
A PSO- Based Algorithm With Local Search for 

M ultimodal Optimization Without Constraints 

Omar Andres Carmona CortesI 
Andrew Rau-Chaplin2 

Rafael Fernandes Lopes I 
1 Departamento Academico de Informatica 

Instituto Federal de Educa<;ao, Ciencia e Tecnologia do Maranhao 
Av. Getulio Vargas, 04 - Monte Castelo 

Sao Luis - MA - 65025-001 - Brazil 
Email: {omar.rafaelf}@ifma.edu.br 

2 Faculty of Computer Science, Dalhousie University 
6050 University A venue 

Halifax, CA 
Email: arc@cs.dal.ca 

Abstract-The purpose of this paper is to present a 
PSO algorithm mixed with a new hybrid local search 
algorithm named LHS, enhancing the exploration and 
exploitation capabilities of the canonical PSO. The 
hybrid PSO, named PSOLHS, is examined against six 
known multimodal functions and compared with both 
canonical PSO and LHS. Furthermore, a comparison 
between evolutionary strategies (ES) and MPSO-LS is 
going to show how our approach outperforms these 
other techniques in almost all benchmark functions. 
All comparisons are based on a statistical t-test for 
supporting our results. 

Index Terms-PSO, Hybrid Algorithm, Multimo­
dal,Optimization. 

1. INTRODUCTION 
The term global optimization refers to the process of 

attempting to find out the solution x* of a set of possible 
solutions S, which has the optimal value for some fitness 
function j. In other words, we are trying to find out the 
solution x* such that x -I- x* :::} j(x*) :::: j(x) [2], in 
maximization problems, or x -I- x* :::} j(x*) :::; j(x), in 
minimization problems. In both cases, the best solution is 
called global optima. Solutions other than global optima 
are called local optima. 

A function to be optimized is monomodal if it has only 
one global optima and no locals optima. On the other 
hand, a multimodal function has many locals optima and, 
normally, one global optima, however, there are multimo­
dal functions with many global optima as well. 

Global optimization algorithms, based on mechanisms 
inherited from biology can be applied effectively when 
solving continuous problems, specially in difficult cases 
in which other classical computing strategies, such as 
gradient, have failed. 

Continuous global optimization problems with multimo­
dal objective functions, in which the basins of attraction 

of local extremes are separated by large areas on which 
moderate or low objective variability is observed (pla­
teaus), belong to the group of important difficult ones. 
Another type of difficulty is caused by the low regularity of 
the objective function when the gradient and the Hessian 
computation require costly approximative routines or is 
generally meaningless. [1] 

In order to solve multimodal functions, many bio­
inspired approaches have been proposed. Particularly, 
different PSO (Particle Swarm Optimization) algorithms 
have been used for solving multimodal problems. These 
algorithms are mostly based on existing approaches used 
in the evolutionary algorithms [3]. 

Li et al. [4] investigates some mutations operators based 
on global best particle. Specifically, three mutations ope­
rators are used for helping PSO jump out of local optima: 
Cauchy, Gaussian and Levy. All mutation operators have 
an equal initial selection ratio with 1/3 and the mutation 
operators that result in higher fitness values has its ratio 
increased. 

Pat and Hota [6] propose a modified and im­
proved quantum-behaved particle swarm optimization 
(QPSO) [11] adding fitness weighted recombination, i.e., 
recombining two particles using arithmetic crossover, 
which were chosen by the roulette wheel selection. 

Chen [7] uses hill climbing to improve the solution of a 
particle chosen at random. Then, he modified his basic 
PSO-LS by choosing the best particles (MPSO-LS) as 
initial solutions for local search, showing that this last 
approach presents better results. 

Ozcan [3] adds a random walk component and a hill 
climber to enhance the exploration and exploitation capa­
bilities of PSO. Khairy [5] proposes a PSO algorithm with 
local search algorithm where a small independent swarms 
is put around a selected particles within the specified 

978-1-4673-0793-2/12/$31.00 ©2012 IEEE 



range. In this context, two cases are considered. In the first 
one, a random particle is chosen for the local search, then 
the new particle replaces the old one if its fitness is better. 
In the second one, the new particle replaces the old one 
based in some probability, just like simulated annealing. 

In this work, we combine a new local search algorithm, 
proposed in the Cortes' work [8], with canonical PSG. This 
new local search algorithms is also a hybrid algorithm com­
bining features of clonal selection [9], genetic mutation and 
hill climbing [10], enhancing the capacity of exploration 
and exploitation of the canonical PSG. 

For this sake, the paper is organized as follows: Sec­
tion II presents the canonical PSG, the used local search 
algorithms and the proposed one (PSOLHS); Section III 
shows the benchmarks functions used in our experiments; 
Section IV discusses the computational experiments; fi­
nally, Section V presents the conclusions and future works. 

II. THE ALGORITHMS 
A. Particle Swarm Optimization 

The algorithm consists of particles that are placed into 
the search space. Each particle moves combining some 
aspects of its own history position and the global position. 
All particles move to next position and probably the 
swarm moves towards the potential optimum, in the next 
iteration. 

A particle represents a position in the search space as 
Xp = (xL xL ... , xf ) · Further, a particle has a velocity 
Vi D = (v}, v; , ... , vf) which is used to determine the new 
position of the particle in the next iteration, where D 
represents the problem dimension. The new position is 
determined by means of the Equations 1 and 2, where 
W represents the inertia weight, Cl and C2 are acceleration 
constants, rl and r2 are random number in the range [0, 1], 
p1 is the best position of the particle, and gd is the global 
optima of the swarm so far. 

(2) 

The velocity in any dimension is narrowed by a maxi­
mum velocity V max in the range [-V max, V max]. When the 
velocity of a particle violates this range we update it using 
the Equation 3. In other words, we chose a new random 
velocity within the range [-V max, V max]. 

vf = -Vmax + (randO X (Vmax - (-Vmax))) (3) 

B. Local Hybrid Search - LHS 

The Local Hybrid Search was proposed in Cortes' 
work [8]. Basically, the LHS works according to the pseu­
docode presented in Figure 1, where s represents the first 
random solution, P is a population created by cloning c 

times the s individual, then the population undergo a non­
uniform mutation from genetic algorithms and only the 
best solution goes to the next generation. 

s {::: initialize_solution(n); 
Eval(S); 
while NOT (Termination Criteria) do 

P +- Clone(s, c) ; 
pI +- Mutation(P); 
s +- Eval(pl); 

end while 

Fig. 1. Pseudocode for LHS Algorithm 

In the original work, the LHS has some variations, so 
we used a variation named HNURT (Hybrid Non-Uniform 
Mutation with Random T) that presented the best results. 
In this approach, the maximum number of elements to be 
muted are obtained by the Equation 4, where n is the 
number of genes/dimension, Gmax is the max generation 
number and t is the current generation. 

d(L
n x (Gmax - t) 

lJ) nm = ran 
G + max 

(4) 

Actually, the Equation 4 is a linear equation that pro­
duces a number between 1 and n (only if Gmax :::: n) 
based on the current iteration. In other words, the number 
of elements undergo mutation (nm) is a random number 
belonging to [1, n] in the initial generations and equals 1 
in the last one. 

Further, a position is mutated using non-uniform muta­
tion according to Equation 5 ,  where T E {O, I} is randomly 
generated. 

c� = { se T = ° 
se T = 1 

(5) 

The � function is calculated by Equation 6, where r 
is a random number belonging to [0, 1], b is a parameter 
chosen by user, t is the current generation and Gmax is 
the maximal generation number. This equation is similar 
to non-uniform mutation of genetic algorithms excepting 
by the constant 0.5. 

(6) 

In this context, we can notice that non-uniform muta­
tion combined with nm tries to explore the search space 
in the early iterations whereas exploit it in the final ones. 
All in all, the probability of � function returns a number 
close to zero increases as the algorithm advance. 

C. Th e Proposed Algorith m - PSOLHS 

The proposed algorithm uses the LHS for enhancing the 
exploration and exploitation capabilities of PSO, applying 
the LHS in the best particle according to the pseudocode 
presented in Figure 2. 



X+--- initialize--Bwarm(n); 
V+--- initialize_velocities(n); 
while NOT (Termination Criteria) do 

eval(X); 
s +--- selecLone_particle(X) 
xl +--- HNURT(s,K) 
if Fitness(xl) < Fitness(s) then 

p +--- xl 
end if 
if Fitness(xl) < gbest then 

gbest +--- xl 
end if 
V +--- update_velocity(V); 
X+--- update_positions(X); 

end while 
eval(X); 
if min(Fitness(X)) < gbest then 

gbest +--- x 
end if 

Fig. 2. Pseudocode for PSOLHS 

The proposed algorithm tries to enhance the fitness of 
the best particle using LHS algorithm before the swarm 
search, where K is the number of iterations that the LHS 
can use for. We have been applied the local search to the 
best particle because Chen [7] proved to be the best choice. 
Afterwards, the algorithm executes the canonical PSG, 
updating the position and the velocity of particles. Indeed, 
this particular order provides a better initial solution to 
the canonical PSG. 

III. BENCHMARK FUNCTIONS 
In this work, we have used some known multimodal 

benchmarks function to test if the performance of an 
algorithm is better than another. In all presented cases 
the benchmark functions must be minimized. 

Each function has basically two important features: 
separability and multimodality. A function is multimodal 
if it has two or more local optima. It is separable if it can be 
rewritten as a sum of p functions of just one variable. Non 
separable functions are more difficult to optimize because 
the accurate search direction depends on two or more 
elements of the solution vector. The problem is even more 
difficult if the function is also multimodal. 

The dimensionality of the search space is another impor­
tant factor in the problem complexity, because the number 
of local optima increases with the problem dimension. A 
study of the dimensionality problem and its features was 
carried out by Friedman [12]. We have used 6 benchmarks 
functions as shown in Table I, where all of them are 
multimodals. The domain of each function, the global 
optima, its name and whether the function is separable 
or not is presented, as well. 

The Schwefel's function, also known as Surface Schwefel, 
is composed of a great number of peaks and valleys. The 

function has a second best minimum far from the global 
minimum where many search algorithms are trapped. 
Furthermore, the global minimum is near the bounds of 
the domain. 

The Rastrigin's function was constructed from Sphere 
(f(x) = 2:x2) and its contour is made up of a large 
number of local minima, whose value increases with the 
distance to the global minimum. Therefore, the algorithm 
could be trapped if genes are produced far from the global 
optima but into domain. 

The Ackley's function has an exponential term that 
covers its surface with numerous local minima. The com­
plexity of this function is moderated, thus the search 
strategy must combine the exploratory and exploitative 
components efficiently. 

The Griewank's has a product term that introduces in­
terdependence among the variables. The aim is the failure 
of the techniques that optimize each variable independen­
tly. As in Ackley's function, the optima of Griewank's func­
tion are regularly distributed. Finally, Penalized functions, 
also known as Generalized Penalized Functions, are similar 
to Ratrigin's function, nonetheless, penalized functions are 
no separable. 

IV. EXPERIMENTAL RESULTS 
The experiments have been conducted in a Intel i5 

processor 2.67Ghz, 4GB (RAM), 500GB (HD) and Matlab 
2010. In order to compare the algorithms variations, we 
solved each benchmarks through 31 independent trials and 
dimension equals 30 (n = 30). This number of executions 
is based on the central limit theorem, which claims that 
with 30 or more runs a sample will present a normal 
distribution, allowing statistical inferences [13], like a t­
test, for instance. 

Considering a t-test, our null hypothesis is that there 
are no differences between means, i.e., Ho : ILl = IL2, which 
indicates a two tailed test with level of significance a = 
0.5 with 30 degrees of freedom. Therefore, any result of t, 
calculated by Equation 7, has to be in the range [-2.042, 
2.042] for accepting the null hypothesis, where ILi are the 
means being compared, O"i are the standard deviations and 
n is the number of trials. 

t = 
ILl - IL2 
/ "i + ,,� V n n 

(7) 

Moreover, in order to make a fair comparison between 
algorithms, the same number of functions evaluations have 
been done. For instance, the h function executes 9000 
iterations in PSG and LHS in each trial, then the PSO­
LHS executes 1800 iterations times 5 for the local search 
(1800 x 5 = 9000). All experiments have been conducted 
using the parameters presented in Table II, where ub and 
lb are the upper bound and the lower bound of the search 
space, respectively. 

The Figure 3 presents the performance of PSO, LHS 
and PSOLHS algorithms. Clearly, PSO has got trapped in 



TABLE I 
BENCHMARKS FUNCTIONS 

Benchmark Functions Domain Min Name Separable 
h(x) = L- -Xi X sin( fo) [-500,500] -12569.5 Schwefel's yes 
12(x) = L- [xi - 10 cOS(27rXi) + 10] [-5.12,5.12] 0 Rastrign's yes 
13(x) = -20 exp( -0.2) � L:�=1 cos xT - exp( � L:�=1 cos 27rxiJ [-32,32] 0 Ackley's no 
+20 + e 

f ( ) - --"-- L 2 - 1 l;' ( .'!'.i.. ) 4 x - 4000 i=1 Xi i=1 cos 7;, 
fs(x) = �{sin2(7rYIl + L:�=-/(Yi - 1)2[1 + 10 sin2(7rYi+Il] 
+(Yn - 1)2} + L:�=1 U(Xi, 10, 100, 4) 
Yi = 1 + �(Xi + 1) 

k(Xi - a)=, Xi> a 
u(xi,a,k,m) = 0, -a < Xi < a 

k(-Xi - a)m, Xi <-a 
f6(X) = 0.I{sin2(37rxIl + L:n=-�(Xi _1)2[1 + sin2(37rxi+Il]+ 
(Xn - 1)[1 + sin2(27rXn )]} + �_ U(Xi, 5, 100, 4) 

TABLE II 
PARAMETERS FOR PSO, PSOLSH 

PSO/PSOH LHS/GA 
#particles 100 #clones 
Cl, C2 1.49618 #generations 
W 0.72984 b 
Vmax �!..Q. 

100 
5 
5 

a local minima in h,  12 and is, and seems to have similar 
performance in 14, 15 and, specially, in 16. However, 
looking into the numbers in Tables IV and Table V we 
can notice that PSOLHS also outperformed the other 
algorithms in 15 and 16 and, on the other hand, we have 
to accept the null hypothesis in 14. 

In 12 LHS seems to evolve faster than PSOLHS, howe­
ver, PSOLHS ends up with better results after about 700 
iteration. This behavior is inverted in is where PSOLHS 
evolves faster than LHS, probably because is is more 
complex and no separable. The same idea is repeated in 
16 for the canonical PSO, but looking at Table IV we can 
observe that PSO is also trapped in a local minima while 
in PSOLHS the evolving process carried out. 

Table III presents the success rate of the local search 
according to the number of iterations (#Iterat.). The co­
lumn Rate represents the mean of the number of times that 
the local search in PSOLHS enhances the solution. The 
column Last It. presents in which iteration the enhanced 
of the solution happened for the last time. The last im­
provement of the solution by the local search is illustrated 
in the column Last Solution. The last column shows the 
mean accomplished by PSOLHS. 

In this context, we can notice that the final solution was 
obtained practically in the iteration 461 in the function 
h,  becoming the searching for better solutions a hard 
task. The exploration capability is clear in function 12. 
On the other hand, the LHS take the advantage of the 
exploitation capability in functions is, 14, 15 and 16 
because the solutions were enhanced close to the final 
iteration (#It versus Last It.), and the differences between 

[-600,600] 0 Griewank's no 
[-50,50] 0 Penalized no 

[-50,50] 0 Penalized no 

the last solution, improved by local search, and the final 
one (Mean of PSOLHS) is not far-away. 

TABLE III 
SUCCESS RATE OF THE LOCAL SEARCH 

F. #It. Rate Last It. Last Solution Mean 
of PSOLHS 

h 1800 259.3 461 -12569.48662 -12569.48662 
12 1000 284.8 300 2.68E-06 2.42043E-13 
13 300 130.1 222 0.000940578 8.78284E-05 
f4 400 139.9 194 0.05143648 0,01547516 
fs 300 147 240 2.61E-08 5,47554E-09 
f6 300 147.9 261 2.56E-06 3,06636E-07 

Table IV shows a closer comparison between the cano­
nical PSO and PSOLHS, where the second column repre­
sents the number of iterations of each algorithms which 
were chosen based on Yao's work [14]. So, taking the t­
test into account, the function 14 has the same behavior in 
both algorithms (accepting the null hypothesis), probably 
because the search space is quite huge and the function is 
not separable, consequently, becoming the function very 
hard to optimize. The PSOLHS clearly outperformed the 
results of the canonical PSO, in the other function. 

TABLE IV 
COMPARISON BETWEEN PSOLHS AND PSO 

#Iter. PSO PSOLHS t 
h 9000 -6976.8551 -12569.4866 59.9340777 

(519,545068) (5,2147E-07) 
12 5000 55.4608487 2.4204E-13 20.26002274 

(15.2414901) (3.9627E-13) 
13 1500 2.39334217 8.7828E-05 10.01605827 

(1.33037127) (6.2498E-05) 
f4 2000 0.02670347 0.01812523 1.194001145 

(0.03460991) (0.02005646) 
fs 1500 1.07585499 5.4755E-09 2.295405212 

(2.60960767) (1.6195E-08) 
f6 1500 1.88703848 3.0664E-07 2.542349096 

(4.13262833 ) (7.7303E-07) 

Table V presents a comparison between PSOLHS and 
pure LHS. Again, the PSOLHS algorithm overcame the 



0.$ 
0,6 
0.4 
0.2 

-0,4 

-0,6 ' 

-0.8 

-I \ 
. \ -1.2 .� 

1100 200l :mJ 4000 !)JOO 
lte/a�oos 

6000 7100 

� 
� 

0000 

�,-----------�-----------,------�====� 

EE 
20' 

h 
15 . ' \ 

, 
� � 10 ; ';I. . - L 
.. . 
\ l'. 

- P50LHS 
. - UlS 

.. � - - . - -" ' - -�<--------: --::��:: : : -. -.------ - :: :- -----: : � -------- - - -----
1100 1� 

lte/a�oos 

i3 

11OO.------------,,-----------,------�====� 

900 

BOO-

� :� !. 500-- I: 
400, 

500 1100 I� 
lte/a�oos 

is 

-_.P50 
- PSOlHS 
- - LHS 

300, 

100 " 

�L-���1�1OO��1���-2OOl�����:mJ�����4000L-���-!)JOO� ' 
�Eflliioos 

� 2!l:1 

200 
� 

1!l:I 

1000, : 1 9)J : 1 , 
800 
700 

600
: \ �� : 

400' 

300 

200: 1 

200 400 

100 : l 
°0 '. . \,,---

800 

� 

1000 
�Eflliioos 

i6 

1200 1400 

1100 

1800 

tE-'PSO - PSOUIS 
-- UlS 1 

j 

1800 2000 

1500 

Fig. 3. Performance of the PSO, LHS and PSOLHS (it to !6) 



results of LHS, excepting in function 14, probably for the 
same reason explained earlier. 

TABLE V 
COMPARISON BETWEEN PSOLHS AND LHS 

#Iter. LHS PSOLHS t 
h 9000 -12569.48599 -12569.48662 18.71078625 

(0.000186) (5.21472E-07) 
12 5000 0.000183 2.42043E-13 17.5672565 

(0.000058) (3.96268E-13) 
h 1500 0,020361 8.78284E-05 20.45840137 

(0.005517) (6.24979E-05) 
J4 2000 0.027999 0.018125226 2.027733631 

(0.018242) (0.020056458) 
15 1500 0.000011 5.4 7554E-09 8.744965381 

(0.000007) (1.61953E-08) 
J6 1500 0.000639 3.06636E-07 4.600378234 

(0.000773) (7.73029E-07) 

Indeed, the results presented by PSOLHS are very good, 
because the standard deviation is small in all benchmark 
functions, representing a good behavior of the algorithm, 
which means that the PSOLHS is able to find out good 
solutions in all trials. 

A. Comparison With Evolution Strategies 

Table VI compares the PSOLHS with evolution stra­
tegies (ES), which results were obtained from Yao's 
work [14]. We run the hybrid algorithm 31 times and 
Yao runs his algorithm 50 times, therefore the t-test has 
79 degree of freedom and significant 0: = 0.5 by a two­
tailed test, i.e., -1.99 ::; t ::; 1.99 for accepting the null 
hypotheses. 

TABLE VI 
COMPARISON BETWEEN PSOLHS AND EE 

#Iter. PSOLHS ES t 
h 9000 -12569.48662 -12569.47995 0.000905314 

(5,21472E-07) (52,6) 
12 5000 2.42043E-13 0.046 2.737547564 

(3.96268E-13) (0.12) 
h 1500 8.78284E-05 0.018 60.86923608 

(6.24979E-05) (0.0021) 
J4 2000 0,018125226 0,016 -0,448372075 

(0.020056458) (0.022) 
Js 1500 5.4 7554E-09 0.000009 16.05822164 

(1.61953E-08) (0.000004) 
J6 1500 3.06636E-07 0.00016 15.62100755 

(7.73029E-07) (0.000073) 

Considering the t-test between PSOLHS and ES, we 
have to accept our null hypothesis in functions h and 14, 
so we can state that these particular functions have the 
same behavior in both algorithms. However, the PSOLHS 
presents a better standard deviation in h,  therefore it has 
a better stability with this generation number, meaning 
the PSOLHS find out good solutions in all trials. Again, 
PSOLHS outperformed the ES in functions 12, h, 15 and 

k 
B. Comparison With PSO-LS 

The algorithm PSO-LS, proposed by Chen [7], adds a lo­
cal search algorithm (hill climbing) before it communicates 

information with other particles in the swarm. Specifically, 
we are using the version named MPSO-LS where the local 
search is applied only to the best particle, exactly as we 
did in PSOLHS. The population size is 80 particles and 
2000 iterations. We are going to present the mean of 30 
trials for all experiments. 

The comparison is done using functions 12 (Rastrign), 
14 (Griewank) and Rosembrock, which we called as 17 
according to Equation 8. Despite this function being a 
monomodal, it is hard to solve due to its quadratic fea­
tures. Moreover, there are some discussions claiming that 
the Rosembrock's function is multimodal as well when its 
dimension is greater than three [15]. 

n 

17 = i.)100(xi+1 - X;) 2 + (Xi - 1) 2) (8) 

The search space of the functions and the initialization 
range are introduced in Table VII. As we can observe, 
the initialization range introduces a new difficult to the 
algorithms, because these ranges produce higher outcomes 
to the functions in the earlier iterations, becoming the 
function harder to solve. 

TABLE VII 
SEARCH SPACE AND INITIALIZATION RANGE 

Function Search Space Initialization Range 
h l-100,100j l15, 30j 
12 l-10,10j l2.56, 5.12j 
J4 l-600,600j l300, 600J 

Unfortunately, we cannot uses a t-test like we did be­
fore, because the Chen's work does not present standard 
deviation. Nonetheless, the comparison is possible because 
the PSOLHS presents much better results for 12 and 17 as 
we can see in Table VIII. On the other hand, the results 
are quite similar in 14, indicating the same behavior of the 
previous algorithms. 

TABLE VIII 
COMPARISON BETWEEN MPSO-LS AND PSOLHS 

Function MPSO-LS PSOLHS 
h 78,7998 3,90239038 
12 28,8657 4,03405E-13 
J4 0,012 0,011194731 

V. CONCLUSIONS 

In this paper we proposed an effective new hybrid 
algorithm combining a canonical PSO with a local search 
(LHS) algorithm for optimization of global/multimodal 
functions. Further work needs to be done on testing more 
multimodal functions. For instance, the improvements of 
the exploitation capabilities have to be investigated in the 
LHS algorithm. 

We have confirmed from the results of simulation ex­
periments that using benchmark problems the proposed 



method has superior search capabilities in comparison 
with canonical PSG, LHS, ES and MPSO-LS. 

Further challenges for the future include optimization 
using automatic adaptation of the local search algorithms, 
applying a Simulated Annealing exchange policy and the 
use of fuzzy controllers to adjust parameters in real-time 
execution. 

REFERENCES 
[1] Schaefer, R., "Foundation of Genetic Global Genetic Optimi­

zation", Studies in Computational Intelligence, v 74, Berlim: 
Springer Verlag, 2007. 

[2] Eiben, A. E.; Smith, J. E., "Introduction to Evolutionary Com­
putation", 2ed, Berlim: Springer Verlag, 2007. 

[3] Ozcan,E.; Yilmaz, M. "Particle Swarms for Multimodal Optimi­
zation", Proc. SProceedings of the 8th international conference 
on Adaptive and Natural Computing Algorithms, Part I, pp. 366-
375, 2007. 

[4] Li, C.; Yang, S.; Korejo, 1., "An Adaptive Mutation Operator for 
particle swarm optimization" Proc. VIII Metaheuristics Interna­
tional Conference, pp. 13-16, 2008. 

[5] Khairy, M.; Fayek, M.B.; Hemayed, E.E., "PS02: Particle swarm 
optimization with PSO-based local search", Proc. IEEE Congress 
on Evolutionary Computation (CEC), pp. 1826-1832, 2011. 

[6] Pat, A.; Hota, A. R., "An Improved Quantum-behaved Particle 
Swarm Optimization Using Fitnessweighted Preferential Recom­
bination", Proc. Second World Congress on Nature and Biologi­
cally Inspired Computing, Kitakyushu, Fukuoka, Japan, 2010. 

[7] Chen, J.; Qin, Z.; Liu, y.; Lu, J., "Particle Swarm Optimization 
with Local Search", Proc. International Conference on Neural 
Networks and Brain, Beijing, pp. 481-484, IEEE Press, 2005. 

[8] Cortes, O.A.C. ; da Silva, J.C., "A Local Search Algorithm Based 
on Clonal Selection and Genetic Mutation for Global Optimi­
zation",Proc. In Proceeding of Eleventh Brazilian Symposium of 
Neural Networks (SBRN), IEEE Press, 2010. 

[9] de Castro, L. N.; Von Zuben, F. J., "Learning and optimization 
using the clonal selection principle", IEEE Transactions on Evo­
lutionary Computation, vol. 6, pp. 239-251, 2002. 

[10] Michalewicz, Z., Genetic Algorithms + Data Structures = Evo­
lution Programs, 2 ed, Berlim: Springer Verlag, 1999. 

[11] Sun, J.; Feng, B.; Xu, W. B., "Particle swarm optimization with 
particles having quantum behavior", Proc. IEEE Proceedings of 
Congress on Evolutionary Computation, pp. 325-331, 2004. 

[12] Friedman, J. H., An overview of predictive learning and function 
approximation. Proc. V. Cherkassky, J. H. Friedman, and H. 
Wechsler, editors, From Statistics to Neural Networks, Theory 
and Pattern Recognition Applications, volume 136 of NATO ASI 
Series F, pages 1-61. Springer-Verlag, 1994. 

[13] Schefler, W. C., Statistics: Concept and Applications, The Ben­
jamin/Cummings Publishing Company, California, 1988. 

[14] Yao, X.; Liu, Y.; Lin, G., Proc. Evolutionary Programming Made 
Faster, IEEE Transaction on Evolutionary Computation, v. 3, n. 
2, july, 1999. 

[15] Tang, K.; Li, X.; Suganthan, P. N.; Yang, Z.; Weise, T., "Ben­
chmark Functions for the CEC'2010 Special Session and Compe­
tition on Large-Scale Global Optimization". Proc. IEEE World 
Congress on Computational Intelligence. China, 2009. 


