations come in two flavors: single-event footprint loss models,
and aggregate loss models.

Footprint loss models are used to compute the losses for
a given single event. Event data is collected from a variety of
hazard maps that provide a collection of areas affected by the
event and the intensity in each of the areas. Using these hazard
maps, a mean damage ratio (MDR) is calculated for each of the
event regions. Exposure data is then used and overlaid on top
of the event regions and total losses are calculated by taking
the total value of the exposure in the region and multiplying it
by the MDR to find the total losses in the area. The result is a
table of losses that can be filtered using a variety of specified
keys.

Aggregate loss models are similar to footprint models,
except instead of one event you have multiple events. The
process still follows the same structure as the footprint model,
but instead of having a single hazard map, multiple hazard
maps are used for each of the events. These models are used
to illustrate the total combined losses of events and can also
be filtered using a variety of specified keys.

Fig. 4. A graphical representation of how a boundary transformation operation
works.

5) Spatial Accumulation Operations: Spatial accumulation
operations provide a method for identify regions of largest
risk. These operations allow you to find a list of the largest
non-overlapping risk or exposure concentrations within query
circles of a given radius. Such circles represent exposure or
risk accumulations and can provide companies with insight
into the spatial distribution and/or clustering of their risks.

IV. THE EXSIGHT FRAMEWORK - V0.1

Our current implementation of the Exposure Analysis
Framework, called the eXsight Framework, is built on the
Java platform and a MongoDB backend. MongoDB provides a
robust suite of NoSQL operations which manage data handling
and calculations for the framework.

A. Components

All of the framework’s operations are Java classes that
utilize the MongoDB Java driver [8]. This driver is responsible
for communicating with a MongoDB cluster to manage data,
execute operations, and handle results.

MongoDB is a versatile and scalable NoSQL database
system that not only provides a way to store and manage
data, but also provides a suite of tools to efficiently operate
on it [9]. Unlike regular SQL servers, where data is stored in
tables and rows, and relationships are drawn between them,
MongoDB stores data as a document that contains various
fields represented by a JSON-like structure, and multiple
documents are contained within a collection [10]. Because
of these differences in structure, traditional SQL tools and
techniques will not work, and thus MongoDB provides a suite
of robust tools and query engines that provides the same
functionality that works with this new structure.

The eXsight framework utilizes MongoDB’s geospatial
indexes and query engine [11], Aggregation Pipeline [12], and



MapReduce Framework [13] to perform the various operations,
while also utilizing the built-in NoSQL database functionality
to handle data management.

Fig. 5. Deployment diagram depicting the recommended hardware architec-
ture for the framework.

MongoDB can easily scale vertically by adding in more
servers and horizontally with the use of sharding. Sharding is
a form of horizontal scaling which allows data to be stored
across multiple machines. As you can see in Figure 5, a
sharded MongoDB backend consists of multiple servers. A
sharded production database consists of two or more routing
servers, exactly three configuration servers, and two or more
shard servers.

1) Query Routing Servers: The routing servers run in-
stances of mongos. These instances are used to pass queries
and operations on to the correct shards and then pass the results
to the client application. In most cases you will have multiple
mongos instances in order to ease the query load.

2) Configuration Servers: The configuration servers run
special instances of mongod. These instances are started with
the --configsvr flag and are responsible for storing the
cluster’s metadata. This metadata keeps track of a map of the
entire data set, and knows which shard contains what data.
This mapping is used to direct operations and queries from
the routing servers to the appropriate shards.

3) Shards: The final part of the cluster is the shard servers.
The shard servers, similar to the configuration servers, run a
special instance of mongod except it uses the --shardsvr
flag. The shard servers are used to store a subset of the
total data based on the type of data partition that is in use.
MongoDB shards the data at the collection level based on
a specified shard key which exists in every document in the
collection [14].

Sharding is a crucial part of improving the performance
and efficiency of the framework, however the current proto-
type framework only implements a single MongoDB backend
instance. We will be working on extending on this in a future
release.

To use the framework you have to create a Java application
which calls the framework’s API methods in order to import
data, perform operations, and handle results. Figure ?? shows
the control flow for the current framework prototype. As you
can see, the user can import data into the MongoDB backend
and then perform a selection of aggregation and geospatial
operations by simply following this diagram and calling the
appropriate methods.

B. Data Handling

The framework implements a generic data importer that
lets the user define the overall schema of the data. Figure
?? shows the various packages contained in the framework.
Notably the io package contains the classes and sub-packages
that are responsible for handling data input and output for the
framework.

The importer provides a way of ingesting exposure data
without knowing its structure. To do this the user must describe
their data using classes in the io.utils.importer pack-
age. The importer class takes as a parameter a configuration
object, which is an instance of the class that defines the
data schema. This schema has a list of data sources that
can include one or more files, directories, database tables,
models, or NoSQL collections. Inside of each source you
would describe the data that requires importation. You would
tell the framework where the data is, the type of the data, and
the name of the data. This is done for each data element in
order to build up a data schema that the importer can read to
understand how to import the data.

The io package also contains data exporter classes. These
two classes are used in conjunction with the operations,
mentioned in the next section, to provide a way of presenting
the user with different methods of handling and consuming
results from executed operations. The exporters allow the user
to retrieve a string or list of the results, export data to a
MongoDB collection, or even return the raw operation output.

C. Operations

In this section we describe how the core aggregation and
geospatial operations are implemented to using MongoDB’s
Aggregation Pipeline and MapReduce Framework. We hope
to eventually provide single implementation of these core
operations once the size limitations on MongoDB document is
lifted as is proposed in the MongoDB development roadmap.

1) Aggregation Operations: Figure ?? shows the types of
aggregation operations you can perform on the exposure data.
These operations offer two different ways of executing the
operation, using MongoDB’s Aggregation Pipeline or using
MongoDB’s MapReduce Framework.

MongoDB’s Aggregation Pipeline is used to perform sim-
pler aggregation functions, bypassing the complexity of the
MapReduce framework. The pipeline works in a similar fash-
ion to the UNIX pipe operator. The entire collection is passed
through multiple operators to eventually reduce the collection
to a single document3 containing the results [12].

3Because the result of the operation is a document, the size of the returned
result must be no more than 16MB, which is based on the limitations of a
MongoDB document. If you need to get results that are larger than this, you
must use the MapReduce Framework.



Similar to the Aggregation Pipeline, MongoDB’s MapRe-
duce Framework is also used for aggregation operations.
This framework provides the user with an expressive set of
methods that allow for more complex operations than the
pipeline. Each MapReduce operation has a set of user-defined
JavaScript functions: a map function, a reduce function, and
a finalize function4. The map function is the first step in
the map-reduce process. It matches a value to a certain key and
returns a key-value pair. After mapping, the reduce function
takes the emitted key-value pairs and condenses all of the
values for a given key to a single value. Lastly the finalize
function takes the reduced key-value pair and edits the output
into its final form [15] .

Both aggregation method types are different and have their
separate pros and cons, however both will return the same
values for the same input.

2) Geospatial Operations: The geospatial package in Fig-
ure ?? provides a set of classes that can execute geographical
queries, and populate or correct administrative region data.

The RegionQuery class provides methods to query the
administrative regions that contain a given point. For example,
when given a lat/long coordinate the methods in this class
will return the names of all of the administrative regional
boundaries of the point. The point [28.418749, -81.581211], if
passed to the class methods, will return United States, Florida,
and Orlando County as the country, state, and county of the
point.

The Geocode class uses the RegionQuery class how-
ever instead of querying a single point, it looks at the current
exposure data and populates the regional data based on the
point data inside of the exposure collection. It provides meth-
ods to populate missing data, inaccurate data, and overwrite
data.

V. PERFORMANCE

MongoDB was the chosen backend for this project, not
only because of its flexible data storage system, but also
because MongoDB is very efficient and fast. Because the
project is in the early stages, the current prototype is running
on a single machine, thus all of these tests were performed
on a single running instance of MongoDB and not a sharded
cluster.

A. Aggregation Pipeline vs MapReduce Framework

For testing the difference in performance of these two
aggregation methods, we used a simple count aggregation
operation. This operation ran through 10001082 documents
and counted the total number of elements that were in each
county. The Aggregation Pipeline took an average of 15.4
seconds to complete, while the MapReduce framework took
an average of 106.3 seconds to complete.

As you can see MongoDB’s Aggregation Pipeline executes
about 7x faster than the MapReduce framework, however these
tests were run on a single MongoDB back end. Future tests will
be performed on future versions of the framework which utilize
a sharded cluster to determine if the MapReduce framework

4The map and reduce functions are required, the finalize function is optional.

can be improved to perform as well as the Aggregation
Pipeline.

VI. FUTURE WORK

We are currently working to refine the design of and
complete the implementation of the remaining core operations.
Planned future work on the eXsight framework includes imple-
menting the missing operations and performance tuning of the
current operations. Since our goal is to have the framework
operating on a sharded MongoDB cluster, we will also be
migrating from a single MongoDB instance to a multiple
MongoDB backend.

We also plan a trial with industry partners to explore the
practical applicability of the framework and to identify any
critical new operations or functionality, input formats that need
to be accepted, or output formats and data visualization options
that need to be provided.
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