
On PBIL, DE and PSO for Optimization of
Reinsurance Contracts

Omar Andres Carmona Cortes1, Andrew Rau-Chaplin2, Duane Wilson2, and
Jürgen Gaiser-Porter3

1 Instituto Federal do Maranhão, São Luis, MA, Brasil
omar@ifma.edu.br

2 Dalhousie University, Risk Analytics Lab, Halifax, NS, Canada
arc@cs.dal.ca, dwilson@gmail.com

3 Global Analytics, Willis Group, London, UK
gaiserporterj@willis.co

Abstract. In this paper, we study from the perspective of an insurance
company the Reinsurance Contract Placement problem. Given a reinsur-
ance contract consisting of a fixed number of layers and a set of expected
loss distributions (one per layer) as produced by a Catastrophe Model,
plus a model of current costs in the global reinsurance market, identify-
ing optimal combinations of placements (percent shares of sub-contracts)
such that for a given expected return the associated risk value is mini-
mized. Our approach explores the use bio-inpired metaheuristics with the
goal of determining which evolutionary optimization approach leads to
the best results for this problem, while being executable in a reasonable
amount of time on realistic industrial sized problems.

Keywords: Reinsurance Analytics, Reinsurance Contract Placement,
Particle Swarm Optimization, Differential Evolution, Population-Based
Incremental Learning, Financial Risk, Optimization.

1 Introduction

Risk hedging strategies are at the heart of prudent risk management. Individuals
often hedge risks to their property, particularly from infrequent but expensive
events such as fires, floods and robberies, by entering into risk transfer contracts
with insurance companies. Insurance companies collect premium from those in-
dividual with the expectation that at the end of the year they will have taken in
more money than they have had to pay out in losses and overhead, and there-
fore remain profitable or at least solvent. Perhaps not surprisingly insurance
companies themselves try to hedge their risks, particularly from the potentially
enormous losses often associated with natural catastrophes such as earthquakes,
hurricanes and floods. Much of this hedging is facilitated by the global “prop-
erty cat” reinsurance market [1], where reinsurance companies insure primary
insurance companies against the massive claims that can occur due to natural
catastrophes.

2

Analytics in the reinsurance market is becoming increasingly complex for at
least three reasons. Firstly, factors like climate change are skewing the data in
ways that are not fully understood making experience a less useful guide in de-
cision making. Secondly, the global distribution of economic activity is changing
rapidly with key supply-chain now having significant exposure to parts of the
world where catastrophic risk is less well understood. For example, few in 2011
understood that a Thailand flood event could cost $47 Billion USD in property
losses and cause a global shortage of hard disk drives that lasted throughout
2012. Lastly, there is a tendency for risk transfer contracts to become ever more
complex, in large part by increasing the number of sub-contracts (called layers)
that make up a contract. This in turn makes it increasingly important to have
good computational tools that can help underwriters understand the interaction
between layers and to decide on placement percentages, that is which layers to
buy and how large a share or percentage of them to buy, in order to minimize
risk for a given expected return.

In this paper, we study from the perspective of an insurance company the
Reinsurance Contract Placement problem. Given a reinsurance contract consist-
ing of a fixed number of layers and a set of expected loss distributions (one per
layer) as produced by a Catastrophe Model [2], plus a model of current costs in
the global reinsurance market, identifying optimal combinations of placements
(percent shares of sub contracts) such that for a given expected return the asso-
ciated risk value is minimized. Our approach is to explore the use of metaheuris-
tics (evolutionary and swarm algorithms) with the goal of determining which
approach leads to the best results for this problem, while being executable in a
reasonable amount of time of realistic industrial sized problems.

There are many bio-inspired metaheuristics that can be applied to optimize
problems like this, such as Particle Swarm Optimization (PSO) [3], Differential
Evolution (DE) [4, 5], Genetic Algorithms (GA) [6], Evolution Strategies (ES) [7]
and Population-Based Incremental Learning (PBIL) [8]. Indeed, the broader area
of computational finance is a field that has been gaining attention lately in the
evolutionary computation community driven by the increasing availability of
financial data for analysis and improvements in computer processing power [9].
Some notable examples of metaheuristics in computational finance include [9],
[10], [11], [12].

Recently, risk and reinsurance problems have also been tackled using bio-
inspired algorithms such as in [13], [17] and [14]. Here the focus has been
on stop loss and ruin predictions, a somewhat different problem than the con-
tract placement problem studied in this paper. The initial work on contract
placement [15] which has been applied in an industrial setting used a parallel
discretized enumeration method. Unfortunately, while this method worked well
when the number of layers was small (for example 2-5 layers), it experienced ex-
ponentially growing runtimes as the number of layers is increased. For instance,
a problem with just 7 layers and using a discretization of 5% requires more than
a week to be solved using an R-based implementation of this method, while
problems of more than 7 layers or finer discretization might run for months or

3

years and are therefore practically infeasible. Initial work addressing the Reinsur-
ance Contract Placement problem using evolutionary techniques was described
in [16]. The approach taken was to compare the Population-Based Incremental
Learning (PBIL) [8] method to the previously studied enumeration method to
try and determine if the evolutionary method could find results that were com-
parable in quality to the exact enumeration approach, and if the use of PBIL
would allow larger problems, that is those with more layers, to be solved in a
feasible amount of time. While [16] demonstrated that PBIL worked for this
problem it generated as many questions as it answered. For example, 1) is PBIL
the best approach or would newer evolutionary methods like PSO, or DE be bet-
ter? 2) How good are the results in high dimensions given that we have no other
method to compare against?, and 3) what values for key parameters like number
of iterations or population size work best for each method and at what point do
the benefits of larger values (and corresponding larger run-times) diminish? It
is these questions that this paper sets out to answer. In the remainder of this
paper, we first formally define our reinsurance contract placement problem in
Section 2. Then we describe the evolutionary methods PSO, DE and PBIL in
Section 3. Thereafter, we present a detailed performance analysis comparing our
results in terms of quality and performance on real-world data, in Section 4.

2 The Reinsurance Contract Placement Problem

Insurance organizations, with the help of the global reinsurance market, look to
hedge their risk against potentially large claims, or losses [1]. This transfer of risk
is done in a manner similar to how a consumer cedes part of the risk associated
with their private holdings. However, unlike the case of the consumer, who is
usually given options as to the type of insurance structures to choose from,
the insurer has the ability to set its own structures and offers them to the
reinsurance market. Involved in this process are decisions around what the type
and the magnitude of financial structures, such as deductibles and limits, as well
as the amount of risk the insurer wishes to maintain. The deductible describes
the amount of loss that the insurer must incur before being able to claim a loss
to the reinsurance contract, the limit describes the maximum amount in excess
of the deductible that is claimable and the placement describes the percentage
of the claimed loss that will be covered by the reinsurer.

In the reinsurance placement problem an insurer given a fixed number of lay-
ers and loss distributions is then faced with the problem of selecting an optimal
combination of placements. As with most financial structures, the central prob-
lem is in selecting an optimal proportion, or placement, of each layer such for
a given expected return on the contracts the associated risk is minimized. This
means, from the perspective of the insurer, they wish to maximize the amount
claimable for a given risk value. In doing so they minimize amount of loss the
insurer may face in a year. This formulation leads to a optimization problem as
depicted in Equation 1.

4

maximize V aRα(R(π))
s.t. E(R(π)) = a

(1)

Given that the expected return a is specified in Equation 1 we can rewrite it
as a Pareto Frontier problem as shown in Equation 2, where q is a risk tolerance
factor greater than zero. More details about the math involved in this particular
optimization problem can be seen in [1], [20] and [16].

maximize V aRα(R(π))− qE(R(π)) (2)

3 Evolutionary/Swarm Algorithms

Evolutionary/Swarm algorithms are population-based stochastic algorithms that
originate from nature and provide attractive features for solving both continuous
and discrete problems [24]. In this section we briefly describe the three meta-
heuristics we will be evaluating for treaty placement problem.

3.1 Differential Evolution

The Differential Evolution (DE) was proposed by Rainer Storn and Kenneth
Price in 1995 [4, 5] to solve optimization problems [21]. The basic structure of
the approach is given in the Algorithm 1, in which F is the scaling vector within
the domain [0, 2] and CR is the crossover rate. Initially, a population of real-
coded individuals XD

i = (x1
i , x

2
i , ..., x

D
i) is randomly created within the domain

[aDi , bDi] where D represents the problem dimension. Then a vector of differences

is created based on the equation x
′

i = x3
i +F × (x2

i −x1
i), where three member of

the population are selected at random, x1
i ,x

2
i and x3

i . As we can see, F is used to
weight the contribution of the vectors x2

i and x3
i . This calculation is commonly

referred as mutation.
Actually, each gene of an individual(n) is chosen taking into account the

Crossover Rate (CR), i.e., if the random number is less than CR then the new
gen assumes the value computed by the vector of differences, otherwise the new
gene is the same of xi, where i is the index of the individual that can be replaced
in the current population. The new individual will replace the current one only
if the new one has the best fitness. This strategy is called DE/rand/1/bin. If the
best individual is used for creating the vector of differences the strategy is called
DE/best/1/bin.

3.2 Particle Swarm Optimization

The particle swarm optimization was firstly proposed by Kennedy and Eber-
hart [3] also in 1995. The algorithm consists of particles that are placed into the
search space. Each particle moves combining some aspects of its own history posi-
tion and the global position. All particles move around the search space and prob-
ably the swarm will move towards the potential optimum in the next iterations.

5

1 Generate a population X of size n within the domain [ai, bi]
2 for i = 1 to pop size do
3 Choose 3 individuals of population x1

i ,x
2
i and x3

i

4 x
′
= x3 + F × (x2 − x1)

5 for j = 1 to D do
6 Chose a number r at random within [0, 1]
7 if (r < CR) then

8 nij = x
′
j

9 else
10 nij = xj

11 end

12 end
13 if (f(ni) < f(xi)) then
14 xi = ni

15 end

16 end

Algorithm 1: Differential Evolution(DE)

A particle represents a position in the search space as XD
i = (x1

i , x
2
i , ..., x

D
i).

Further, a particle has a velocity V D
i = (v1i , v

2
i , ..., v

D
i) which is used to deter-

mine its new position in the next iteration, where D represents the problem
dimension. The new position is determined by means of the Equations 3 and 4,
where w represents the inertia weight, cl and c2 are acceleration constants, rl
and r2 are random number in the range [0, 1], pdi is the best position reached by
the particle P , and gd is a vector stores the global optima of the swarm so far.

vdi = w × vdi + c1r1 × (pdi − xd
i) + c2r2 × (gd − xd

i) (3)

xd
i = xd

i + vdi (4)

The Algorithm 2 outlines how PSO works. Initially, the swarm is created at
random, where each particle has to be within the domain [adi , b

d
i]. Then particles

are evaluated in order to initialize the P matrix and the gd vector, which are
the best experience of each particle and the best solution that has been found
up to now, respectively. Thereafter, the velocity and the position of a particle
are updated within a loop that obeys some stop criteria.

3.3 Population-Based Incremental Learning

Population based incremental learning (PBIL) was first proposed by Baluja [8]
in 1994. In the original version of the algorithm, the population were encoded
using binary vectors and an associated probability vector, which was then up-
dated based on the best members of a population. Unlike other evolutionary
algorithms, a new population is generated at random using the updated proba-
bility vector for each generation. Since Baluja’s initial work, extensions to the al-

6

1 Generate a swarm of particles X of size s from [ad
i , b

d
i] ;

2 for i = 1 to swarm size do
3 Evaluate swarm;
4 Update the best position g
5 Update p of the particles
6 for j = 1 to D do
7 Update velocity V using Equation 3
8 Update position X using Equation 4

9 end

10 end
11 Verify if the current g is better than the best of the current swarm

Algorithm 2: Particle Swarm Optimization (PSO)

gorithm have been proposed for continuous and base-n represented search spaces
[19, 22].

Here we substitute the intervals for equidistant increments in the lower and
upper bounds of the search space. The Algorithm 3 describes the discretized
PBIL (DiPBIL) method used in this paper in terms of the following tunable
parameters: I = Number of Increments (i.e. the discretization), LR2 = Learning
Rate in base 2, NLR2 = Negative Learning Rate in base 2, MR = Mutation Rate,
MS = Mutation Shift and q = Number of best results to be used in updating.
In the same spirit as the original PBIL, the probability matrix is initialized
with all increments having an uniform distribution and is updated after every
generation with the best combinations member (see Algorithm 1). The updating
of each vector in the matrix, however, is done using the base-n method, with an
adjusted learning rate and updating function [23]. To ensure more population
diversity from across generations, the probability matrix is updated with best
member from previous generations as well as the top q members from the current
generation. This modifies the updating process as shown in Equation 5, where
LFijk is the ith learning factor, as described in [23], for the kth best result for
the jth variable.

1 for i = 1 to pop size do
2 Generate a population X of size n from Pij ;
3 Evaluate f = fun(X);

4 Find xbest
G from the current and previous populations;

5 Find xbest
i for top q-1 members of the current population;

6 Update Pij based on xbest
G ∪ xbest

i using LRN and NLRN ;

7 end

Algorithm 3: DiPBIL

7

pNEW
ij =

q∑
k=1

pOLD
ij

LFijk

q
(5)

4 Experimental Results

In this section we compare the reinsurance contract optimization technique
against the three algorithms discussed previously, using an anonymized 7 layered
real world data set composed by information such as: recoveries, reinstatements,
loss table and rate on line (rol). Further, the level of discretization is 5%. Each
algorithm was executed 31 trials, thus we can guarantee that the distribution
of the outcomes of the experiments follows a normal distribution (central limit
theorem) [25], allowing us to make parametric tests. Further, the test has been
conducted considering three different number of iterations (500, 1000, 2000) and
three population sizes (100, 200, 400), leading the complete experiment to a 837
executions. The parameters were chosen empirically and all tests have been done
using R version 2.15.0 and RStudio on a Windows 7 64-bit Operating System
running on an Intel i7 3.4 Ghz processor, with 16 GB of RAM. The PBIL algo-
rithm was completely implemented in R language, whereas DE and PSO were
obtained from R packages. It is important to notice that the DE package for R
uses the strategy DE/best/1/bin. Moreover, the PSO package is based on the
implementation of SPSO 2007 [26].

4.1 Quality Analysis

The quality analysis comprises two parts. The first one makes a comparison
within each algorithm, i.e., we have tried to identify how the changes on both
the number of iterations and the population size affect the precision of a partic-
ular algorithm. The second one compares the quality of the solutions between
algorithms. All evaluations are supported by Analysis of Variance (ANOVA) and
Tukey test. Furthermore, the experiments aim to answer all questions which were
done in Section 1.

Comparison Within Metaheuristics Table 1 presents the mean (average),
the best, the worst, and the standard deviation of the risk (in dollars) for the
algorithms considering a given expected return, where the best results are em-
phasized. The mean represents the average on 31 executions and results going
toward zero mean lower risk, therefore, better results. Doing so, we are answer-
ing the second question. Each algorithm was evaluated for varying population
size and number of iterations. The results given by DE were omitted because no
differences were found, the outcome -1014986645 was reached regardless the in-
creasing on both the number of iterations and the population size. Thus, consid-
ering these results we can state the following observations: (i) The DE algorithm
is not sensitive neither to the number of iterations nor to the population size,

8

getting stuck in a local optima; (ii) PSO got some good results, however it can
not evolve properly as long as we increase both the number of iterations and the
population size, reaching the best value (-1014569720) at least once only with a
population size of 100; (iii) PBIL evolves properly and reaches the best solution
at least once in all configurations, allowing to find out a good pareto frontier if
necessary.

Table 1. Results in terms of quality for PSO and PBIL

PSO

500 iterations

100 pop 200 pop 400 pop

Mean -1014797783 -1014914071 -1014894134
Worst -1014986645 -1016020335 -1014986645
Best -1014569720 -1014694720 -1014699862
Stdev 157117.8977 327431.8272 136276.6568

1000 iterations

Mean -1014848734 -1014912637 -1014931139
Worst -1014986645 -1014986645 -1014986645
Best -1014569720 -1014699862 -1014699862
Stdev 157584.0928 127561.8282 115174.7963

2000 iterations

Mean -1014964318 -1014977394 -1014977394
Worst -1016020335 -1014986645 -1014986645
Best -1014694720 -1014699862 -1014699862
Stdev 227266.6245 51507.73476 51507.73476

PBIL

500 iterations

100 pop 200 pop 400 pop

Mean -1015360605 -1015127063 -1014956575
Worst -1016280747 -1016176585 -1016176585
Best -1014569720 -1014569720 -1014569720
Stdev 723154.6754 552965.2035 432175.8289

1000 iterations

Mean -1015142297 -1015028435 -1014924013
Worst -1016176585 -1016176585 -1016020335
Best -1014569720 -1014569720 -1014569720
Stdev 617360.1748 503103.4937 347988.6081

2000 iterations

Mean -1015253346 -1015022019 -1014959747
Worst -1019014085 -1016020335 -1014986645
Best -1014569720 -1014569720 -1014569720
Stdev 904081.2636 364027.6174 104119.1131

9

Comparison Between Metaheuristics The purpose of this experiment is to
compare the performance, in terms of quality, between algorithm, allowing us to
answer the first question. In order to do so, we define the number of iterations
and vary the population size. Figure 1 shows the average result of each algorithm,
where the graphs depict 500, 1000 and 2000 iterations, respectively. Considering
the number of iterations, the PSO algorithm presented the best overall results
using 500 iterations. An interesting thing to noticed is that as long as we in-
crease both the iteration number and the population size the algorithms tends
to present more similar results, however three observations have to be made:
(i) PBIL shows clearly how evolve itself as long as we change the population
size; (ii) PSO starts presenting better solutions than the other algorithms in the
initial configurations, nonetheless the algorithm worse in terms of quality when
the population size changes; and (iii) as previously mentioned, DE gets trapped
in a local optima. In this context, if we applied an ANOVA test in all of those
combinations, the statistical meaning start disappearing when 2000 iterations
and population size of 200 are used which ends up answering the third question.
In other words, using a population size of 200 or 400 leads to similar outcomes.
Moreover, extending this statistical evaluations to the other configurations we
will see that PSO and DE some times provide similar quality of solution, whereas
PBIL improves the results based mainly on the variation of the population size.

Fig. 1. Results of the different AEs for 500, 1000 and 2000 iterations, respectively

10

4.2 Performance

It is important to be aware that both DE and PSO have implementations in C
language linked with R. Thus, we have used the compiler package 4 from R just
in our PBIL code in order to improve its performance as well. Figure 3 presents
the performance of the algorithms in terms of elapsed time.

It is clear that DE has the best performance in terms of time. On the other
hand, it is not possible to identify if the difference between PSO and PBIL is
significant. Thus, in order to compare theses algorithms we did a two-tailed t-
test with α = 0.01, where t has to be in the range [−1.645, 1.645] for accept the
null hypothesis (h0) we consider as “there are no differences between means”.
As illustrated in Table 2, we can observe that the null hypothesis is rejected
in four cases as following: (i) 500 iterations and population size equals to 100:
PBIL; (ii) 1000 iterations and population size equals to 200: PSO; (iii) 1000
iterations and population size equals to 400: PSO; and, (iv) 2000 iterations and
population size equals to 100: PBIL.

Looking at the results we can state the compiler package is more efficient
in compiling the outer loop than the inner one, which deal with the population
size, this might be the reason why PBIL is faster with small populations and
higher number of iterations. Anyway, the PBIL presented a good performance
because it is not written in C, but in pure R.

Table 2. A t-test between PSO and PBIL

500 iterations

100pop Stdev 200pop Stdev 400pop Stdev

PSO 82.1648 9.7339 159.2845 7.4825 320.1658 13.57

PBIL-C 77.39 8.3282 160.74 46.8142 350.26 101.65

t 2.0752 -0.1709 -1.6339

1000 iterations

PSO 171.5858 12.2129 333.6309 17.7405 656.7248 21.46

PBIL-C 166.58 34.5330 368.35 102.0374 758.53 216.93

t 0.7609 -1.8665 -2.6002

2000 iterations

PSO 414.0819 75.7310 738.6980 77.8075 1475.4380 92.61

PBIL-C 344.11 86.4658 703.9 237.0902 1534.6525 444.91

t 3.3894 0.7764 -0.7254

Inspite of using packages, parallel computing represents a viable alternative
in order to speedup the pareto frontier calculation because points are computed
independently (one per given expected return). In this context, Figure 2 shows
the speedup obtained for each algorithm increasing the thread count. The ex-
periment was conducted in a SunBlade server x6440, with four Quad-core AMD

4 The compiler package improves the performance of R code creating a byte-code.

11

Opteron 8384 (2.7GHz) processors and 32 GB Ram, running Red Hat Enterprise
Linux 4.8.

Fig. 2. The achieved speedup increas-
ing the thread count

Fig. 3. Performance of the evolution-
ary algorithms

As we can see in the Figure 2, the best speedup was reached by the PBIL
algorithm, where 8 threads leaded to a speedup close to 6. DE and PBIL had
similar outcomes until 4-5 threads and then PBIL start improving a little faster.
Whereas PSO presented the worse efficiency when the number of threads were
increased.

5 Conclusions

This paper presented an evaluation of three different algorithms (Differential
Evolution, Particle Swarm Optimization and Population-Based Incremental Learn-
ing) optimizing the problem of the Reinsurance Contract, answering relevant
questions. Future implementations include a real multi-objective PBIL, PSO
and DE versions, i.e, optimizing the risk value and the expected return at the
same time. Furthermore, we plan to extend the PBIL approach evaluating the
performance gains achievable with an optimized C/OpenMP implementation.

References

1. Cai, J. et al. (2008). Optimal reinsurance under VaR and CTE risk measures. In-
surance: Mathematics and Economics, 43, 185-196.

2. Grossi, P. and Kunreuther, H. Catastrophe Modeling: A New Approach to Managing
Risk, International Series on Risk, Insurance and Economic Scurity, Springer, 2005.

3. Kennedy, J.; Eberhart, R., ”Particle swarm optimization,” Neural Networks, 1995.
Proceedings., IEEE International Conference on , vol.4, p. 1942-1948, 1995

4. Storn, R. and Price, K., Differential Evolution A simple and efficient adaptive
scheme for global optimization over continuous spaces, Technical Report TR-95-012,
March 1995, ftp.ICSI.Berkeley.edu/pub/techreports/1995/tr-95-012.ps.Z

12

5. Storn, R. and Price, K., Minimizing the real functions of the ICEC96 contest by
differential evolution, Proc. of IEEE International Conference on Evolutionary Com-
putation, Nagoya, Japan, 1996.

6. Michalewicz, Z., Genetic Algorithms + Data Structure = Evolution Programs, 3
ed, Springer, 1996.

7. Yao, X. and Liu, Y. and Lin, G., Evolutionary programming made faster, IEEE
Transactions on Evolutionary Computation, v.3, n.2, pp. 82-102, 1999.

8. Baluja, S. Population based incremental learning. Technical Report, Carnegie Mellon
University.

9. Edward Tsang, P. K. and Martinez-Jaramillo, S. Computational finance feature
article. IEEE Computational Intelligence Society, 2004.

10. Gilli, M. and Schumann, E., Heuristic optimisation in nancial modelling.
COMISEF wps-007, 2009.

11. Maringer, D. G. and Meyer, M., CSmooth transition autoregressive models: New
approaches to the model selection problem. Studies in Nonlinear Dynamics and
Econometrics, 12(1):119, 2008.

12. Krink, T. and Paterlini, S., Multiobjective optimization using Differential Evo-
lution for real-world portfolio optimization. Computational Management Science,
8:157179, 2011.

13. Shapiro, A. F. and Gorman, R. P., Implementing adaptive nonlinear models, In-
surance: Mathematics and Economics, Volume 26, Issues 23, pp. 289-307, 2000.

14. Salcedo-Sanz, S. and Carro Calvo, Leopoldo and Claramunt Bielsa, M.
and Castañer, A. and Marmol, M. An Analysis of Black-Box Optimization
Problems in Reinsurance: Evolutionary-Based Approache. Available at SSRN:
http://ssrn.com/abstract=2260320 or http://dx.doi.org/10.2139/ssrn.2260320, 2013.

15. Mistry, S. (n.d.), et al. Parallel Computation of Reinsurance Models. Unpublished
Manuscript.

16. Cortes, O. A. C. and Rau-Chaplin, A. and Wilson, D. and Gaiser-Porterz, J. “Effi-
cient Optimization of Reinsurance Contracts using Discretized PBIL”, In Proceedings
of Data Analytics, London, 2013.

17. Pośık, P. and Huyer, W. and Pál,A comparison of global search algorithms for
continuous black box optimization, Evolutionary Computation, vol. 20, pp. 509-541,
2012.

18. Sebag, M. and Ducoulombier, A., Extending Population-Based Incremental Learn-
ing to Continuous Search Space, LNCS, v. 1498, p. 418-427, Springer, 1998.

19. Bureerat, S., Improved Population-Based Incremental Learning in Continuous
Spaces, Soft Computing in Industrial Applications, p. 77-86, Springer, 2011.

20. Mitschele, A. and Oesterreicher1, I. and Schlottmann, F. and Seese1, D., Heuris-
tic optimization of reinsurance programs and implications for reinsurance buyers,
International Conference of the German Operations Research Society 2006.

21. C. Sun, H. Zhou, L. Chen, Improved differential evolution algorithms, IEEE In-
ternational Conference on Computer Science and Automation Engineering , vol. 3,
p.142-145, 2012.

22. Yuan, B. and Gallagher, M. Playing in continuous spaces: Some analysis and exten-
sion of population-based incremental learning, CEC2003, CA, USA, 443-450, 2003.

23. Servais, M.P., Jager, G. and Greene, J.R. Function optimisation using multi-base
population based incremental learning. PRASA 97, Rhodes University, 1997.

24. Pehlivanoglu, Y.V., A New Particle Swarm Optimization Method EnhancedWith a
Periodic Mutation Strategy and Neural Networks, Evolutionary Computation, IEEE
Transactions on , vol.17, no.3, pp.436,452, June 2013

13

25. Schefler, B., Statistics: Concepts and Applications, Benjamin-Cummings Pub. Co.,
1988.

26. Clerc, M. A method to improve Standard PSO, Open access archive HAL, 2009,
Available at http://hal.archives-ouvertes.fr/hal-00394945, Last Visit: 06-Jun-2013.

