Accounting for Secondary Uncertainty:
Efficient Computation of Portfolio Risk Measures
on Multi and Many Core Architectures

Blesson Varghese and Andrew Rau-Chaplin
Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada

{varghese, arc}@cs.dal.ca

ABSTRACT

Aggregate Risk Analysis is a computationally intensive and
a data intensive problem, thereby making the application
of high-performance computing techniques interesting. In
this paper, the design and implementation of a parallel Ag-
gregate Risk Analysis algorithm on multi-core CPU and
many-core GPU platforms are explored. The efficient com-
putation of key risk measures, including Probable Maximum
Loss (PML) and the Tail Value-at-Risk (TVaR) in the pres-
ence of both primary and secondary uncertainty for a portfo-
lio of property catastrophe insurance treaties is considered.
Primary Uncertainty is the the uncertainty associated with
whether a catastrophe event occurs or not in a simulated
year, while Secondary Uncertainty is the uncertainty in the
amount of loss when the event occurs.

A number of statistical algorithms are investigated for
computing secondary uncertainty. Numerous challenges such
as loading large data onto hardware with limited memory
and organising it are addressed. The results obtained from
experimental studies are encouraging. Consider for exam-
ple, an aggregate risk analysis involving 800,000 trials, with
1,000 catastrophic events per trial, a million locations, and
a complex contract structure taking into account secondary
uncertainty. The analysis can be performed in just 41 sec-
onds on a GPU, that is 24x faster than the sequential coun-
terpart on a fast multi-core CPU. The results indicate that
GPUs can be used to efficiently accelerate aggregate risk
analysis even in the presence of secondary uncertainty.

Keywords

Primary and Secondary Uncertainty, Aggregate Risk Anal-
ysis, GPU Computing, Parallel Computing, Risk Analytics,
Risk Management

1. INTRODUCTION

Reinsurance companies who insure primary insurance com-
panies against losses caused by catastrophes, such as earth-
quakes, hurricanes and floods, must quantify the risk related

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

WHPCF’13 November 18 2013, Denver, CO, USA

Copyright 2013 ACM 978-1-4503-2507-3/13/11
http://dx.doi.org/10.1145/2535557.2535562 ...$15.00.

to large portfolios of risk transfer treaties. In reinsurance
a portfolio represents complex insurance contracts covering
properties against losses due catastrophes, and contracts
include Per-Occurrence eXcess of Loss (XL), Catastrophe
XL and Aggregate XL treaties. Aggregate Risk Analysis is
performed on portfolios to compute risk measures including
Probable Maximum Loss (PML) [1] and the Tail Value-at-
Risk (T'VaR) [2]. Such an analysis is central to treaty pric-
ing and portfolio/solvency applications. The analysis may
involve simulations of over one million trials in which each
trial consists of one thousand catastrophic events each of
which may impact tens of thousands to millions of individ-
ual properties, for example buildings. Not only is the anal-
ysis computationally intensive but also data intensive, and
therefore the application of High Performance Computing
(HPC) techniques is desirable.

The analysis can be run weekly, monthly or quarterly on
production systems based on the requirement for updating
the portfolio. For example, based on the fluctuation of cur-
rency rates an entire portfolio a weekly update can be per-
formed which requires more than twenty four hours. Often
times it is not sufficient to run routine analysis but requires
ad hoc analysis. For example, consider a real-time pric-
ing scenario in which an underwriter can evaluate different
contractual terms and pricing while discussing with a client
over a telephone. This cannot be accommodated on pro-
duction system that is committed to routine analysis and
the response required for real-time cannot be achieved on
these systems. Hence, achieving significant speed up using
high-performance computing techniques in risk analysis is
desirable.

In our previous work [3], we explored the design and imple-
mentation of a parallel Aggregate Risk Analysis algorithm
which was significantly faster than previous sequential solu-
tions. However, it was limited for its use in portfolio wide
risk analysis scenarios since the algorithm could only ac-
count for Primary Uncertainty - the uncertainty whether a
catastrophic event occurs or not in a simulated year. It was
not able to account for Secondary Uncertainty, the uncer-
tainty in the amount of loss incurred when the event oc-
curs. In this paper, secondary uncertainty is taken into ac-
count whereby loss distributions flow through the simulation
rather than mean loss values due to an event.

In practice there are many sources of secondary uncer-
tainty in catastrophic risk modelling. For example, the ex-
posure data which describes the buildings, their locations,
and construction types may be incomplete, lacking sufficient
detail, or may just be inaccurate. Also physical modelling of

hazard, for example an earthquake, may naturally generate a
distribution of hazard intensity values due to uncertainty in
energy attenuation functions used or in driving data such as
soil type. Lastly, building vulnerability functions are simpli-
fications of complex physical phenomenon and are therefore
much better at producing loss distributions than accurate
point estimates. An aggregate risk analysis algorithm that
accounts only for primary uncertainty uses only mean loss
values and fails to account for what is known about the loss
distribution. Therefore, aggregate analysis needs to take
both primary and secondary uncertainty into account by
considering event loss distributions represented by the event
occurrence probability, mean loss, and independent and cor-
related standard deviations. This captures a wide range of
possible outcomes.

The research reported in this paper proposes an aggre-
gate risk analysis algorithm capable of capturing both pri-
mary and secondary uncertainty. The algorithm is designed
to run efficiently on both multi-core CPUs and many-core
GPUs. A distribution of losses is used in the simulation
rather than just mean loss values and efficient statistical
operations, such as Cumulative Distribution Functions and
Quantiles of the Normal and Beta distributions need to be
performed. A significant challenge to not only balance the
workload across threads performing fixed time operations
(for example, addition operation), but also to balance the
workload when individual numerical operations require vari-
able time (for example, computations in iterative methods)
for achieving effective parallelism is addressed. The imple-
mentation and optimization of the algorithm for multi and
many core architectures is presented along with experimen-
tal evaluation. Since performance of the algorithm is depen-
dent on the underlying statistical operations, four different
statistical libraries were explored for use on the GPU and an
additional three statistical libraries for use on the CPU. A
parallel simulation of 800,000 trials with 1,000 catastrophic
events per trial on an exposure set and on a contract struc-
ture taking secondary uncertainty exhibits a speedup of 24x
over the sequential implementation on the CPU.

The remainder of this paper is organized as follows. Sec-
tion 2 proposes an algorithmic framework for performing
Aggregate Risk Analysis with Primary and Secondary Un-
certainty. Section 3 presents how secondary uncertainty is
applied within the inner loop of the risk analysis algorithm.
Section 4 describes the implementation of the proposed algo-
rithm on the GPU platform. Section 5 highlights the results
obtained from experimental evaluation. Section 6 concludes
the paper by considering future work.

2. AGGREGATE RISK ANALYSIS WITH PRI-
MARY AND SECONDARY UNCERTAINTY

Stochastic Monte Carlo simulations are required for port-
folio risk management and contract pricing. Such a simula-
tion in which each trial of the simulation represents a distinct
view of which catastrophic events occur and in what order
they occur in a contractual year is referred to as Aggregate
Risk Analysis [4, 5, 6]. One merit of performing such an
analysis is that millions of alternative views of a single con-
tractual year can be obtained. This section considers the
inputs required for performing aggregate risk analysis, pro-
poses an algorithm for aggregate risk analysis, considers the
financial terms employed in the algorithms, and presents the

output of the analysis.

2.1 Inputs

Three data tables are input to Aggregate Risk Analysis.
The first table is the Year Event Table (YET), denoted as
Y ET, which is a database of pre-simulated occurrences of
catastrophic events from a catalogue of stochastic events.
Each record in a YET called a “trial”, denoted as Tj;, repre-
sents a possible sequence of event occurrences for any given
year. The sequence of events is defined by an ordered set of
tuples containing the ID of an event and the time-stamp of
its occurrence in that trial

Ti = {(Ei,hti,17Z(P'rog,E)i’l%...7
(Ei,k,t@k;, Z(Prog,E)i,k,)}~

The set is ordered by ascending time-stamp values. Program-

and-Event-Occurrence-Specific random number, z(proq,£) is
considered in Section 3. A typical YET may comprise thou-
sands to a million trials, and each trial may have approxi-
mately between 800 to 1500 ‘event time-stamp’ pairs, based
on a global event catalogue covering multiple perils. The
YET can be represented as

YET = {Ti={(Ei1,ti1,2(Prog.B);1) >
(Eiak’tivl“Z(PT097E)i,k)}}7

where ¢ =1,2,... and £k =1,2,...,800 — 1500.

The second table is the Extended Event Loss Tables, de-
noted as X EFLT, which represents a collection of specific
events and their corresponding losses with respect to an
exposure set. In addition, a few parameters, namely the
Event-Occurrence-Specific random number (z(g)), the inde-
pendent standard deviation of loss (o), the correlated stan-
dard deviation of loss (o¢), and the maximum expected loss
(max;) are represented within the X ELT. The loss associ-
ated with an event E; is represented as p is required for the
analysis with secondary uncertainty. Applying secondary
uncertainty using the XELT is presented in Section 3.

Each record in an XELT is denoted as ‘eXtended’ event
loss

XEL; = {Ei7 li, R(E);» Ol O—Cwmaxli}'

and the financial terms associated with the XELT are rep-
resented as a tuple

I = (T1,To,...).

A typical aggregate analysis may comprise 10,000 XELTsSs,
each containing 10,000-30,000 extended event losses with ex-
ceptions even up to 2,000,000 extended event losses. The
XELTSs can be represented as

XEL; = {Ei,u,;, %%,
XELT = 01,00, mazy, },
T = (Il,IQ, ‘e)

with i = 1,2, ..., 10,000 — 30, 000.

The third table is the Portfolio, denoted as PF, which
contains a group of Programs, denoted as P and represented
as

PF = {P, P - ,P,}

with n =1,2,...,10.

Each Program in turn covers a set of Layers, denoted
as L, which covers a collection of XELTs under a set of
layer terms. A single layer L; is composed of two attributes.
Firstly, the set of XELTs

& ={XELT\,XELT,,..., XELT}},
and secondly, the Layer Terms, denoted as
T = (TOch-b TOch7 7j4ggR7 TAggL)-

A typical Layer covers approximately 3 to 30 individual
XELTs. The Layer can be represented as

S
Il

L {XELTy,XELTs,...,XELT}},
o T = (TOccR7 TOCCL7 TAggRa nggL)

with j = 1,2,...,3 — 30.

2.2 Algorithm

The basic algorithm (line no. 1-17 shown in Algorithm
1) for aggregate analysis has two stages. In the first stage,
data is loaded into local memory what is referred to as the
preprocessing stage in this paper. In thisstage Y ET, XELT
and PF, are loaded into memory.

Algorithm 1: Aggregate Risk Analysis with Primary
and Secondary Uncertainty

Input :YET, XELT, PF
Output: YLT

for each Program, P, in PF do

third step in line no. 11 the event loss for each event oc-
currence in the trial, combined across all XELT's associated
with the layer, is subject to occurrence terms. In the fourth
step in line no. 12 aggregate terms are applied. The next
sub-section will consider how the financial terms are applied.

2.3 Applying Financial Terms

The financial terms applied on the loss values combined
across all XELTs associated with the layer are Occurrence
and Aggregate terms. Two occurrence terms, namely (i) Oc-
currence Retention, denoted as Toccr, which is the retention
or deductible of the insured for an individual occurrence loss,
and (ii) Occurrence Limit, denoted as Toccr, which is the
limit or coverage the insurer will pay for occurrence losses in
excess of the retention are applied. Occurrence terms are ap-
plicable to individual event occurrences independent of any
other occurrences in the trial. The occurrence terms capture
specific contractual properties of ’eXcess of Loss’ treaties as
they apply to individual event occurrences only. The event
losses net of occurrence terms are then accumulated into
a single aggregate loss for the given trial. The occurrence
terms are applied as Ir = min(maz(lr — Toccr), ToceL)-

Two aggregate terms, namely (i) Aggregate Retention,
denoted as Taggr, which is the retention or deductible of
the insured for an annual cumulative loss, and (ii) Aggre-
gate Limit, denoted as Taggr, which is the limit or cov-
erage the insurer will pay for annual cumulative losses in
excess of the aggregate retention are applied. Aggregate
terms are applied to the trial’s aggregate loss for a layer.
Unlike occurrence terms, aggregate terms are applied to the
cumulative sum of occurrence losses within a trial and thus

1

2 for each Layer, L, in P do the result depends on the sequence of prior events in the
3 for each Trial, T, in YET do trial. This behaviour captures contractual properties as
4 for each Event, E, in T do they apply to multiple event occurrences. The aggregate
5 for each XELT covered by L do loss net of the aggregate terms is referred to as the trial
6 Lookup £ in the XELT and find loss or the year loss. The aggregate terms are applied as

corresponding loss, Ig l7 = min(maz(ly — Tager), TageL)-

7 Apply Secondary Uncertainty to lg

8 Apply Financial Terms to Ig 2.4 Olltpllt

9 lr < lr + g The output of the algorithm for performing aggregate
10 end risk analysis with primary and secondary uncertainty is a
11 Apply Occurrence Financial Terms to Ir loss value associated with each trial of the YET. A rein-
12 Apply Aggregate Financial Terms to I surer can derive important portfolio risk metrics such as the
13 end Probable Maximum Loss (PML) and the Tail Value-at-Risk
14 end (TVaR) which are used for both internal risk management
15 end and reporting to regulators and rating agencies. Further-
16 end more, these metrics flow into a final stage of the risk ana-

lytics pipeline, namely Enterprise Risk Management, where
liability, asset, and other forms of risks are combined and
correlated to generate an enterprise wide view of risk.

Additional functions can be used to generate reports that
will aid actuaries and decision makers. For example, re-
ports presenting Return Period Losses (RPL) by Line of
Business (LOB), Class of Business (COB) or Type of Par-
ticipation (TOP). Further, the output of the analysis can be
used for estimating Region/Peril losses and for performing
Multi-Marginal Analysis and Stochastic Exceedance Proba-
bility (STEP) Analysis.

17 Populate Y LT using It

In the second stage, the four step simulation executed for
each Layer and for each trial in the YET is performed as
shown below and the resulting Year Loss Table (Y LT) is
produced.

In the first step shown in line no. 6 in which each event of
a trial and its corresponding event loss in the set of XELT's
associated with the Layer are determined. In the second step
shown in line nos. 7-9, secondary uncertainty is applied to
each loss value of the Event-Loss pair extracted from an
XELT. A set of contractual financial terms are then applied

3. APPLYING SECONDARY UNCERTAINTY

to the benefit of the layer. For this the losses for a specific
event’s net of financial terms Z are accumulated across all
XELTs into a single event loss shown in line no. 9. In the

The methodology to compute secondary uncertainty heav-
ily draws on industry-wide practices. The inputs required
for the secondary uncertainty method and the sequence of

steps for applying uncertainty to estimate a loss are consid-
ered in this section.

3.1 Inputs

Six inputs are required for computing secondary uncer-
tainty which are obtained from the Year Event Table (YET)

and the ‘eXtended ELT’ (XELT). The first input is z(prog,5) =

Pprog, 5y € U(0,1) referred to as the Program-and-Event-
Occurrence-Specific random number. FEach Event occur-
rence across different Programs have different random num-
bers. The second input is z(gy = Pg) € U(0,1) referred
to as the Event-Occurrence-Specific random number. Each
Event occurrence across different Programs have the same
random number. The third input is u; referred to as the
mean loss. The fourth input is o referred to as the inde-
pendent standard deviation of loss and represents the vari-
ance within the event-loss distribution. The fifth input is
oc referred to as the correlated standard deviation of loss
and represents the error of the event-occurrence dependen-
cies. The sixth input is max; referred to as the maximum
expected loss.

3.2 Combining standard deviation

Given the above inputs, the independent and correlated
standard deviations need to be combined to reduce the error
in estimating the loss value associated with an event. This
is done in a sequence of five steps. In the first step, the raw
standard deviation is produced as 0 = o1 + o¢.

In the second step, the probabilities of occurrences, z(prog, E)

and z(g) are transformed from uniform distribution to nor-
mal distribution using

T

o) 1
f(xmu?)7/0_m6

ol
—
8
Qll
=
~—
©
Q.
8

—oo
This is applied to the probabilities of event occurrences as

U(Prog,BE) = f(Z(PTog,E); 0, 1) €]\7(07 1)
V(E) = f(zx);0,1) € N(0,1)

In the third step, the linear combination of the trans-
formed probabilities of event occurrences and the standard
deviations is computed as

g g
1O = vieran (57) v ()

In the fourth step, the normal random variable is com-
puted as

LC
(57 + ()’

o o

In the fifth step, the normal random variable is trans-
formed from normal distribution to uniform distribution as

v e
z2 =) = Fnorm(v) = \/% / edet

The model used above for combining the independent and
correlated standard deviations represents two extreme cases.
The first case in which o7 = 0 and the second case in which
oc = 0. The model also ensures that the final random
number, z, is based on both the independent and correlated
standard deviations.

3.3 Estimating Losses

The loss is estimated using the Beta distribution since fit-
ting such a distribution allows the representation of risks
quite accurately. The Beta distribution is a two parameter
distribution, with an upper bound for the standard devi-
ation. The standard deviation, mean, alpha and beta are
defined as

g
mazx;
— 221

B = max;

— TBmaz)2
- (() - 1)
o 2
o= a-p)(()’ 1)

An upper bound is set to limit the standard deviation us-
ing 0., = /(1 — pp), if op > 0p,.,,, thenop = 0p,,,,. -
In the algorithm reported in this paper, for numerical pur-
pose a value very close to 0g,,,. is chosen.

To obtain the loss after applying secondary uncertainty
beta distribution functions are used as follows

(o¢] =

Loss = maz; * InvCDFyera(z; y B)
—1
InvCDFyera(z;0,8) = (BB%;O‘[’?) , where
B(z;a,) = [t (1 —t)ftat
0

4. IMPLEMENTATION

In this section, the hardware platforms used for the ex-
perimental studies are firstly considered, followed by the
implementation of the data structures required for aggre-
gate risk analysis with uncertainty and the implementation
of the methods for computing secondary uncertainty. Op-
timizations incorporated in the implementations are further
considered.

Two hardware platforms are used for implementing a se-
quential and parallel aggregate risk analysis algorithm. Firstly,
a multi-core CPU is employed whose specifications are a 3.40
GHz quad-core Intel(R) Core (TM) i7-2600 processor with
16.0 GB of RAM. The processor has 256 KB L2 cache per
core, 8MB L3 cache and maximum memory bandwidth of
21 GB/sec. The processor supports hyperthreading on the
physical cores making eight virtual cores available. The ex-
periments consider virtual cores as hyperthreading is benefi-
cial for data intensive applications. Both sequential and par-
allel versions of the aggregate risk analysis algorithm were
implemented on this platform. The sequential version was
implemented in C++, while the parallel version was imple-
mented in C++ and OpenMP. Both versions were compiled
using the GNU Compiler Collection g++ 4.7 using ‘-03’ and
‘~fopenmp’ when OpenMP is used.

Secondly, an NVIDIA Tesla C2075 GPU, consisting of 448
processor cores (organized as 14 streaming multi-processors
each with 32 symmetric multi-processors), each with a fre-
quency of 1.15 GHz, a global memory of 5.375 GB and
a memory bandwidth of 144 GB/sec was employed in the
GPU implementations of the aggregate risk analysis algo-
rithm. The peak double precision floating point performance
is 515 Gflops whereas the peak single precision floating point
performance is 1.03 Tflops. The implementation of the al-
gorithm is compiled using the NVIDIA CUDA Compiler
(nvee), version 5.0

1https ://developer.nvidia.com/cuda-toolkit

The following implementations for aggregate risk analysis
with uncertainty are considered in this paper: (i) a sequen-
tial implementation on the CPU, (ii) a parallel implementa-
tion on the multi-cores of the CPU, and (iii) a parallel imple-
mentation on the many-cores of the GPU. Four libraries are
used for applying secondary uncertainty on the many-core
GPU and four additional libraries on the multi-core CPU.

4.1 Implementing Data Structures for the Al-
gorithm

In aggregate risk analysis, the losses of events in a trial
need to be determined by looking up losses in the XELT. The
key design question is whether the data structure containing
the event-loss pairs of all trials need to be a sparse matrix in
the form of a direct access table or a compact representation.
While fast lookups can be obtained in the sparse matrix
representation, this performance is achieved at the cost of
high memory usage. Consider a YET with 1,000,000 events
and one Layer with 16 XELTs, and each XELT consisting
of 20,000 events with non-zero losses. The representation
using a direct access table would require memory to hold
16,000,000 event-loss pairs (without considering the data
required for secondary uncertainty calculations). While such
a large data structure is held in memory, 15,700,000 events
represent zero loss value.

Though the sparse representation requires large amount
of memory it is chosen over any compact representation for
the following reason. A search operation is required to find
an event-loss pair even in a compact representation. If se-
quential search is adopted, then O(n) memory accesses are
required to find an event-loss pair. If sorting is performed
in a pre-processing phase to facilitate a binary search, then
O(log(n)) memory accesses are required to find an event-loss
pair. If a constant-time space-efficient hashing scheme, such
as cuckoo hashing [7] is adopted then an event-loss pair can
be accessed with a constant number of memory accesses.
However, this can be only be achieved at the expense of
a complex implementation and overheads depreciating run-
time performance. Further, such an implementation on the
GPU with a complex memory hierarchy is cumbersome. Al-
though large memory space is required for a direct access
table, looking up event-loss pairs can be achieved with fewer
memory accesses compared to the memory accesses in a com-
pact representation.

Two data structure implementations of 16 XELTs were
considered. In the first implementation, each XELT is con-
sidered as an independent table; therefore, in a read cy-
cle, each thread independently looks up its events from the
XELTs. All threads within a block access the same XELT. In
the second implementation, all the 16 XELTs are combined
into a single table. Consequently, the threads then use the
shared memory to load entire rows of the combined XELT's
at a time. The second implementation performs poorly com-
pared to the first implementation. This is because of the
memory overheads for the threads to collectively load rows
from the combined XELT.

In the implementation on the multi-core CPU platform
the entire data required for the algorithm is processed in
memory. The GPU implementation of the algorithm uses
the GPU’s global memory to store all data structures. The
parallel implementation on the GPU requires high memory
transactions. This is surmounted by utilising shared mem-
ory over global memory.

4.2 Implementing Methods to Compute Sec-
ondary Uncertainty

Three statistical functions are required in the method for
applying secondary uncertainty. They are (i) the Cumula-
tive Distribution Function (CDF) of Normal distribution,
(ii) the Quantile of the Normal distribution, and (iii) the
Quantile of the Beta distribution. The Quantile of the Beta
distribution is a numerically intensive function since it is an
iterative method which converges to the solution within a
certain error.

Seven different libraries are used for implementing the
secondary uncertainty methodology on the multi-core CPU.
The first is the Boost statistical library offered by the Boost
C++ libraries®. The statistical functions are available inside
the namespace boost: :math. In order to use the distributions
the header <boost/math/distributions.hpp> needs to be in-
cluded. For example, boost::math::normal_distribution<>
NormDist (0.0L, 1.0L) will create a Standard Normal distri-
bution with mean equal to 0 and standard deviation equal
to 1. The Quantile function of the Normal distribution can
be obtained by as quantile(NormDist, double value). The
CDF of the Normal distribution is obtained by cdf (Nor-
mDist, double value). Similarly, an Assymetrical Beta dis-
tribution with alpha and beta values can be created us-
ing boost::math: :beta_distribution<> BetaDist (double al-
pha, double beta) and the Quantile can be obtained from
quantile(BetaDist, double cdf)®

The second is the IMSL C/C++ Numerical Libraries of-
fered by Rogue Wave Software*. The mathematical func-
tions are obtained from the imsl.h header file and the sta-
tistical functions are obtained from the imsls.h header file [8,
9]. The CDF for the Normal distribution with mean equal
to 0 and standard deviation equal to 1 is obtained from
imsl_f_normal_cdf (double value) and the Quantile is ob-
tained from imsl_f_normal_inverse_cdf (double cdf). The
Quantile for the Beta distribution with alpha and beta val-
ues are obtained as imsl_f_beta_inverse_cdf (double cdf,
double alpha, double beta).

The third is PROB which is a C++ library that handles
the Probability Density Functions for various discrete and
continuous distributions®. In order to use the distributions
the header prob.hpp> needs to be included. The CDF for
the Normal distribution with mean equal to 0 and standard
deviation equal to 1 is obtained from normal_01_cdf (double
value) or normal_cdf (double x, double a, double b)(VVhere
a =0 and b = 1) and the Quantile from normal_01_cdf_inv
(double cdf) or normal_cdf_inv (double cdf, double a, dou-
ble b) (where a = 0 and b = 1). The Quantile for the
Beta distribution with alpha and beta values are obtained as
beta_cdf_inv (double cdf, double alpha, double beta)[lOL

The fourth is DCDFLIB which is a C library adapted from
Fortran for evaluating CDF and inverse CDF of discrete
and continuous probability distributions®. In order to use
the distributions the header dcdflib.c needs to be included.

thtp://www.boost.org/
3http://www.boost.org/doc/libs/1_35_0/1ibs/math/doc/
sf_and_dist/html/math_toolkit/dist/dist_ref/dists/
beta_dist.html

4http://www.roguewave.com/products/
imsl-numerical-libraries/c-library.aspx
5http://people.sc.fsu.edu/"jburkardt/cpp_src/prob/prob.
html

6http://www.netlib.org/random/

The CDF and the Quantile for the Normal distribution with
mean stored in mean and standard deviation stored in sd
can be obtained from cdfnor (int *which, double *p, dou-
ble *q, double *value, double *mean, double *sd, int *sta-
tus, double *bound) [11]. ‘which’ is set to 1 to obtain the
CDF value p and q = 1.0 - p. ‘which’ is set to 2 to ob-
tain the Quantile in value. status and bound are variables
to report the status of the computation. The Quantile of
the Beta distribution x and y = 1.0 - x for alpha and beta
can be obtained from cdfbet (int *which, double *p, dou-
ble *q, double *x, double *y, double *alpha, double *beta,
int *status, double *bound) when which is set to 2, p is the
CDF and q = 1.0 - p [12].

The fifth library is ASA310 or the Applied Statistics Algo-
rithm 3107 which is a C++ library for evaluating the CDF
of the Noncentral Beta distribution [13]. The include file
is asa310.hpp. The iterative algorithm for achieving conver-
gence of the solution to compute the Quantile calls the func-
tion for computing the tail of the Noncentral Beta distribu-
tion betanc (float value, float alpha, float beta, float
lambda, int *ifault), where lambda, the noncentrality pa-
rameter is set to 0 for the standard Beta distribution and
ifault is an error flag.

The sixth library is ASA226 or the Applied Statistics Al-
gorithm 2267 which is a C++ library similar to ASA310
[14, 15]. The include file is asa226.hpp. The iterative algo-
rithm for achieving convergence of the solution to compute
the Quantile is used to call the function for computing the
tail of the Noncentral Beta distribution.

The seventh library is BETA_NC another C++ library
that can evaluate the CDF of the Noncentral Beta distribu-
tion [16]. The include file is beta_nc.cpp. The iterative algo-
rithm that achieves convergence of the solution to compute
the Quantile calls the beta_noncentral_cdf (double alpha,
double beta, double lambda, double value, double error_max),
where lambda, the noncentrality parameter is set to 0 for the
standard Beta distribution and error_max is is the error con-
trol in the computation.

For implementing the secondary uncertainty methodology
on the GPU statistical functions provided by the CUDA
Math API are employed by including the math.h header
file®. The CDF of the Normal distribution normcdf and
the Quantile of the Normal Distribution normcdfinv are fast
methods and included in the implementation. The CUDA
Math API currently does not support Beta distribution func-
tions. Therefore, four libraries, namely the PROB, ASA310,
ASA226 and BETA_NC are incorporated in the implemen-
tation for the many-core GPU. These libraries are ported
for the GPU platform and all the functions in the libraries
are implemented as __device__ functions for the GPU.

4.3 Optimising the Implementation

The implementations were optimised for better perfor-
mance in three ways. Firstly, by incorporating loop un-
rolling, which refers to the compiler replicating of blocks of
code within ‘for loops’ to reduce the number of iterations
performed by for loops. The for loops are unrolled using
the pragma directive; the for loops in line nos. 1-5 of Al-
gorithm 1 can be unrolled as each iteration is a mutually
independent iteration.

7http ://1ib.stat.cmu.edu/apstat/
8http ://docs.nvidia.com/cuda/cuda-math-api/index.html

5000

4000 —&-Boost

—+—IMSL

3000

—<PROB

~»~DCDFLIB

Time (seconds)

2000

~o-Beta_nc

- ,,,———fﬁ/,,//——f”':’

' ASA310
1000

ASA226

0
200000 300000 400000 500000 600000 700000 800000
No. of Trials

Figure 1: Applying secondary uncertainty using dif-
ferent statistical libraries for sequential implemen-
tation on CPU

Secondly, in the case of the GPU by migrating data from
both shared and global memory to the kernel registry. The
kernel registry has the lowest latency compared to all other
memory.

Thirdly, by reducing the precision of variables used in the
algorithm, whereby the double variables are changed to float
variables. In the case of the GPU, read operations are faster
using float variables as they are only half the size of a double
variable. Furthermore, the performance of single precision
operations tend to be approximately twice as fast as double
precision operations. The CUDA Math API supports func-
tions for floating point operations and the full acceleration
of CUDA Math API can be achieved by using the compiler
flag -use_fast_math.

S. EXPERIMENTAL RESULTS

In this section, the results obtained from the sequential
implementation on the CPU, the parallel implementation
on the multi-core CPU and the many-core GPU, and the
summary of the experimental results are presented.

Figure 1 shows the graph plotted for the time taken for
sequentially performing aggregate risk analysis using trials
varying from 200,000 to 800,000 with each trial comprising
1,000 events on the CPU when secondary uncertainty is ap-
plied using the Boost, IMSL, PROB, DCDFLIB, BETA_NC,
ASA310 and ASA226 libraries. The experiments are per-
formed for one Layer and 16 XELTs. The Boost library
provides the fastest functions for secondary uncertainty fol-
lowed by the BETA_NC, DCDFLIB, ASA310 and ASA226
libraries. The PROB library is approximately 2 times slower
and the IMSL numerical library is approximately 5 times
slower than the Boost library.

Figure 2 shows the graph plotted for the time taken for ap-
plying secondary uncertainty for trials varying from 200,000
to 800,000 with each trial comprising 1,000 events on the
CPU when Boost library is used. The results from the Boost
library are chosen since it provides the fastest functions for
applying secondary uncertainty. The experiments are per-
formed for one Layer and 16 XELTs. In each case of trials
shown in the graph the time for applying secondary uncer-
tainty is nearly 2.5 times the time taken for aggregate risk
analysis. The mathematical functions employed for applying
secondary uncertainty are fast methods with the exception

545 Applying
secondary
570 uncertainty

Time (seconds)

380 | = Aggregate Risk

- Analysis
190 - . l
0 -

200000 400000 600000 800000
No. of Trials

Figure 2: Time taken for aggregate risk analysis and
applying secondary uncertainty for different trials in
sequential implementation on CPU

Figure 3: Time taken for aggregate risk analysis and
applying secondary uncertainty for one thread on
each virtual core of the CPU

of the inverse cumulative distribution function of the beta
distribution which takes majority of the time.

The time taken both for performing aggregate risk analy-
sis with only primary uncertainty and for applying secondary
uncertainty with increasing number of trials should scale lin-
early and this is observed both in Figure 1 and Figure 2.

Figure 3 and Figure 4 show the graphs plotted for the
time taken for performing parallel aggregate risk analysis
and applying secondary uncertainty for 800,000 trials on the
multi-core CPU using the Boost, IMSL, PROB, DCDFLIB,
BETA_NC, ASA310 and ASA226 libraries.

In Figure 3, a single thread is run on each virtual core of
the CPU and the number of cores are varied from 1 to 8
(i.e., up to two threads on each of the four physical cores).
Each threads performs the aggregate risk analysis for a sin-
gle trial and applies secondary uncertainty. Multiple threads
are used by employing OpenMP directive #pragma omp par-
allel in the C++ source. With respect to the overall time
the ASA310 library performs the best requiring 232 seconds
for the analysis. For the IMSL library, a speedup of nearly
1.9x is achieved for two cores, a speedup of nearly 3.6x is
obtained for four cores and a speedup of 6.9x is obtained for
8 cores. While the performance keeps diminishing for the
IMSL library, the efficiency of all the other libraries used

Figure 4: Time taken for aggregate risk analysis and
applying secondary uncertainty for multiple threads
on each virtual core of the CPU

in secondary uncertainty is significantly low. No more than
4x speedup is achieved on eight cores in the best case. The
limiting factor is that the bandwidth to memory is not in-
creased as the number of cores increase. The majority of
the time taken in aggregate risk analysis is for performing
random access reads into the data structure representing the
XELT. The majority of the time in applying secondary un-
certainty is consumed in the inverse cumulative distribution
function of the beta distribution. The Boost library outper-
forms all the other libraries with respect to the overall time.
The DCDFLIB library did not scale on multiple threads as
the files are written as blocks of program with unconditional
jumps using the goto statement.

In Figure 4, the performance on all eight virtual cores of
the CPU is illustrated; multiple threads are run on each vir-
tual core of the CPU. For example, when 16 threads are
employed two threads run on each virtual core and when
2048 threads are employed 256 threads run on each virtual
core of the CPU. A small drop is observed in the absolute
time when many threads are executed on each core. When
256 threads run on a core, the overall runtime drops from
701 seconds (using two threads per core) to 620 seconds for
the IMSL library and the runtime drops from 269 seconds
(using two threads per core) to 252 seconds for the Boost
library. When 2048 threads are employed, the ASA310 li-
brary performs better than the Boost library by 25 seconds.

Figure 5 shows the graph plotted for the time taken for
applying secondary uncertainty using 2048 threads for trials
varying from 200,000 to 800,000 on the eight virtual cores of
the CPU when the Boost library is used. In each case of tri-
als shown in the graph the time taken for applying secondary
uncertainty increases with the number of trials. The time
taken for applying secondary uncertainty on the multi-core
is only %t the time taken in the sequential implementation.

Figure 6 shows the graph plotted for the time taken for
aggregate risk analysis and for applying secondary uncer-
tainty using the Boost library for 800,000 trials when the
number of threads are varied from 1 to 2048 on the multi-
core CPU. The lowest overall time is 252 seconds when 256
threads are employed per core of the CPU; 161 seconds are
required for the aggregate risk analysis and 91 seconds for
applying secondary uncertainty. However, the lowest time
taken for applying secondary uncertainty is 75 seconds which

91

81 Applying
Secondary
Uncertainty

55 m Aggregate Risk
Analysis
65
33
0 .

200000 400000 600000 800000
No. of Trials

Time (seconds)
@
g

Figure 5: Time taken for aggregate risk analysis and
applying secondary uncertainty for different trials in
parallel implementation on multi-core CPU

Figure 6: Time taken for aggregate risk analysis
and applying secondary uncertainty using Boost li-
brary for 800,000 trials in parallel implementation
on multi-core CPU

is achieved when one thread is used per core (8 threads on
the CPU). While there is a decrease in the overall time taken
as the number of threads increase, there is a gradual increase
in the time taken for applying secondary uncertainty when
more than 8 threads are employed on the CPU; 75 seconds
when 8 threads are used, where as 91 seconds required when
2048 threads are used. This is due to the increasing over-
head in swapping constants in and out of memory as the
number of threads increase. The performance of Boost sur-
passes that of ASA only when one and two threads are used.
Beyond two threads ASA310 has lower overall time.

Figure 7 shows the graph plotted for the optimal (best
time) time taken for applying secondary analysis in aggre-
gate risk analysis for 800,000 trials using different libraries.
Optimality for overall time is achieved when 2048 threads
are employed; in this graph the optimality for applying sec-
ondary uncertainty is considered. For the ASA310 library,
the best time for applying secondary uncertainty is 66 sec-
onds which is only éth the time taken in the sequential im-
plementation.

Figure 8 and Figure 9 show the graphs plotted for the
time taken for performing parallel aggregate risk analysis
and applying secondary uncertainty for 800,000 trials on the

Figure 7: Optimal time taken for applying secondary
uncertainty using different libraries for 800,000 tri-
als in parallel implementation on multi-core CPU

many-core GPU using the PROB, ASA310, BETA_NC and
ASA226 libraries. IMSL and Boost libraries are not available
for GPUs. The DCDFLIB library was ported for the GPU
but did not execute on the hardware.

CUDA provides abstraction over the streaming multi-processors

of the GPU, which is often referred to as a CUDA block.
The number of threads executed per CUDA block can be
varied in aggregate risk analysis. For example, consider
the execution of 800,000 Trials using 800,000 threads. If
256 threads are executed on one Streaming Multi-Processor
(SMP), then 3125 CUDA blocks need to be executed on
the 14 SMPs. Each SMP will have to execute 223 CUDA
blocks. All threads executing on one SMP have a fixed size of
shared and constant memory. Fewer the threads employed,
then each thread will have a large size of shared and con-
stant memory. But there is a trade-off when fewer threads
are used since the latency for accessing the global memory
of the GPU increases.

In Figure 8 the analysis is performed for 800,000 Trials on
the GPU by varying the number of threads per block from
16 to 512 threads. An improvement in the performance is
seen as the number of threads increase from 16 to 128 since
the latency for accessing the global memory drops. Beyond
128 threads the performance starts to drop as the shared
and constant memory available to each thread decreases.
ASA226 library performs the best since the function used
in computing secondary uncertainty has an optimal balance
between the number of constants and the amount of com-
putation required. This is vital when there is a trade-off
between the size of shared and constant memory and la-
tency in accessing global memory. The lowest time taken is
51 seconds when 128 threads per block are used.

Figure 9 shows the time taken to perform aggregate risk
analysis for applying primary uncertainty and for applying
secondary uncertainty using the ASA226 library on the GPU
for 800,000 Trials. The time taken for performing aggregate
risk analysis is nearly a constant. The time taken for ap-
plying secondary uncertainty first decreases from 16 to 128
threads per block and then increase beyond 128 threads per
block. This is due to the trade-off between the size of the
shared and constant memory and latency in accessing global
memory. In the best case when 128 threads per block are
employed the time taken for applying secondary uncertainty

Figure 8: Time taken for aggregate risk analysis
and applying secondary uncertainty using different
threads per block on many-core GPU

Figure 9: Time taken for aggregate risk analysis and
for applying secondary uncertainty using different
threads per block for ASA226 on many-core GPU

is nearly twice the time taken for performing aggregate risk
analysis. The best time for applying secondary uncertainty
using ASA226 on the GPU is only half the best time taken
by ASA310 for applying secondary uncertainty using multi-
ple threads on the CPU.

Figure 10 illustrates the performance of the ASA226, BETA_NC,

ASA310 and PROB libraries on the GPU for different tri-
als varying from 200,000 to 800,000. In each case of trials
the time taken for applying secondary uncertainty increases
with the number of trials. The ASA226 outperforms the
BETA_NC, ASA310 and PROB libraries. Figure 11 shows
the time taken to perform aggregate risk analysis for ap-
plying primary uncertainty and for applying secondary un-
certainty using the ASA226 library on the GPU for trials
varying from 200,000 to 800,000. Both times scale linearly.

5.1 Discussion

Figure 12 is a graph that summarises the key results from
the experimental study. The set of three bars represents the
time taken for (i) fetching Events from memory and for look
up of Loss Sets in memory, (ii) applying Financial Terms
and performing other computations in aggregate risk analy-
sis, and (iii) applying secondary uncertainty on the sequen-
tial implementation on the CPU and the parallel implemen-

Figure 10: Time taken for aggregate risk analysis
and applying secondary uncertainty for different tri-
als in parallel implementation on many-core GPU

Figure 11: Time taken for aggregate risk analysis
and for applying secondary uncertainty for different
trials using ASA226 on many-core GPU

tations on both the multi-core CPU and many-core GPU
when 800,00 Trials, with each Trial consisting 1,000 Events,
and 16 XELTs are employed. In each case, parameters spe-
cific to the implementation, such as the number of threads,
were set to the best value identified during experimentation.

In the parallel implementations for the basic aggregate
analysis, a speedup of 2.3x is achieved on the CPU and
a speedup of 20x is achieved on the GPU when compared
against the sequential implementation. A speedup of 24x is
achieved in the overall time for the implementation on the
GPU in contrast to the sequential implementation on the
CPU. For applying secondary uncertainty, multiple thread-
ing on the eight virtual cores of the CPU is nearly five times
faster than the sequential implementation and three times
slower than the GPU. For the numeric computations on the
GPU an accelaration of approximately 26x is achieved over
the sequential implementation. Limited memory bandwidth
is a bottleneck in the CPU resulting in approximately 27%
and 53% of the time being spent for fetching Events and for
look up of Loss Sets in memory for the sequential and paral-
lel implementation on the CPU respectively. While the time
for fetching Events and for look up of Loss Sets in memory
have been significantly lowered on the GPU 39% of the total
time is still used to this end.

Figure 12: Time taken for fetching Events from
memory and for look up of Loss Sets in memory, ap-
plying Financial Terms and performing other com-
putations in aggregate risk analysis, and applying
secondary uncertainty on sequential implementation
on CPU and parallel implementations on CPU and
GPU

In the sequential implementation on the CPU, in the par-
allel implementation on the multi-core CPU and in the par-
allel implementation on the many-core GPU approximately
62%, 38% and 56%, respectively, of the total time for aggre-
gate risk analysis is required for applying secondary uncer-
tainty. The majority of this time is required by the compu-
tations of the Inverse Beta Cumulative Distribution. This
calls for not only the development of fast methods to apply
secondary uncertainty in risk analytics, but also the develop-
ment of fast methods for the underlying statistical functions.
Fast methods have been implemented for computing the in-
verse CDF of the symmetrical beta distribution [17] which
considers one shape parameter, but there are minimal imple-
mentations of fast assymetrical beta distribution that takes
two shape parameters.

6. CONCLUSIONS

The research reported in this paper was motivated to-
wards experimentally verifying whether GPUs can acceler-
ate aggregate risk analysis with both primary and secondary
uncertainty. To this end an algorithm for the analysis of
portfolios of risk and a methodology for applying secondary
uncertainty was proposed and implemented. A sequential
and a parallel implementation on the CPU and a parallel im-
plementation on the GPU were presented. Seven statistical
libraries, namely Boost, IMSL, DCDFLIB, PROB, ASA310,
ASA226 and BETA_NC were investigated for implementing
the computations of secondary uncertainty. Numerous chal-
lenges in handling large data in limited memory of the GPU
were surmounted; the resultant was a speedup of 24x which
was achieved for the parallel analysis on the GPU over its
sequential counterpart on the CPU.

In this research, the GPU performed well for the numer-
ical computations of secondary uncertainty; the GPU was
five times faster than the multiple threaded analysis on the
multi-core CPU for applying secondary uncertainty. The
CPU could have performed well had it not been for its lim-
ited memory bandwidth and the GPU could have performed
better had it not been for its limited memory availability.

7. REFERENCES

[1] G. Woo, “Natural Catastrophe Probable Maximum
Loss,” British Actuarial Journal, Vol. 8, 2002.

[2] P. Glasserman, P. Heidelberger, and P. Shahabuddin,
“Portfolio Value-at-Risk with Heavy-Tailed Risk
Factors,” Mathematical Finance, Vol. 12, No. 3, 2002,
pp. 239-269.

[3] A. K. Bahl, O. Baltzer, A. Rau-Chaplin, and B.
Varghese, “Parallel Simulations for Analysing
Portfolios of Catastrophic Event Risk,” in Workshop
Proceedings of the International Conference of High
Performance Computing, Networking, Storage and
Analysis (SC12), 2012.

[4] G. G. Meyers, F. L. Klinker and D. A. Lalonde, “The
Aggregation and Correlation of Reinsurance
Exposure,” Casualty Actuarial Society Forum, Spring
2003, pp. 69-152.

[5] W. Dong, H. Shah and F. Wong, “A Rational
Approach to Pricing of Catastrophe Insurance,”
Journal of Risk and Uncertainty, Vol. 12, 1996, pp.
201-218.

[6] R. M. Berens, “Reinsurance Contracts with a
Multi-Year Aggregate Limit,” Casualty Actuarial
Society Forum, Spring 1997, pp. 289-308.

[7] R. Pagh and F. F. Rodler, “Cuckoo hashing,” Journal
of Algorithms, Vol. 51, 2004.

[8] IMSL C Numerical Library, User Guide, Volume 1 of
2: C Math Library, Version 8.0, November 2011,
Rogue Wave Software, USA.

[9] IMSL C Numerical Library, User Guide, Volume 2 of
2: C Stat Library, Version 8.0, November 2011, Rogue
Wave Software, USA.

[10] G. W. Cran, K. J. Martin and G. E. Thomas,
“Remark AS R19 and Algorithm AS 109: A Remark
on Algorithms AS 63: The Incomplete Beta Integral
and AS 64: Inverse of the Incomplete Beta Integeral,”
Applied Statistics, Vol. 26, No. 1, 1977, pp. 111-114.

[11] W. Cody, “Algorithm 715: SPECFUN - A Portable
FORTRAN Package of Special Function Routines and
Test Drivers,” ACM Transactions on Mathematical
Software, Vol. 19, 1993, pp. 22-32.

[12] A. R. DiDinato and A. H. Morris, “Algorithm 708:
Significant Digit Computation of the Incomplete Beta
Function Ratios,” ACM Transactions of Mathematical
Software, Vol. 18, 1993, pp. 360-373.

[13] R. Chattamvelli and R. Shanmugam, “Algorithm AS
310: Computing the Non-central Beta Distribution
Function,” Applied Statistics, Vol. 46, No. 1, 1997, pp.
146-156.

[14] R. Lenth, “Algorithm AS 226: Computing Noncentral
Beta Probabilities,” Applied Statistics, Vol. 36, No. 2,
1987, pp. 241-244.

[15] H. Frick, “Algorithm AS R84: A Remark on Algorithm
AS 226: Computing Noncentral Beta Probabilities,”
Applied Statistics, Vol. 39, No. 2, 1990, pp. 311-312.

[16] H. Posten, “An Effective Algorithm for the Noncentral
Beta Distribution Function,” The American
Statistician, Vol. 47, No. 2, 1993, pp. 129-131.

[17] P. L’Ecuyer and R. Simard, “Inverting the
Symmetrical Beta Distribution,” ACM Transactions
on Mathematical Software, Vol. 32, No. 4, 2006, pp.
509-520.

