
Growth Processes on Formulas and Reversible Circuits

by

Alexander Brodsky

B.Math. University of Waterloo, 1997
M.Sc. University of British Columbia, 1999

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

in

THE FACULTY OF GRADUATE STUDIES

(Department of Computer Science)

We accept this thesis as conforming
to the required standard

The University of British Columbia

June 2003

c© Alexander Brodsky, 2003

Abstract

Among their many uses, growth processes have been used for constructing reliable networks from
unreliable components (Moore and Shannon, 1956) and deriving complexity bounds of various fam-
ilies of functions (Valiant, 1984). Hence, analyzing such processes is an important and challenging
problem. In this thesis we parameterize a growth process by its initial conditions and characterize
it by the existence and shape of a limiting probability distribution that describes the likelihood of it
realizing a particular Boolean function. We identify the limiting distributions of several classes of
growth processes on formulas, and derive conditions under which results such as Valiant’s hold. We
consider growth processes that use linear, self-dual, and monotone connectives, completely char-
acterizing those processes that use linear or monotone connectives. In the latter case, we derive a
novel technique that combines spectral analysis (Savický, 1990) with probabilistic arguments; the
technique is also applicable to growth processes that use other connectives. Our characterizations
also yields bounds on the convergence of these growth processes.

Unfortunately, a comparable definition and characterization of growth processes on general cir-
cuits is impractical due to the dependencies between the probabilities associated with various circuit
components. However, reversible circuits (Toffoli, 1980) are inherently more structured than gen-
eral circuits. To study growth processes beyond the formula setting, we propose and characterize
growth processes on reversible circuits. Intriguingly, aspects of the characterizations that proved
difficult in the former setting—such as proving that the limiting distribution is uniform—turn out to
be relatively easy in the latter. In fact, the limiting distribution of a growth process on reversible cir-
cuits is characterized completely by its support—the set of functions that the process can generate.
Consequently, we also provide bounds on the convergence of these growth processes.

Finally, the regular structure of reversible circuits provides ample motivation for considering the
reversible circuit complexity of finite Boolean functions—an important issue, since the precursor to
such applications as quantum computation is reversible computation. We derive relationships be-
tween reversible circuits and other models of computation such as permutation branching programs
(Barrington, 1985), based on a new measure that we call bandwidth. By leveraging these relation-
ships, we exhibit a natural gap between two families of reversible circuits that correspond to width-4
and width-5 permutation branching programs. Based on the same measure, we define a hierarchy
of families of reversible circuits that corresponds to the SC class hierarchy—a natural circuit-based
definition of the class SC. Lastly, we provide constructions for several common Boolean functions
and derive sufficient conditions under which a Boolean function has a polynomial-size realization.

iii

Contents

Abstract iii

Contents v

List of Figures vii

Acknowledgements ix

1 Introduction 1
1.1 Growth Processes on Formulas . 2
1.2 Reversible Circuits and Growth Processes on Reversible Circuits 3
1.3 Reversible Circuit Complexity . 4
1.4 Results in this Thesis . 5

2 Background 7
2.1 Boolean Functions, Formulas, and Circuits . 7
2.2 Random Formulas . 7

2.2.1 Probabilistic Amplification . 8
2.2.2 Spectral Analysis . 11
2.2.3 Related Work . 12

2.3 Reversible Computation . 12
2.3.1 Reversible Circuits . 13

2.4 Random Reversible Circuits . 14
2.5 Complexity of Reversible Computation . 15

2.5.1 Space-Time and Other Trade-offs . 16
2.5.2 Relationships with Other Models of Computation 18
2.5.3 Related Work . 19

3 Growth Processes on Formulas 23
3.1 Definitions . 23
3.2 Growth Processes that Use Linear Connectives 25
3.3 Growth Processes that Use Self-Dual Connectives 27
3.4 Growth Processes that use Monotone Connectives 28

v

3.4.1 Growth Processes that Use Unbalanced Monotone Connectives 28
3.4.2 Growth Processes that Use Balanced Connectives 37

3.5 Growth Processes that Use Other Functions . 46

4 Growth Processes on Reversible Circuits 49
4.1 Definitions . 49
4.2 The Limiting Distribution of Growth Processes on Reversible Circuits 51
4.3 The Support of Growth Processes on Reversible Circuits 54

4.3.1 The Support of Growth Processes that are not Bandwidth-limited 54
4.3.2 The Support of Growth Processes that are Bandwidth-limited 58

4.4 Convergence of Growth Processes on Reversible Circuits 62

5 Reversible Circuit Complexity 65
5.1 Definitions . 65
5.2 Bounded Bandwidth Reversible Circuits . 67

5.2.1 Simulating Reversible Circuits with Branching Programs 67
5.2.2 On the Power of Bandwidth-2 Reversible Circuits and 4-PBPs 69

5.3 Polylogarithmic Bandwidth Reversible Circuits 80
5.4 Unbounded Bandwidth Reversible Circuits . 82

5.4.1 Reversible Circuit Constructions . 83
5.4.2 Sufficient Conditions for Realizing Permutations by Polynomial Size Circuits 90
5.4.3 Techniques and Heuristics for Reversible Circuit Constructions 92

6 Conclusion and Future Work 95

Bibliography 99

vi

List of Figures

1.1 A block diagram of a reversible circuit. 3

2.1 Some typical characteristic polynomials for networks of three crummy relays. . . . 9
2.2 A NOT (a′ = 1⊕a), a controlled-NOT (b′ = b⊕a), and a Toffoli (c′ = a∧b⊕ c). . 13
2.3 A method for resetting garbage lines. 14
2.4 A partial representation of the improved simulation for c = 2. 17

4.1 A four gate construction of a NOT gate . 53
4.2 A four gate construction of a C-NOT gate . 53
4.3 A four gate construction of a C-NOT gate . 53
4.4 A four gate construction of a NOT gate . 53
4.5 A four gate construction of a Toffoli gate . 53
4.6 The four singleton 2-functions. 56
4.7 A (0)-controlled Toffoli. 58
4.8 The circuit C ∼ (7 15 31). 58
4.9 A simulation of one Toffoli gate with another. 60
4.10 Realizations of controlled 2-cycles. 62

5.1 Schematic short forms of block components. 84
5.2 Realizations of a) a half-incrementor and b) a nigh-incrementor. 84
5.3 A realization of the adder. 85
5.4 A realization of the consensus function. 87
5.5 A realization of the threshold function Tn−1. 87
5.6 Realizations of the threshold function Tn−2. 88
5.7 A realization of the threshold function Tk. 89

vii

Acknowledgements

“Research does not occur in a vacuum” is an oft-cited axiom, meaning that research does not oc-
cur in isolation. An immediate corollary is that this work would not have been possible without
the contributions of a great many people. Primus inter pares, I thank my supervisor and mentor
Nick Pippenger. Without his patience, insight, and encouragement, I doubt that this work would
have come to fruition; via example and advice, he was my first guide through world of theoretical
computer science. With equal import, I thank my friend and mentor Bettina Speckmann, whose
generosity, steadfastness, ideals, and uncompromising demand for excellence in all aspects of life
greatly tempered me. I have no doubt that without her friendship and example, I would be a different
person; thank you for the ideas, arguments, schemes, and the multifarious late-night discussions!

My home for the past five years has been the Distributed Systems Group, who accepted me—a
theory person—and provided me with a lively and stimulating work environment—though I must
admit that I do not have a performance section in my dissertation. Many thanks to my twin brother
Dima, my great friend Matt Pedersen, as well as Yvonne, Chamath, Joon, and the rest of the DSG.
You made me look forward to spending each day in the lab!

Thank you to the Theory Group for the collaboration, interaction, and feedback that I have
received over the years. Special thanks to Mike McAllister for taking me under his wing when
I arrived here six years ago, Stephane Durocher and Ellen Gethner for their collaboration on the
rectilinear crossing number problem, and Anne Condon, Joel Friedman, and David Kirkpatrick for
being on my committee and providing very helpful feedback.

The Department of Computer Science at UBC is a unique and an amazing place to work in;
many of its members have made my tenure here an experience that I would not trade for anything.
Many thanks to my fellow grad students and friends, Andrea, Paul, Martin, Lisa, and Brian, for your
friendship, and to the faculty, Alan, Norm, and Gail for sharing your experiences and your advice.

Most importantly, I thank my family for their everlasting support. In my weekly conversations
I was always asked three questions: Are you healthy? Have you found someone nice? Are you
done yet? I am pleased to say that I can answer affirmative to the first and the last questions; I
am still working on number 2. Thanks to my parents, Larisa and Boris, my grandparents, Bella
and Benjamin, my favourite brother Dima, and everyone else for the love, expectations, and care
packages!

ALEXANDER BRODSKY

The University of British Columbia
June 2003

ix

Chapter 1

Introduction

Bounding the circuit complexity of Boolean functions is an outstanding and ongoing challenge.
Determining the circuit complexity of a Boolean function yields insight not only into the practical
aspects of complexity, i.e., how many transistors does it take to realize a given function, but also
into the structure and relationships of complexity classes. The techniques for deriving the bounds
have themselves become objects of study; generalizing techniques—making them applicable to a
wider class of problems—is an important problem in its own right. Thus, it goes without saying that
exploration of the applicable techniques furthers the study of complexity.

One well known technique that has come to prominence over the past two decades is the prob-
abilistic method. The probabilistic method, commonly termed probabilistic amplification, has been
used to characterize complexity classes [Adl78, BG81, ABO84] and to derive nonconstructive upper
bounds on the circuit complexity of specific Boolean functions [Val84, Raz88]. The latter method
iteratively constructs, or grows, a circuit via a random process. After some number of iterations
the resulting circuit may realize the required function with a nonzero probability. We call the latter
form of the probabilistic method a growth process.

To make the analysis of a growth process tractable, the constructions are usually restricted to
a subclass of circuits. Otherwise, the dependencies between the probabilities associated with vari-
ous components of a circuit render the analysis intractable. For example, both Valiant [Val84] and
Razborov [Raz88], restricted their attention to fan-out 1 circuits: formulas. Alternatively, if the cir-
cuits are reversible—comprising fan-out 1 bijective gates—the growth processes are also amenable
to analysis.

Reversible circuits [Lan61, Tof80, FT82] and reversible computation [Ben73, Ben89] constrain
every gate and every step of the computation to be completely reversible, so that no information may
be lost at any step of the computation. Reversible circuits, which realize a bijection from n inputs
to n outputs, comprise n wires that are manipulated by bijective gates. Since quantum computation
has come to the forefront of theoretical and applied research, investigations into reversibility and
reversible circuits have assumed a more prevalent role [Ben88a, Ben88b] because reversibility is a
precondition of quantum computation. Fortuitously, the restrictive nature of reversibility induces
a structure on the circuits that is much more amenable to analysis; both within the framework of
growth processes as well as for circuit complexity in general.

1

2 Chapter 1. Introduction

In this thesis we are concerned with growth processes on formulas, growth processes on re-
versible circuits, and reversible circuit complexity. In the first two parts of the thesis we investigate
and characterize growth processes based on their initial parameters; we formulate general theorems
that predict the resulting distributions. The goal is to provide a methodology for constructing a
growth process, given some specification. This not only provides a design strategy, but also delin-
eates the natural limitations of growth processes.

In the latter part of the thesis we investigate reversible circuit complexity. We investigate if
there exists a reversible circuit complexity hierarchy analogous to the one comprising the low-
lying complexity classes, an important goal for fitting reversible computation within the current
complexity hierarchy. We also investigate the relationships between reversible circuits and other
models of computation, as well as concrete constructions, which allow us to derive a set of useful
rules and heuristics for general construction of reversible circuits.

1.1 Growth Processes on Formulas

The growth process, elegantly exhibited by Valiant [Val84] and first studied by Moore and Shan-
non [MS56], is used to nonconstructively prove the realization of a given n-adic function. The
growth process on Boolean formulas is a random process defined on the space of n-adic Boolean
functions, whose parameters are the initial distribution on the variables, negations, and constants,
and a fixed k-adic Boolean function, called a connective. To grow a formula of depth i, the random
process first grows k random formulas of depth i−1 and then composes them using the connective;
formulas of depth 0 are chosen randomly according to the initial distribution. If the probability of
growing a random formula that realizes a particular function can be shown to be greater than zero,
then the function may be realized in ki gates—the size of the random formula.

Alternatively, a random Boolean formula generated by i iterations of the growth process com-
prises a complete k-ary tree of depth i, where each internal node corresponds to the connective
in the natural way, and the leaf nodes are randomly assigned according to the initial distribution.
Consequently, the realized function only depends on the connective and the assignment of the leaf
nodes.

For each iteration of the growth process there is a corresponding distribution on the formulas
of depth i that induces a distribution on the space of n-adic Boolean functions. If the induced
distribution approaches some fixed distribution as i approaches infinity, then the growth process
has a limiting distribution, which is approached at some rate as i approaches infinity. The limiting
distribution and the rate of approach characterize the growth process. In many applications [Val84,
Bop85, GM91, Sav95a, Sav98] the rate of approach is the main issue of interest. As we will show,
in almost all cases that we considered, the rate of approach is exponential in n.

In this thesis we are concerned with three questions: the existence of the limiting distribution,
the shape of the limiting distribution, and the rate at which the limiting distribution is approached.
In most cases, we assume that the initial distribution is uniform over its support and that the support
is a subset of the variables, their negations, and constants. For a given support and connective,
the goal is to answer the three preceding questions: the existence, shape and convergence to a

1.2. Reversible Circuits and Growth Processes on Reversible Circuits 3

limiting distribution. For example, Savický [Sav90, Sav95a] formulated broad conditions under
which the limiting distribution is uniform over the entire n-adic function space and is approached at
an exponential rate.

1.2 Reversible Circuits and Growth Processes on Reversible Circuits

Reversible circuit, first proposed by Landauer [Lan61] and Toffoli [Tof80], must satisfy one crite-
rion: no information may be lost during any step of the computation. For example, an AND-gate
loses information, because given an output of 0, it is impossible determine if the inputs were (0,0),
(0,1), or (1,0). Consequently, all gates must be bijective and have fan-out 1. Using the Toffoli’s
terminology, a reversible circuit on n inputs comprises n or more wires, called lines that are manip-
ulated by gates that take some number of lines as inputs, and place output on the same set of lines;
see Figure 1.1. Additional lines, called garbage (or ancillary) lines, may be used for temporary
storage of values.

2
3

5

6

1 4
7

Figure 1.1: A block diagram of a reversible circuit.

A reversible circuit is simply a sequence of gates that are placed on the lines and manipulate
their values as the lines pass through the gates. The length or size of the circuit is equal to the length
of the gate sequence. The standard gates—defined in Section 2.3.1—such as the NOT gate, the
controlled-NOT gate, and the Toffoli gate, only modify one of the lines and use the remaining lines
as read-only control lines. This creates a natural distinction between read-only lines, which are not
modified by any gate in the circuit, and read-write lines, which may be modified by at least one
gate in the circuit. The width of a circuit is the number of lines and the bandwidth of a circuit is the
number of read-write lines.

A growth process on a reversible circuit is a random process defined on the space of permutation
functions and whose parameters are the number of lines in the circuit, and the distribution on the
set of gates that may comprise the circuit. The growth process starts with an empty circuit, which
realizes the identity permutation. On each iteration the process selects a gate from the distribution
and suffixes it to the circuit from the preceding iteration, growing the circuit by one gate. For each
iteration of the process there is a corresponding distribution on the set of reversible functions, which

4 Chapter 1. Introduction

induces a distribution on the set of permutations.
Naturally, we consider the same three issues as in the preceding section: the existence of a

limiting distribution, the support of the the limiting distribution, and the convergence rate to the
limiting distribution. Not surprisingly, the characteristics depend exclusively on the width of the
circuit and the distribution on the set of gates. As we shall see, under a very broad set of constraints,
the limiting distribution exists and is uniform over the set of even permutation functions.

1.3 Reversible Circuit Complexity

The complexity of a reversible circuit is usually parameterized by a combination of circuit depth,
width, and bandwidth, which are usually stated as functions of the number of variables. The band-
width of a circuit corresponds to the amount of state that a circuit must track during the compu-
tation and is analogous to the space requirements of a computation. Analogously, circuit length
corresponds to the time requirements of a computation.

Reversible circuits, and reversible computation in general, present an interesting space-time
trade-off. As Landauer [Lan61] observed, information cannot be thrown away during computation;
it must either be stored, or reversibly erased. Bennett [Ben73, Ben89] demonstrated that the latter is
accomplished by running the computation that generated the information backwards, leveraging the
fact that the computation is reversible. The trade-off between storing data, reversible erasure, and
regeneration is analogous to the trade-off between space and time, i.e., a computation may either
use additional space to store the information that was generated during the course of the computa-
tion, or use additional time to reversibly erase unnecessary information. Within the framework of
reversible Turing machines, Bennett [Ben73, Ben89] and Lange et al. [LMT97, LMT00] derived
optimal strategies for both time parsimonious and space parsimonious computation. Additionally,
Li and Vitányi [LV96a, LV96b] and, Buhrman et al. [BTV01] derived general space-time tradeoffs
using versions of Bennett’s [Ben89] pebbling games that simulate reversible computation.

Toffoli [Tof80] noted the analogous requirement for reversible circuits. Reversible circuits use
some number of garbage lines to store temporary values used during the computation. Before being
reused, a garbage line must be erased; this is usually accomplished by reversing the computation
that generated the value. Consequently, there is a trade-off between the length of the circuit and the
number of garbage lines required.

Various models of computation, such as branching programs [Lee59, Weg87, Weg79, Weg82]
and straight line programs [Ost54, Cle90], have been used to investigate various problems in cir-
cuit complexity. Similarly, models such as permutation branching programs [CG75, Bar85, Bar89,
BS95], programs over groups [BT88, BST90], and reversible straight-line programs [Ost54, Cle90],
are used to investigate problems within reversible circuit complexity. Results within the frameworks
of these computation models are directly applicable—with a little work—within the context of re-
versible circuit complexity, and vice versa.

In this thesis, we use the framework of permutation branching programs and programs over
groups to investigate reversible circuits with low or or constant bandwidth. There is a natural rela-
tionship between permutation branching programs and a class of reversible circuits whose variable

1.4. Results in this Thesis 5

lines are read-only and whose read-write lines represent the state of the branching program dur-
ing the computation. On the other hand, reversible straight-line programs are closely related to
reversible circuits that comprise mostly read-write lines.

In recent years, reversible circuits have generated greater interest within both the quantum com-
putation and the hardware communities. Reversible computation is a necessary requirement for
quantum computing and uses significantly less power [Ben82, BGL+93, Ben88a, Ben88b], an im-
portant benefit to today’s hardware architects. Consequently we consider concrete realizations of
several commonly utilized Boolean functions.

1.4 Results in this Thesis

Our goal, as stated previously, is to improve our understanding of two frameworks: growth pro-
cesses and reversible circuits. Our approach for the former provides a set of general theorems that
characterize a growth process based on its initial parameters. We develop theorems for both growth
processes on formulas and growth processes on reversible circuits. Our approach for the latter yields
a multifarious set of results: relationships between reversible circuits and various models of compu-
tation, new bounds on constant bandwidth reversible circuits, new concrete reversible realizations
of commonly used Boolean functions, and new heuristics for constructing reversible circuits.

The third chapter of this thesis derives a set of theorems for characterizing growth processes
on formulas. After presenting the notation (Section 3.1), we characterize growth processes that
use linear connectives (Section 3.2), self-dual connectives (Section 3.3), and monotone connectives
(Section 3.4). We use a novel combination of amplification arguments [Val84, Bop85] and spectral
analysis [Raz88, Sav90, Sav95a] to derive a technique for characterizing growth processes using
other connectives as well (Sections 3.4.2 and 3.5).

Additionally, we derive general convergence bounds for the majority of the growth processes
under investigation. We note that in some cases even very minute changes in the connective can
result in drastically different convergence rates.

The fourth chapter derives a characterization of growth processes on reversible circuits. We
relate growth processes on reversible circuits to random walks on groups [Ald89, KLNS89]. Our
characterization of growth processes on reversible circuits is accomplished via the techniques used
to analyze the random walks. We define growth processes on reversible circuits (Section 4.1) and
derive a broad set of constraints that ensure that the limiting distribution exists and is uniform over
the set of even permutation functions (Section 4.2–4.3). We also show that the convergence rate
of such growth processes is exponentially slower than in the case of growth process on formulas
(Section 4.4).

The fifth chapter focuses on reversible circuit complexity. In Section 5.1 we review permuta-
tion branching programs [Bar85], three different notions of acceptance, and define the notion of a
program transformation. Using these notions, we derive relationships between reversible circuits
and permutation branching programs, making our results applicable to both reversible circuits and
permutation programs (Section 5.2). Using two different complexity measures on reversible circuits
we define a complexity hierarchy and relate it to the low-lying complexity classes (Section 5.3).

6 Chapter 1. Introduction

Additionally, in Section 5.4, we describe several concrete reversible circuit constructions, in-
cluding: an incrementor, threshold function, consensus function and adder. We show that all of
these have concise constructions and derive a set of heuristics for realizing other Boolean func-
tions. Particularly, in Subsection 5.4.2, we show that if a permutation has a polynomial size cycle
representation, then the permutation can be realized by a polynomial size reversible circuit!

Chapter 2

Background

2.1 Boolean Functions, Formulas, and Circuits

A Boolean cube of order n is the set Bn = {0,1}n of all n-bit vectors and an n-adic Boolean function
is a map f : Bn→ B1, i.e., an n-adic Boolean function take n Boolean arguments and yields a truth
value, 0 (false) and 1 (true). A function is monotone if for any assignment of variables, changing
any variable from 0 to 1 does not cause the function to change from 1 to 0.

A Boolean circuit is represented by a directed acyclic graph comprising nodes of positive outde-
gree and a single node of outdegree 0. Nodes of indegree 0 are labeled by a Boolean variable x i, or
its negation x̄i, and nodes of positive indegree are labeled by a Boolean function, which is typically
a conjunction (∧), disjunction (∨), or negation (¬); the node of outdegree 0 is called the output
node. The circuit computes a truth value in the natural way; the value of a node is either the value
of the variable with which it is labeled, or the value of the function with which it is labeled—the
function’s arguments are the values of the node’s predecessors. The truth value of the computation
is the value of the output node. A Boolean formula is a Boolean circuit where each node has outde-
gree (fan-out) of at most 1. A monotone circuit (formula) is a Boolean circuit (formula) such that
none of the nodes are labeled by negations or nonmonotone functions.

2.2 Random Formulas

Random Boolean formulas have been studied throughout the last half century. Five years after
Shannon’s [Sha38] seminal paper relating Boolean algebra and switching circuits, Riordan and
Shannon [RS42] proved that “almost all” Boolean functions require an exponential number of circuit
elements to be realized. Although Shannon [Sha49] proved an upper bound on the complexity of
realizing any Boolean function on n variables, it wasn’t until 1959 that Lupanov [Lup61b] obtained
an asymptotic upper bound corresponding to the lower bound in [RS42].

There was a quick succession of results on bounding the size of circuits and formulas that
realize any Boolean function on n variables [Lup58, Lup61a, Lup61b, Lup65, Kri61, Rez62, Kor65,
Kor66, Pip76] in the early 60s. However, apart from the quadratic lower bounds on formulas of
Nečiporuk [Neč66] and Khrapchenko [Khr71, Khr72], little was accomplished in deriving bounds

7

8 Chapter 2. Background

on the complexity of specific functions.
In the early 80’s new techniques for deriving lower bounds were introduced. The main features

were restrictions on the class of allowable circuits—bounded circuit depth or monotone circuits—
and the use of probabilistic techniques. Furst et al. [FSS81] showed that parity could not be com-
puted by a polynomial size bounded depth circuit, by a probabilistic technique involving random
partial assignments, called random projections. Similar methods were used by Yao [Yao83, Yao85]
and Hastad [Has86, Has89]. Razborov [Raz85] proved a super-polynomial lower bound on mono-
tone circuits that decide the clique problem. This was extended to an exponential lower bound by
Andreev [And85] and, Alon and Boppana [AB87] and used by Tardos [Tar88] to prove an exponen-
tial gap between monotone and nonmonotone circuit models.

Not surprisingly, probabilistic techniques are extremely useful in proving upper bounds as well.
In 1984 Valiant [Val84], using random formulas, proved that the formula complexity of the majority
function was not only polynomial—an implication of a result of Ajtai et al. [AKS83] on sorting
networks—but that the size was bounded by O(n5.3). Four years later, Razborov [Raz88] proved that
there exist polynomial size monotone formulas that represent some Ramsey graphs. In the former
case, probabilistic amplification was used to prove the existence of the small formula that realizes
the majority function. In the latter case, spectral analysis was used to prove that the probability of
creating the appropriate small formula was not zero.

2.2.1 Probabilistic Amplification

Following the work of von Neumann [vN56], Moore and Shannon [MS56] demonstrated how to
construct “Reliable Circuits from Less Reliable Relays”. This two part work laid the foundations
for the probabilistic technique that would later be called probabilistic amplification. Moore and
Shannon [MS56] asked the following question: can a reliable two-terminal circuit—one that be-
haved as if constructed from reliable relays—be constructed using unreliable “crummy” relays that
work with probability p; all relays are controlled by a single source. Their approach was to con-
struct a more reliable relay from a number of crummy relays, iterating the process until the required
level of reliability was achieved.

Let p be the probability that a crummy relay works (closes when its coil is activated) and let 1− p
be the probability that the crummy relay does not work (remains open when its coil is activated).
Given an network of k relays that connect two terminals, the probability that the network works
like a relay—the two terminals will become connected when the coils are activated—is equal to the
probability that some number of relays will work, creating a path from one terminal to the other.
This probability is denoted by the corresponding characteristic polynomial

h(p) =
k

∑
i=0

Bi p
i(1− p)k−i,

where Bi is the number of ways of selecting i of k relays that if closed (work), create a closed circuit.
Figure 2.1 illustrates behaviour of some characteristic polynomials.

Since each relay within the network is also a two-terminal network, one possible way to improve
reliability is to replace each relay within the original k-relay network with a copy of the network

2.2. Random Formulas 9

h1 h2

h3 h4

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

h1(p) = 3p(1− p)2 +3p2(1− p)+ p3

h2(p) = 3p2(1− p)+ p3

h3(p) = 2p2(1− p)+ p3

h4(p) = p3

Figure 2.1: Some typical characteristic polynomials for networks of three crummy relays.

itself; this is called an iterative composition. Analogously, the probability that the iterative composi-
tion will work is equal to the composition of the original k-relay network’s characteristic polynomial
with itself, i.e., h(h(p)), and the probability that a network that comprises i iterative compositions
will work is hi(p), the ith composition of h(p) with itself. Moore and Shannon [MS56] showed
that iteratively composing the k-relay network with itself monotonically increases (or decreases)
the reliability of the overall network, and that the rate of change is determined by the characteristic
polynomial of the k-relay network.

For example, let N1, N2, N3, and N4 be the four different 3-relay networks that correspond to
the characteristic polynomials in Figure 2.1. In the first case, since h1(p) > p on the interval (0,1)

and hence h(hi−1(p)) > hi(p), an iterative composition of N1 realizes a reliable relay that works
with probability approaching 1—as the number of iterations increases—regardless of how crummy
the original relays were, as long as they’re not completely broken. Similarly, since h3(p) < p and
h4(p) < p on (0,1), iterative compositions of N3 or N4 realize very crummy relays that work with
probability approaching 0—unless the crummy relays are not crummy at all. Finally, since h2(p)

has a fixed-point, in this case h(1
2) = 1

2 , an iterative composition of N2 realizes a reliable relay if the
relays are not half bad1, and realizes a crummy relay if the relays are more than half bad.

Moore and Shannon [MS56] considered relays that not only did not close properly, but also
that did not open properly, causing a closed circuit even when the relay coils were inactive. Thus,
their focus was on networks whose characteristic polynomial had a fixed-point. In [MS56] several
important properties about h(p) are proved including that h(p) has at most one fixed-point on the
interval (0,1) and that the slope at the internal fixed-point is strictly greater than 1 unless h(p) = p.
The latter implies that for all p less than the fixed-point, say s, h(p) < p on (0,s), and h(p) > p on
(s,1).

Following Moore and Shannon [MS56], the technique proved useful in showing that certain
functions had a small circuit or formula complexity. Following Adleman’s [Adl78] characterization
of the complexity class RP, Bennett and Gill [BG81] proved a similar result for the class BPP,
namely, that the languages in BPP could be decided by polynomial size circuits. Additionally,

1 p > 1
2

10 Chapter 2. Background

Ajtai and Ben-Or [ABO84] showed that probabilistic constant depth circuits can be simulated by
their deterministic analogs. However, perhaps the most elegant exhibition of the technique was by
Valiant [Val84].

Since closing a relay in a circuit cannot open a closed circuit and since opening a relay cannot
close an open circuit, two-terminal circuits are equivalent to monotone Boolean formulas. For
every k element network, there is a corresponding k-adic formula, called a connective, whose inputs
correspond to the relays of the network. The formula evaluates to true on an assignment if and
only if closing the corresponding relays closes the k element network. Analogously, an iterative
composition of the formula, replaces each instance of a variable with a copy of the formula—the
variables are renamed in the copy. If we assume that the variables are independent and are true
with probability p and false with probability 1− p, then the probability of the formula evaluating to
true is equal to hi(p), where hi(p) is ith composition of h(p), the characteristic polynomial of the k
element network. We call this iterative composition process a growth process.

This framework was used by Valiant [Val84] to prove that the majority function can be realized
by a monotone formula of size O(n5.3). Valiant showed that iteratively composing the connective
(G1∨G2)∧(G3∨G4) with itself about 2.65log(n) times and then randomly assigning the n variables
and 0 to the inputs of the resulting formula realizes the majority function with high probability. The
distribution used for the variable assignment was p(xi) = φ and p(0) = 1−nφ, where φ = s/(n−1)

and s is the fixed-point of the connective.
The key to the proof is the probabilistic amplification phenomenon. Since the probability of a

variable being true corresponds to the weight of the assignment, the probability of an input being
1 is greater than s if and only if the majority of the variables are 1. Consequently, the iterative
composition creates divergence away from the internal fixed-point followed by convergence toward
the bounding fixed-points. Consequently, with high probability the resulting formula evaluates to
true if the majority of the inputs are 1, and false otherwise.

Boppana [Bop85, Bop89] further studied probabilistic amplification, deriving upper and lower
bounds on the monotone formula complexity of Boolean threshold functions. He showed that
Valiant’s [Val84] result was indeed optimal, and that the monotone formula complexity of the mth
threshold function is bounded by O(m4.3n log(n)), where 0 ≤ m ≤ n. This was accomplished by
analyzing the slope of the characteristic polynomial near its fixed-points, in order to obtain bounds
on both the divergence away from the internal fixed-point and convergence towards the bounding
fixed-points.

Additionally, Gu and Maruoka [GM91] investigated amplification within the context of formulas
comprising alternating levels of AND and OR gates, and Radhakrishnan and Subrahmanyam [RS94]
investigated threshold functions within the context of directed contact networks. Dubiner and
Zwick [DZ92, DZ97] extended Boppana’s [Bop89] lower bounds to nonmonotone formulas. All
of the preceding work analyzed growth processes whose limiting distribution became concentrated
on a single function, i.e., a threshold function; however many of the growth processes have a limit-
ing distribution that is spread over a significant portion of the space of Boolean functions, requiring
a different approach.

2.2. Random Formulas 11

2.2.2 Spectral Analysis

If the limiting distribution of a growth process is not concentrated on a single function, then proving
that a limiting distribution exists or even that there is a nonzero probability of growing a specific
function requires a different approach. One such approach is spectral analysis, which was used
by Razborov [Raz88] and Savický [Sav88, Sav90, Sav94, Sav95a, Sav95b]. In the former case,
Razborov [Raz88] used spectral analysis to prove that some large graphs with Ramsey properties
had formula representations that are exponentially smaller; this was later quantitatively improved
by Savický [Sav95b], who demonstrated that these Ramsey properties are far from random.

In 1988, Savický [Sav88, Sav90] proved that under a broad set of conditions, the limiting dis-
tribution of a growth process is uniform over the entire space of n-adic functions. Five years later
he further generalized the conditions and determined the asymptotic convergence rate towards the
limiting distribution. Under a general set of conditions Savický [Sav94, Sav95a] showed that the
rate of approach of the probability of realizing a particular function f to the limiting probability
2−2n

yields information about f : the rate is fastest for the linear functions, and slowest for the bent
functions [Rot76]—bent functions are furthest, in Hamming distance, from the linear functions.

In [Sav88, Sav90] Savický leverages the fact that the limiting distribution is uniform over the
space of n-adic Boolean functions and that the Fourier transform (defined below) of the uniform
distribution is concentrated on a single Fourier coefficient. He proves that all but one of the Fourier
coefficients of the ith distribution approach zero as i approaches infinity, implying that the ith dis-
tribution approaches the uniform distribution as i approaches infinity. In [Sav95a] Savický derives
an exponentially decaying upper bound on the magnitude of the Fourier coefficient, proving that
asymptotically, the convergence is exponentially fast.

The Fourier transform ∆i of a probability distribution πi is defined by

∆i(f) = ∑
g∈Fn

(−1)〈 f ,g〉πi(g) (2.1)

where Fn is the set of all n-adic Boolean functions and πi(g) is the probability of selecting function g
from the ith distribution. The vectors f and g are Boolean vectors of size 22n

that represent functions
by their truth table. Naturally, the inverse Fourier transform is defined by

πi(g) =
1

22n ∑
f∈Fn

(−1)〈 f ,g〉∆i(f). (2.2)

Since the Fourier coefficient of the zero function, 0, is always equal to one, i.e., ∆ i(0) = 1 for all
i, Savický [Sav90] shows that all other coefficients tend to zero as i tends to infinity, proving his
result.

The Fourier transform plays a role in many of our results, but it needs to be adapted in various
ways to suit different cases. For example, when dealing with linear functions, we represent the
functions f and g in definition 2.1 not as Savický does, by their truth-tables, but rather by their
coefficients as multivariate polynomials over GF(2). In other cases, when establishing a limiting
distribution that is uniform over a proper subset of all n-adic Boolean functions, we use what we
call “restriction lemmas”, which assert relationships that hold among the coefficients of the Fourier
transform.

12 Chapter 2. Background

2.2.3 Related Work

Not all growth processes have a limiting distribution. In some cases the processes may have alter-
nating limiting distributions, an example of this is worked out in Section 3.2. In this case, as i ap-
proaches infinity, the sequence of distributions π2i converges to one distribution, while the sequence
of distributions π2i+1 converges to another distribution. This is due to the fact that some functions
may not be realizable by formulas of odd (or even) depth. For example, a growth process whose
initial distribution is uniform on the projections and whose connective is (G1∨G2)∧ (G3∨G4),
has an alternating distribution; even depth formulas realize only the monotone functions, while odd
depth formulas realize only the negated monotone functions.

In general, if the projection functions cannot be realized by formulas of synchronized depth
greater than some constant depth, no limiting distribution can exist [HN77, HN79]. This inquiry
was begun by Kurdryavcev [Kud60b, Kud60a], who investigated the completeness of automata
with no feedback—essentially combinational circuits. Some of this work was rediscovered [HR98]
by Loomis [Loo65] in 1965. In 1977, Hikata and Nozaki [HN77, HN79] proved that projections
are necessary and sufficient to ensure completeness. However, this is not necessarily a sufficient
condition for the existence of a limiting distribution.

Using another model of random formulas—where a formula is approximated by an infinite
tree—Lefmann and Savický [LS97] obtained a relationship between the formula complexity of a
function and the probability of its occurrence within the infinite tree model, namely the negative
logarithm of the probability differs by a polynomial factor from the formula complexity of the
respective function. For a fixed connective, G1 ∧G2⊕G3⊕G4, Savický [Sav98] derived a bound
between the formula complexity of a function and the probability that a random formula, grown
using the connective, realizes the function. This was accomplished by deriving the behaviour of the
Fourier coefficients from one iteration of the growth process to the next.

2.3 Reversible Computation

In 1948 Shannon and Weaver [Sha48, SW49] formalized the equivalence between information and
entropy, a result dating back to Maxwell’s Demon [Max71] and the work Szilard [Szi29]. In 1961
Landauer [Lan61] showed that if a computation is performed reversibly—none of the operations
throw away information—then the amount of power required to drive the computation is dependent
only on its rate. Landauer [Lan61] also proposed a reversible gate that was capable of simulating
traditional irreversible Boolean operations, such as conjunction.

In the early 70’s Bennett [Ben73] continued the work on reversible computation within the
framework of reversible Turing machines. He proved that any Turing machine could be simulated
reversibly by using extra space proportional to the length of the computation. Using the same frame-
work, the trade-off between space and time was further investigated by Bennett [Ben89], Levine and
Sherman [LS90], and Lange et al. [LMT00]. This trade-off was also investigated within the context
of pebbling games and information theory [Zur89, BGL+93, LV96a, LV96b, LTV98, ABOIN96,
BTV01]. However, not until 1980 was a realizable model of reversible computation proposed.

2.3. Reversible Computation 13

2.3.1 Reversible Circuits

Reversible circuits were first defined by Toffoli and Fredkin in [Tof80, FT82]. The circuits comprise
fan-out 1 gates that implement bijective functions and operate on fixed subsets of lines. The three
standard gates are: the unary NOT gate, which negates the value on the wire; the binary controlled-
NOT gate, which negates the second line if the value of the first line is 1, and the ternary Toffoli gate
(controlled-controlled-NOT), which negates the third line if the first two lines both have a value of
1; see Figure 2.2. A feature of these gates is that each one is its own inverse.

a a’ b

a

b’

a’

a’a

b

c c’

b’

Figure 2.2: A NOT (a′ = 1⊕a), a controlled-NOT (b′ = b⊕a), and a Toffoli (c′ = a∧b⊕ c).

Since reversible circuits are bijective, not all n-adic Boolean functions may be realized by an
n line reversible circuit. For example, the disjunction on n variables cannot be implemented by an
n line circuit where the output is, say, the first line in the circuit. This follows from the fact that n
line reversible circuits are bijections on the Boolean cube, hence, for exactly half of the outputs the
first line must have a value of 0. Thus, in most of the cases an additional line, which is initialized
to 0 and called a garbage line, is required. Using the following elegant argument, Toffoli [Tof80]
showed that one additional line is both necessary and sufficient.

Let F : Bm→ Bn be an arbitrary Boolean function. Construct a reversible function RF : Bm+n→
Bm+n such that F is embedded within it. Begin with a truth table for F = {(x,y) ∈ Bm×Bn | F(x) =

y}. Let the truth table for RF be

{(x′,y′) ∈ Bm+n×Bm+n | x′ = zx, y′ = (y⊕ z)x, z ∈ Bm, F(x) = y}.

This truth table defines a bijective function, within which F is embedded. In fact, with a little
twiddling, its easy to ensure that RF is an even permutation function. This is vital because even if
an n-adic Boolean function is a permutation function, it may not be realizable by an n line circuit.

Universality

Given a universal set of gates, e.g., {∧,¬}, any Boolean function can be realized using only gates
from the set. In the case of reversible gates and circuits, regardless of what finite set of gates is used,
there exist reversible functions that are not realizable without the use of an additional line. This was
shown by Coppersmith and Grossman [CG75].

Let k < n. The operation of a k-ary invertible gate within an n line circuit realizes an even
permutation—an element of the alternating group A2n . Assuming that universal set of gates is finite,
the set contains a gate with a maximal number of inputs and outputs, say k. Hence, all n line
circuits, where k < n are composed of gates that only realize even permutations, implying that such

14 Chapter 2. Background

circuits can only realize even permutations themselves. Thus, reversible functions that compute odd
permutations of the symmetric group S2n cannot be realized. By using an additional line, any odd
permutation on 2n points can be embedded into an even permutation on 2n+1 points and hence, can
be realized by an n+1 line reversible circuit.

We say that a set of gates is universal, with respect to reversible circuits, if any permutation
in the alternating group A2n may be realized by an n line reversible circuit comprising these gates.
Coppersmith and Grossman [CG75] proved that the Toffoli gate and the NOT gate, which they call
2-functions, form a universal set.

Related Results

Fredkin and Toffoli [FT82] derived similar results for conservative circuits. Conservative circuits
are reversible circuits that preserve the weight of the wires—the number of ones and zeros—across
every operation. In this case, the number of additional lines required to realized any n-adic Boolean
function is equal to the maximum difference between the weight of an input and the weight of its
corresponding output.

Both the results of Toffoli [Tof80] and, Fredkin and Toffoli [FT82] imply no bounds on the size
of a reversible circuit that realizes a particular function. However, taking a cue from the framework
of reversible Turing machines [Ben73, Ben89, LMT00], there is a trade-off between the number of
garbage lines and circuit size. Since creating garbage, without cleaning it up, creates unnecessary
entropy; a simple technique, first exhibited by Bennett [Ben73], can be used to clean up the garbage
lines, i.e., reversibly reseting them to zero, at a cost of some additional lines.

0

i

g

o

0

i

o

0
C C

−1

Figure 2.3: A method for resetting garbage lines.

Let C be a reversible circuit comprising a number of input/output lines, and additional garbage
lines. The construction to reversibly reset the garbage lines to zero is shown in Figure 2.3; here i
denotes the input, g denotes the garbage, o denotes the output of circuit C, and C−1 denotes circuit
C’s inverse. The gate sequence of C−1 is simply the reverse gate sequence of circuit C. The concept
of trading lines (space) for another resource reappears frequently in the literature on the complexity
of reversible computation; see section 2.5.

2.4 Random Reversible Circuits

Unlike growth processes on formulas, the multiple fan-out of gates within a general circuit makes
analysis of growth processes on circuits intractable. Although reversible circuits retain the interde-
pendence of general circuits, growth processes on reversible circuits are much more amenable to

2.5. Complexity of Reversible Computation 15

analysis.
Since all gates are reversible and each gate within a n line reversible circuit realizes a permuta-

tion, each gate realizes an element of the symmetric group and the empty circuit realizes the identity.
A growth process on reversible circuits starts with the empty circuit and grows a circuit by itera-
tively suffixing gates to the circuit; the gates are chosen according to a fixed distribution on a set
of allowable gates. Thus, a growth process on reversible circuits corresponds to a random walk on
the symmetric group. To determine whether a growth process has a limiting distribution, the shape
of the distribution, and to bound the convergence rate, we look to the theory of random walks on
groups and graphs.

A Markov chain is a discrete stochastic process that is defined by its set of states, and a stochas-
tic matrix that defines the probability of transitioning from one state to another [MR95]. An ergodic
Markov process is one where every state is reachable from every other state in the process; a ran-
dom walk on a group is an ergodic Markov process. The periodicity of a process is the greatest
common denominator of the lengths of all cycles of the corresponding graph induced by the states
and transitions of the process. A process is aperiodic if its periodicity is equal to 1. In our case the
induced graph is the Cayley graph and assuming that all gates are their own inverses, the periodicity
is either 2 or 1.

The underlying analysis of such processes can be traced to the theorems of Frobenius [Fro12]
and Perron [Per07], which are used to characterize the eigenvalues of the respective transition ma-
trices. Assuming the respective process is ergodic, the eigenvalues of the corresponding transition
matrix have magnitude at most 1; one of the eigenvalues is equal to 1, and the remaining eigenvalues
are of magnitude strictly less than 1 if and only if the process is aperiodic [MR95]. If the process
has a period of 2, then one other eigenvalue is equal to −1 and the remaining eigenvalues are of
magnitude strictly less than 1. A stationary or limiting distribution exists if and only if the process
is aperiodic. In Chapter 4, using these criteria, we derive the conditions under which a growth pro-
cess on reversible circuits has a limiting distribution and show that the distribution is uniform over
the entire set of realizable functions.

2.5 Complexity of Reversible Computation

The modern notion of computational complexity dates back to Shannon [Sha49], who formalized
the circuit complexity of a function, and to the work of Hartmanis and Stearns [HS65], who for-
malized the complexity of a function within the framework of Turing machines. The first notions
of complexity within the framework of reversible computation came from Lecerf [Lec63], who
proposed the notion of a reversible Turing machine, and Landauer [Lan61] who showed that the
energy consumption of a reversible computation could be arbitrarily reduced by reducing the speed
of the computation itself. However, it wasn’t until Bennett’s [Ben73] investigation of reversible
Turing machines and Toffoli’s [Tof80] investigation of reversible circuits that the basic framework
of reversible computational complexity was established.

Within the framework of reversible Turing machines the two measures generally considered
are space—the amount of tape that a Turing machine uses—and time—the number of steps that a

16 Chapter 2. Background

Turing machine performs. Although these measures are identical to the resources considered in the
general complexity framework, their behaviour is governed by an additional set constraint, namely,
reversibility.

Within the framework of reversible circuits, the main complexity measures include: circuit size,
circuit width, and circuit bandwidth. The size or length of the circuit is the number of steps a
reversible circuit performs during the computation. In almost all circuits, each gate depends on the
preceding gate in the sequence. Consequently, almost all the gates execute sequentially, and the
depth of the circuit—the longest path through the circuit—is comparable to its size; at most the size
is a factor of one circuit width greater than the depth. The width of a circuit is the total number
of lines used by the circuit, and is analogous to the total space used by a Turing machine with a
single tape that is used for input, computation, and output. Since this definition is unsatisfactory,
for the study of low-lying complexity classes, the bandwidth of the circuit is defined as the number
of read-write lines in the circuit. This is analogous to the space used by a Turing machine that has
a separate tape for the input. Additionally, we generally assume a nonuniform circuit model, i.e.,
the circuits correspond to Turing machines with some amount of advice, which is a function of the
input size.

Unlike in general circuit complexity, where circuit depth and circuit size are often orthogonal
measures, in the case of reversible circuits the two measures are for the most part synonymous—
the number of gates is comparable to the depth of the circuit. Thus, reversible circuits are most
closely related to narrow circuits, such as the ones inherent in the definition of the class SC i: the set
of problems computable by bounded fan-in polynomial size circuits of width O(log(n) i) [Coo79].
Reversible circuits can be simulated by general circuits of comparable size—a Toffoli gate can be
realized by an AND gate and an XOR gate. Hence, many of the results applicable to general circuits
are also applicable to reversible circuits.

Reversible computational complexity attempts to address the same questions as general com-
putational complexity, for example: determining the trade-offs, e.g., space-time, relating the com-
putational power of the model with respect to other computation models, and, determining the
complexity of a particular function or class of functions. We quickly review the related work done
in these endeavours.

2.5.1 Space-Time and Other Trade-offs

Space-time trade-offs have been a major theme within the framework of reversible Turing machine
complexity [Ben73, Ben89, LS90, LMT00]. These trade-offs were also further investigated within
the framework of pebbling games [LV96a, LV96b, LV97, LTV98] and information theory [Ben82,
Zur89, BGL+93].

Given an irreversible computation using time T and space S, Bennett [Ben73] showed how to
reversibly simulate it using time O(T) and space O(S + T) by having the Turing machine keep a
history of the computation, which was reversibly erased after the output was computed. One of the
major criticisms of this simulation is that the amount of space used is proportional to the length of
the computation. Unfortunately, since T could be exponentially larger than S, the space overhead is

2.5. Complexity of Reversible Computation 17

considerable. This overhead is mitigated by trading time for space. Instead of recording the history
of the entire computation, the computation is divided into segments and the history is kept only for
the current segment. At the end of each segment a checkpoint is saved. The history between the last
two checkpoints is reversibly erased and used for the history of the next segment. Depending on the
size of the segments, a computation may be performed reversibly using O(S log T) space and O(T 2)

time.
Bennett [Ben89] tightened these trade-offs to O(T 1+ε) time and O(S logT) space, by using a

hierarchy of segments and checkpoints to perform the simulation. The computation is divided into
segments of size m, where m≈ S and the number of segments is cn, where c > 1. The cn irreversible
segments of computation are simulated by (2c− 1)n reversible segments via a recursive computa-
tion; a partial simulation for c = 2 is illustrated in Figure 2.4. The figure depicts the schedule of
creation and deletion of the computation segments. At each stage a computation segment is either
reversibly created (listed in the ✔ row) or deleted (listed in the ✘ row); the time during which the ith
computation segment exists is represented by the bars in the ith row. Levine and Sherman [LS90]
noted that the constants in the time and space bounds depend exponentially on ε, which is propor-
tional to the inverse logarithm of c.

1211

✘

13

✔

 7
 6
 5
 4
 3
 2
 1

 2 1
 1

 3
 4 3

 1
 2 1

 2 4 1
 1

 3
 3

 1
 2 1

 6 5
 6 5

 5
 5 8

 7
 7

272625 3 4 5 6 7 8 9 2 1 10

 8

14 15 16 17 18 19 20 21 22 23 24

Reversible Segments

Ir
re

ve
rs

ib
le

 S
eg

m
en

ts

Figure 2.4: A partial representation of the improved simulation for c = 2.

Lange, McKenzie, and Tapp [LMT00] demonstrated that a space parsimonious reversible sim-
ulation of a deterministic Turing machine M is also possible. Using a variation of the technique
used by Sipser [Sip80], and by Cook and McKenzie [CM87], an Euler tour is performed on the
configuration graph of M, where the edges are induced by the transitions between configurations.
Since M is space bounded, the induced graph is finite and the space used by the simulation is only
an additive constant more than the space used by M. The key point is that the tour can be performed
reversibly; once a halting configuration is found, the tour stops. Since the number of configurations
is potentially exponential, the time of the computation may also become exponential.

The results of Bennett [Ben73] and Lange et al. [LMT00], correspond directly to the observa-
tions made about reversible circuits [Tof80, FT82]. Given a general k-ary circuit of depth d and
comprising n gates, we can construct an equivalent reversible circuit either by adding O(n) lines
(space), thus preserving the depth, or by adding one line and exponentially increasing the depth. A
comparable result to the one in [Ben89] is also possible.

18 Chapter 2. Background

2.5.2 Relationships with Other Models of Computation

In our investigation we commonly restrict the bandwidth of the reversible circuits to be either con-
stant, or polylogarithmic in the number of inputs. General circuits that are restricted to polylogarith-
mic width or constant width are conjectured to only be able to compute problems in the low-lying
complexity classes such as NC [Pip79] and SC [Coo79]. We say “conjectured” because we can’t
even prove that NC1 6= NP [Joh94, Page 136].

A related model of computation is that of branching programs [Lee59], in particular permutation
branching programs [Bar85]. These programs are very similar to reversible circuits with read-only
input lines and read-write additional lines on which all the computation is performed.

Complexity Classes NC, AC, and SC

The class NCi (Nick’s Class) is the class of problems computable by bounded fan-in circuits of depth
O(log(n)i) and polynomial size; the classes were named by Cook [Coo79] in honour of Nicholas
Pippenger [Pip79]. If we allow gates of unbounded fan-in, i.e., {¬,∧n,∨n} where ∧n = ∧n

i=1xi

and ∨n = ∨n
i=1xi for all positive n, the class ACi, also defined in [Ruz79, Coo85], is the class of

functions computable by unbounded fan-in circuits of depth O(log(n)i) and polynomial size. A
direct implication of the definitions is that ACi ⊆NCi+1. The class NC (AC) is defined as the union
of NCi (ACi) for all i [Joh94].

The class SCi (Steve’s Class) is the class of problems computable by bounded fan-in circuits
of width O(log(n)i) and polynomial size; the classes were named after Stephen Cook who first
studied them in [Coo79]. The class SC is the union of SCi over all i. The class L/poly, nonuniform
logarithmic space, is the class of problems solvable by a logarithmic space bounded automata with
a polynomial amount of advice; note that L/poly = SC1.

Branching Programs

A branching program (BP), introduced by Lee [Lee59], is a rooted directed acyclic graph compris-
ing interior nodes (out-degree 2) and two leaf nodes (out-degree 0). Each interior node is labeled
by a variable, xi, and its two outgoing arcs are labeled 0 and 1. The two leaf nodes are also labeled
0 and 1. The computation begins at the root and traverses the graph along the arcs; at each interior
node the computation follows the arc whose label is the value of the corresponding variable and
terminates at leaf node, outputting the leaf’s label.

The depth of a node is the length of the longest path from the root to the node and the depth
of a branching program is the maximum depth of the two leaf nodes. A branching program is
synchronized (leveled) if the difference in depth between any two adjacent nodes is exactly one, and
its width is the maximum number of nodes at the any depth. A width-w permutation branching
program (w-PBP) is a synchronized width-w branching program such that the labels of all arcs
incident on the same interior node differ. The class PBP is the class of problems that are solvable
by polynomial-size branching programs and the class Pw

BP is the class of problems solvable by
polynomial-size, width-w branching programs.

2.5. Complexity of Reversible Computation 19

There have been significant attempts to derive lower bounds for branching programs, partic-
ularly bounded-width branching programs [CFL83, BDFP83, Pud84, BS95] and polylogarithmic-
width branching programs [ABH+86]. Perhaps the best known result is that of Barrington [Bar89]
who showed that NC1 is equal to the class of functions computed by polynomial-size bounded-width
permutation branching programs.

A w-PBP B can be formulated as a sequence of instructions where the ith instruction is a tuple
(ji, fi,gi), where ji ∈ Zn identifies one of the n inputs {x1,x2, ...,xn}, and f and g are permutations
on Zw. If x ji is true, the ith instruction yields permutation f i, otherwise it yields gi. The output, B(x),
of program B on input x, is the product of permutations yielded by the instructions of B. Program B
accepts language L if there is a permutation σ 6= ε such that

B(x) =

{

σ x ∈ L
ε x 6∈ L

.

Using permutations from the alternating group A5, Barrington’s [Bar89] construction simulates an
AND operation using a commutator and inductively composes a polynomial size 5-PBP that realizes
any function in NC1. The other direction follows from the fact that the computing the product of
polynomial number of elements from a fixed finite group is in NC1.

Interestingly, 3-PBPs are not as powerful as 5-PBPs; computing the conjunction requires an
exponentially long program [Bar85]. Not surprisingly, there has been significant work done to
investigate the reasons for the disparity between 3-PBPs and 5-PBPs, and to generalize the lower
bounds for bounded-width branching programs and programs over groups [BT88, BST90, BS95].
Perhaps the most fascinating problem is determining if there exists a polynomial size 4-PBP that can
compute the conjunction over n variables. Barrington et al. [BST90] have proven that the answer is
negative if the instructions of the program are restricted to the alternating group A4, i.e., the program
is over the group A4. Intriguingly, the problem for general 4-PBPs remains open!

2.5.3 Related Work

For completeness, we mention several related frameworks in which reversible computation has been
studied. These include: reversible straight line programs [Cle90], space-time-reversibility trade-
offs using a pebbling model [LV96b, LTV98, BTV01], and information theory based analysis of
reversible computation [Ben82, Zur89, BGL+93, LV96a].

Reversible Programs

In his doctoral thesis, Cleve [Cle90] investigated reversible computation using a straight line pro-
gram model. Following the same formalism, a statement of the a program is denoted by

Ri← f (R j1 ,R j2 , ...,R jk),

where f is a function over some ring R that operates on k inputs from registers, and stores the
result in another register, not necessarily distinct from one of the arguments; a register may hold

20 Chapter 2. Background

any element of R . Each statement induces a map from R n to R n and is reversible if the map is a
bijection. The statements are usually drawn from a basis, such as

Ri ← c−Ri, c ∈ R

Ri ← (R j ·Rk)−Ri, j,k 6= i,

and is reversible if all its statements are reversible. Another concrete example is the basis

Ri ← 1⊕Ri

Ri ← (R j ∧Rk)⊕Ri, j,k 6= i,

over the field Z2, which computes the negation and the Toffoli gates respectively.

Reversible Pebbling

A technique for proving space-time trade-offs is pebbling [Pip80]. The pebble game consists of
a connected digraph G and a fixed number of pebbles. Play consists of placing pebbles on and
removing pebbles from the vertices of G using the following rules: a pebble may be removed from
a vertex at any time, and a pebble may be placed on a vertex only if all of its predecessors have a
pebble on them or if the vertex is a start vertex. The game is won only if every vertex is visited. The
pebbles represent registers (space) and the vertices represent steps in the computation. The total
number of moves—removing or placing a pebble (erasing or storing a register)—corresponds to the
length of the computation. The number of pebbles versus the number of moves corresponds to the
space-time trade-off.

Using the pebble game, Cook [Coo74], Ladner [Lad75], Hopcroft et al. [HPV75], and others
proved space-time trade-offs and completeness results. Additionally, the first space-time trade-
off, which was due to Paterson and Hewitt [PH70], could be cast in the framework of a pebbling
game [Pip80]. In 1996, Li and Vitányi [LV96b], and Li et al. [LTV98] used pebbling to show that
Bennett’s [Ben89] reversible simulation of an irreversible computation is, given some assumptions,
optimal.

The reversible pebble game uses a modified removal rule: a pebble cannot be removed from a
vertex unless all of the predecessors of the vertex have pebbles on them. In essence, information
cannot be erased, it may only be cancelled out. The simulation graph is a singly linked chain of
T vertices, with each vertex representing a step in the irreversible computation. The main result is
that if there are n pebbles and T > 2n, then there is no winning strategy; the computation cannot
be simulated. Additionally, if E erasures are allowed, then the computation can be performed with
n− log (E +1) pebbles where E is odd; for each missing pebble exponentially more erasures must
be performed. Buhrman et al. [BTV01] extended the model to accommodate the result of Lange et
al. [LMT00].

Reversibility and Information Theory

Bennett et al. [BGL+93] and, Li and Vitányi [LV96a], make the observation that the amount of
erasure performed during a computation is a measure of its irreversibility. The irreversibility cost

2.5. Complexity of Reversible Computation 21

E3(x,y) of reversibly computing x from y, defined by Zurek [Zur89] and discussed by Bennett et
al. [BGL+93], is the number of source and garbage bits required to reversibly perform the compu-
tation. They show that E3(x,y) = K(x|y)+K(y|x) up to an additive logarithmic term, where K(x|y)
is Kolmogorov complexity of x given y [LV97]. This measure highlights a striking relationship
between the information content of strings and the resources required to compute them reversibly.

Chapter 3

Growth Processes on Formulas

In this chapter we investigate growth processes on formulas. We classify growth processes primarily
by the type of connective used by the process. For example, one class is the class of growth processes
that use linear connectives. The remaining parameters, such as the initial distribution, the number
of variables, and the specific nature of the connective, are considered simply as parameters of the
class of growth processes. We characterize several classes of growth processes, including growth
processes that use linear connectives, self-dual connectives, and monotone connectives. We derive
criteria that determine if a limiting distribution exists, the shape of the limiting distribution, and
the rate at which the limiting distribution is approached. We first cover the basic definitions before
proceeding to our results.

3.1 Definitions

Let Bn denote the Boolean cube of size n and let the weight of a Boolean vector x ∈ Bn, denoted |x|,
be the number of 1 bits in x. For any two Boolean vectors x,y ∈ Bn, we say that x ≤ y if xi ≤ yi, for
all i = 1 . . .n; we say that x < y if x≤ y and xi < yi for at least one i ∈ [1,n].

A Boolean function is said to be linear if it can be represented as the sum of binary variables
and constants modulo 2. A Boolean function is said to be self-dual if it satisfies the equation
f (x1, . . .xn) = f (x̄1, . . . , x̄n). A Boolean function f is said to be monotone if for all assignments x
and y, x≤ y implies that f (x)≤ f (y). A Boolean function is balanced if exactly half of the entries in
its truth table are ones, and the rest are zeros. Let Fn denote the family of n-adic Boolean functions,
let Mn denote the family of n-adic monotone Boolean functions, and let Ln denote the family of
n-adic linear functions.

Let k be a positive integer and α be a k-adic Boolean function, which we call the connective. A
growth process is denoted by a pair (µ,α), where µ is a distribution on Fn and α is a connective.
Distribution µ is called the initial distribution and is uniformly distributed on a subset of the pro-
jections, their negations, and constants. This subset contains the n projections {x1, . . . ,xn}; it may
contain their negations {x̄1, . . . , x̄n}, and it may contain neither, one, or both of the constants {0,1}.

A growth process induces a sequence of probability distributions πi on Fn for each i ≥ 0 in
the following way. We take π0 = µ and for i ≥ 1, πi(f) is the probability that α ◦ (g̃1, . . . , g̃k) =

23

24 Chapter 3. Growth Processes on Formulas

f , where g̃1, . . . , g̃k are independent random variables with distribution πi−1 and α ◦ (g1, . . . ,gk)

is the composition of α with the Boolean functions g1, . . . ,gk, which for conciseness is denoted
α(g1, . . . ,gk). The ith iteration of the growth process induces the probability distribution π i on Fn.

The support of a probability distribution π, denoted supp(π), is the set { f : π(f) > 0} and the
support of a growth process is the set of all functions f ∈ Fn for which πi(f) > 0 for some i > 0:
∪isupp(πi).

If πi tends to π, as i approaches infinity, distribution π is called the limiting distribution of
the growth process. We say that a growth process converges to a limiting distribution if a limiting
distribution π exists such that πi tends to π as i approaches infinity. A process converges rapidly
if for i > Cα log(n), max f |π(f)− πi(f)| < 2−n, where Cα is a constant that depends only on α.
(Unless otherwise stated, the base of the logarithm is assumed to be 2.)

There are also cases—which we shall see later—in which π2i and π2i+1 tend to distinct alter-
nating limiting distributions. When a limiting distribution exists, we can have π(f) > 0 only for
f in the support of the growth process. As Valiant’s [Val84] result indicates, however, there may
be functions in the support for which πi(f) tends to zero as i approaches infinity, so that π(f) = 0.
The asymptotic support of a growth process with a limiting distribution π is the set supp(π). In-
formally, the “result of a growth process” refers to the existence, the identity, and the convergence
to, the limiting or alternating distributions.

If α is a k-adic connective, the characteristic polynomial of α is

Aα(p) =
n

∑
i=0

βi

(

n
i

)

pi(1− p)n−i

where βi is the fraction of assignments of weight i for which α is true:

βi =
|{x ∈ Bk : |x|= i, α(x) = 1}|

(n
i

) .

If the arguments of α are assigned independent random binary variables, x̃ = x̃1, . . . , x̃k, that are 1
with probability p and 0 with probability 1− p, then Pr[α(x̃) = 1] = Aα(p). The ith composition
of Aα(p) with itself is denoted by Ai

α(p) = Aα(Aα(. . .Aα(p) . . .)).
The Fourier transform ∆i of a probability distribution πi is defined as

∆i(w) = ∑
f∈Fn

(−1)〈w, f 〉πi(f). (3.1)

For convenience, the inner product 〈w, f 〉 = ∑i wi fi is defined to be over the integers, rather than
over Z2, and unless otherwise noted, Boolean n-adic functions are represented by their truth tables,
namely, as Boolean vectors from B2n . Since the probabilities must sum to 1, |∆i(w)| ≤ 1, for all
w ∈ Fn, ∆i(0) = 1, and the inverse Fourier transform is

πi(f) =
1

22n ∑
w∈Fn

(−1)〈 f ,w〉∆i(w). (3.2)

The Fourier transform plays a role in many of our results, but needs to be adapted in various
ways to suit different cases. When dealing with linear functions, for example, we represent the

3.2. Growth Processes that Use Linear Connectives 25

functions not by their truth-tables, but rather by their coefficients as multivariate polynomials over
Z2. However, unless otherwise noted, the standard representation is assumed.

3.2 Growth Processes that Use Linear Connectives

A function f is linear if it is of the form f (x1, . . . ,xn) = c0⊕ c1x1⊕ ·· ·⊕ cnxn for some constants
c0,c1, . . . ,cn ∈Z2. We may assume without loss of generality that α depends on all its arguments, so
that α(y1, . . . ,yk) = c⊕ y1⊕·· ·⊕ yk, where k ≥ 2. The result of the growth process depends on the
support of of the initial distribution µ, the parity of k, and the constant term c. This claim is proven
in Theorem 3.2, which considers supports of µ that do not contain negations of projections, and in
Theorem 3.3, which considers supports of µ that do contain negations of projections. For all cases
where a limiting distribution exists, Theorem 3.4 bounds the convergence rate of π i to the limiting
distribution. Thus, we completely characterize growth processes that use linear connectives.

To begin, we derive a recurrence for the Fourier coefficients of the respective probability distri-
butions πi, from which we derive the limiting distribution. Since compositions of linear functions
are themselves linear, we represent the linear functions by the vector (c0,c1, . . . ,cn) of their coeffi-
cients, and the class of linear functions Ln is represented by the Boolean cube Bn+1. Finally, let w1

denote the constant function 1 (w1 = 100 . . .0), whereas 1 = 11 . . .1.

Proposition 3.1 Let (µ,α) be a growth process, where α is a k-adic linear connective and let w ∈
Ln. The Fourier coefficients of the probability distribution πi of the growth process are described by
the recurrence relation

∆i+1(w) = (−1)c〈w1,w〉∆i(w)k,

where c is the constant term of the connective.

Proof:

∆i+1(w) = ∑
f∈Ln

πi+1(f)(−1)〈 f ,w〉 = ∑
f∈Ln

∑
g∈Lk

n
α(g)= f

k

∏
j=1

πi(g j)(−1)〈 f ,w〉

= ∑
g∈Lk

n

k

∏
j=1

πi(g j)(−1)〈α(g),w〉 = ∑
g∈Lk

n

k

∏
j=1

πi(g j)(−1)〈cw1⊕
Lk

j=1 g j ,w〉

= ∑
g∈Lk

n

k

∏
j=1

πi(g j)(−1)〈cw1,w〉⊕
Lk

j=1 〈g j ,w〉 = (−1)〈cw1,w〉 ∑
g∈Lk

n

k

∏
j=1

πi(g j)(−1)〈g j ,w〉

= (−1)〈cw1,w〉∆i(w)k.

In the last step of the derivation, the sum is expanded into a telescopic sum comprising k nested
sums that collapse into the final result.

Using Proposition 3.1, the following theorems classify the growth processes on linear connec-
tives.

26 Chapter 3. Growth Processes on Formulas

Theorem 3.2 Let (µ,α) be a growth process, where α(y) = c⊕y1⊕·· ·⊕yk, k > 1, and the support
of µ does not contain negations of the projections.

1. If {0,1} ∩ supp(µ) 6= {0,1}, k is odd and c = 1, then the growth process has alternating
limiting distributions, each of which is uniform over one half of the support of the growth
process (which consists of all linear functions for which

Ln
j=1 c j = 1).

2. In all other cases, the limiting distribution is uniform over the support of the growth process
(which depends on k, c, and the presence of constants in the support).

Proof: Two facts are key to this theorem: first, that |∆i(w)| ≤ 1, and second, that if |∆i(w)|< 1, then
limi→∞ ∆i(w) = 0. Only the nonzero (magnitude 1) coefficients contribute to limiting distribution
(equation 3.2); fortunately, these are determined solely by the support of the initial distribution.
Depending on which constants are part of the support, there are either one, two, or four coefficients
of magnitude 1:

{0,1}∩ supp(µ) = {0,1} ⇒ ∆0(0) = 1,

{0,1}∩ supp(µ) = {0} ⇒ ∆0(0) = ∆0(w1) = 1,

{0,1}∩ supp(µ) = {1} ⇒ ∆0(0) = 1, ∆0(1) =−1,

{0,1}∩ supp(µ) = /0 ⇒ ∆0(0) = ∆0(w1) = 1, ∆0(1) = ∆0(w1⊕1) =−1.

If k is odd and c = 1, the recurrence from Proposition 3.1 implies that ∆i+1(w1) = −∆i(w1)

and ∆i+1(1) =−∆i(1). Hence, if supp(µ)∩{0,1} 6= {0,1}, the resulting distribution is alternating.
In the case where one of the constants is missing from the support, only two coefficients have
magnitude 1, and thus, the alternating distributions are each uniform over half of Ln. Otherwise, if
both constants are missing, the alternating distributions are each uniform over one quarter of Ln.

If c = 0, k is even, or {0,1}∩ supp(µ) = {0,1}, the limiting distribution exists because the sign
of the magnitude 1 coefficients does not alternate. We can read off the limiting distribution from the
Fourier coefficients. If both constants are in the support, then the limiting distribution is uniform
over Ln. If only one of the constants is present, then the distribution is uniform over half of Ln, and
if neither is present, then the distribution will be uniform over a quarter of Ln.

If the support of µ contains negations of projections, then using the same proof technique yields
the following theorem.

Theorem 3.3 Let (µ,α) be a growth process, where α(y) = c⊕y1⊕·· ·⊕yk, k > 1, and the support
of µ contains negations of the projections.

1. If {0,1}∩ supp(µ) = /0 and k is odd then the limiting distribution is uniform over all linear
functions of odd number of variables.

2. If {0,1}∩ supp(µ) = /0 and k is even then the limiting distribution is uniform over all linear
functions of even number of variables.

3. Otherwise, the limiting distribution is uniform over all of Ln.

3.3. Growth Processes that Use Self-Dual Connectives 27

Proof: If {0,1} ∩ supp(µ) 6= /0, then there is only one coefficient of magnitude 1, ∆0(0) = 1,
implying the last case.

Otherwise, there is one other magnitude 1 coefficient, ∆0(1⊕w1) = −1. If k is odd, then
∆i+1(1⊕w1) = ∆i(1⊕w1)

k =−1, implying the first case of the theorem. If k is even, then ∆i+1(1⊕
w1) = ∆i(1⊕w1)

k = 1, implying the second case.

Note, that if projection negations are present, no alternating distribution can occur. To show that
the convergence of πi to π is rapid we use the inverse Fourier transform.

Theorem 3.4 Let (µ,α) be a growth process, where α is a k-adic linear connective, k > 1, and
the support of µ contains the n projections. If the growth process has a limiting distribution π and
i > 2log(n)

log(k) , then for any linear function f , |π(f)−πi(f)| < 2−n.

Proof: Let D = {w : |∆0(w)|< 1}. Then πi(f) may be written as:

πi(f) = 2−n−1 ∑
w∈Bn+1

(−1)〈w, f 〉∆i(w)

= 2−n−1 ∑
w6∈D

(−1)〈w, f 〉∆i(w)+2−n−1 ∑
w∈D

(−1)〈w, f 〉∆i(w)

= π(f)+2−n−1 ∑
w∈D

(−1)〈w, f 〉∆i(w).

Thus, for any linear function f ,

|π(f)−πi(f)| = |2−n−1 ∑
w∈D

(−1)〈w, f 〉∆i(f)| ≤ max
w∈D
|∆0(w)|ki ≤ (1−n−1)ki

.

Solving inequality (1−n−1)ki
< 2−n, in terms of i, yields: i > 2log(n)

log(k) .

3.3 Growth Processes that Use Self-Dual Connectives

Savický [Sav90] showed that if the connective is balanced (that is, if it assumes the value 1 for just
one-half of the combinations of argument values) and nonlinear, and the distribution µ is uniform
over all the projections, their negations, and constants, then the limiting distribution will be uniform
over all of Fn. If we remove the constants from the support of µ and assume the connective α is
self-dual, then the support of the growth process is the set of all self-dual functions. In this case the
limiting distribution of the growth process is uniform over this support. Unfortunately, bounding
the rate of convergence of these growth processes appears to be too difficult.1

Theorem 3.5 If the connective is nonlinear and self-dual, and the support of µ comprises the pro-
jections and their negations, then the limiting distribution will be uniform over the family of self-dual
n-adic functions.

1Savický [Sav95a] did derive bounds for the growth process discussed in [Sav90] (see Theorem 3.27),
these bounds are not applicable because the Fourier coefficients of weight 2 functions are not guaranteed
have magnitude strictly less than 1.

28 Chapter 3. Growth Processes on Formulas

Proof: Observe that there is a bijection between the set of all functions on n variables and the set
of self-dual functions on n+1 variables, for example, the map

f (x1,x2, . . . ,xn) 7→ f (x1,x2, . . . ,xn)xn+1∨ f (x̄0, x̄1, . . . , x̄n)x̄n+1.

The result follows.

3.4 Growth Processes that use Monotone Connectives

We now focus on growth processes that use monotone connectives. For the rest of this section
we assume that α is monotone and the support of µ contains only the projections and possibly
constants. We first investigate growth processes that use unbalanced connectives and show that the
result of such growth processes is a limiting distribution that is concentrated on a threshold function
(Theorem 3.13). We show that except in one case (Theorem 3.17), the convergence to the limiting
distribution is rapid (Theorem 3.16 and Theorem 3.19). We then investigate growth processes on
balanced connectives and show that if the number of arguments, n, is even, then the distribution is
not concentrated on a threshold function (Theorem 3.26); in Theorem 3.34, we also bound the rate
of convergence.

3.4.1 Growth Processes that Use Unbalanced Monotone Connectives

Growth processes that use unbalanced monotone connectives concentrate probability on a threshold
function; the type of threshold function depends on the connective and the support. A threshold
function Tk(x1, . . . ,xn) assumes the value 1 if and only if at least k of its n arguments assume the
value 1. We consider constant functions Tn+1 = 0 and T0 = 1 to be special cases of threshold
functions. The following sequence of propositions and lemmas culminate in a formal statement of
this claim, Theorem 3.13. There are two cases to consider: first, when the characteristic polynomial
of α, Aα(p), has no fixed-point on the open interval (0,1), and second, when Aα(p) has a fixed-point
on (0,1).

Proposition 3.6 Let (µ,α) be a growth process, where α is a monotone connective whose charac-
teristic polynomial, A(p), has no fixed-point on the interval (0,1). Then the limiting distribution
will be concentrated on a threshold function.

Proof: Since A(p) has no fixed-point on (0,1), either Aα(p) < p throughout (0,1), or Aα(p) > p
throughout (0,1). If Aα(p) > p throughout (0,1), then by the standard amplification argument—
see Section 2.2.1 and Theorem 3.16—the limiting distribution is concentrated on T1 (disjunction of
all variables), or T0 if 1 is in the support of µ. Similarly, if Aα(p) < p throughout (0,1), then the
limiting distribution is concentrated on Tn (conjunction of all variables), or Tn+1 if 0 is in the support
of µ.

Furthermore, we can easily describe connectives whose characteristic polynomials have no
fixed-points on (0,1).

3.4. Growth Processes that use Monotone Connectives 29

Lemma 3.7 If Aα(p) 6= p on the interval (0,1), then α(x) = xi∨α′(x) (when Aα(p) > p), or α(x) =

xi∧α′(x) (when Aα(p) < p).

Proof: If α(x) 6= xi∨α′(x), by Lemma 3.9, Aα(p) = O(p2) which implies that there exists a positive
constant ε0 such that for all 0 < ε < ε0, Aα(ε) < ε. Similarly, if α(x) 6= xi∧α′(x), then by duality,
1−Aα(1− p) = O(p2), which means that Aα(1− ε) > 1− ε for all 0 < ε < ε1 for some ε1 > 0.
Since Aα(p) is continuous, there must be a fixed-point in (0,1), which is a contradiction.

In the second case, where Aα(p) has a fixed-point in (0,1), Moore and Shannon [MS56] have
shown that this fixed-point is unique. Not surprisingly, the limiting distribution depends on the
fixed-point. Thus, we first derive two facts about the fixed-point of the characteristic polynomial.

Lemma 3.8 The characteristic polynomial Aα(p) has a fixed-point of 1
2 if and only if the connective

α is balanced.

Proof: By definition ∑n
i=0 βi

(n
i

)

is the number of assignments for which α is true. If Aα(1
2) = 1

2 ,
then Aα(1

2) = ∑n
i=0 βi

(n
i

)

(1
2)i(1

2)n−i = 1
2n ∑n

i=0 βi
(n

i

)

= 1
2 . Hence, ∑n

i=0 βi
(n

i

)

= 2n−1 which means that
α is balanced. Conversely, if α is balanced, then Aα(1

2) = 1
2 .

Lemma 3.9 If α is a monotone connective that is not of the form α(x) = xi ∨α′(x), then on the
interval (0,1), Aα(p) < (

(k
2

)

+1)p2.

Proof: Since α is not of the form α(x) = xi ∨α′(x), the first two coefficients of Aα(p) are β0 =

β1 = 0. Thus, on the interval (0,1),

Aα(p) = β2

(

k
2

)

p2 +B(p)p3 ≤
(

k
2

)

p2 +B(p)p2 < (

(

k
2

)

+1)p2

since B(p) < 1 on the interval (0,1).

Fact 3.10 If α is a nonconstant monotone connective, then:

1. Aα(p)≥ p on the interval (0,1) if and only if for some i, α(x) = xi∨α′(x) if and only if β1 > 0.
2. β0 = 0, βk = 1 and βk−1 = a

k , for some a ∈ [0,k].
3. Aα(s) = s, s ∈ (0,1), Aα(p) < p, p ∈ (0,s) and Aα(p) > p, p ∈ (s,1) if and only if A′α(0) =

A′α(1) = 0 if and only if β1 = 0 and βk−1 = 1.

Proof: First, the coefficient β1 is the fraction of singleton assignments on which α is 1. Since α is
also monotone, β1 > 0 if and only if α(x) = xi∨α′(x) for at some xi; the first part of the equivalence
follows from Lemma 3.7.

Second, since α is nonconstant, the fractions of weight 0 and weight k assignments for which it
is 1, is exactly 0 and 1, respectively; there are also exactly k assignments of weight k−1.

Third, if Aα has a fixed-point s on the interval (0,1), then by part one, β1 = 0. Also, βk−1 = 1,
otherwise α is 0 on at least one assignment of weight k−1 and can be written as α(x) = x i∧α′(x).
Consequently, by Lemma 3.7, Aα does not have a fixed-point on the interval (0,1), which is a

30 Chapter 3. Growth Processes on Formulas

contradiction. If β1 = 0 and βk−1 = 1, then α takes neither of the two forms of Lemma 3.7 and
hence, must have a fixed-point on the interval (0,1). Finally, since the derivative of Aα is

A′α(p) = β1k(1− p)k−1 + kpk−1(1−βk−1)+ p(1− p)B(p),

where B(p) is some polynomial of p. Therefore, A′α(0) = A′α(1) = 0 if and only if β1 = 0 and
βk−1 = 1.

Lemma 3.11 If Aα(p) is a characteristic polynomial of monotone connective α, such that A(p) is
not identically p, then any fixed-point of Aα(p) on (0,1) is either irrational or 1

2 .

Proof: By contradiction; without loss of generality assume that the fixed-point p0 = r
s < 1

2 and
gcd (r,s) = 1; if p0 > 1

2 we consider Aα(1− p), whose fixed-point is 1− p0 < 1
2 . Hence,

Aα

(r
s

)

=
k

∑
j=0

β j

(

k
j

)

(r
s

) j
(

s− r
s

)k− j

=
r
s
.

Multiplying both sides by sk, noting from Fact 3.10 that βk = βk−1 = 1, and evaluating the result
modulo (s− r)2 yields

rsk−1 ≡
k

∑
j=0

β j

(

k
j

)

r j(s− r)k− j ≡ rk + krk−1(s− r)+(s− r)2
k−2

∑
j=0

β j

(

k
j

)

r j(s− r)k− j−2

≡ rk + krk−1(s− r) mod (s− r)2.

Evaluating the left side modulo (s− r)2 yields

rsk−1 ≡ r(r +(s− r))k−1 ≡ r
k−1

∑
i=0

(

k−1
i

)

ri(s− r)k−1−i

≡ rrk−1 + r(k−1)rk−2(s− r)+ r(s− r)2
k−3

∑
j=0

(

k−1
j

)

r j(s− r)k−3− j

≡ rk +(k−1)rk−1(s− r) mod (s− r)2.

Therefore,
rk−1(s− r)≡ 0 mod (s− r)2.

Since gcd (r,s) = gcd (r,(s− r)2) = 1, rk−1 6≡ 0 mod (s− r)2; this is a contradiction.

Theorem 3.12 Let (µ,α) be a growth process, where α is a monotone unbalanced connective whose
characteristic polynomial has a fixed-point t ∈ (0,1), and the support of µ contains only the pro-
jections. The limiting distribution of the growth process is concentrated on the threshold function
Tdtne.

Proof: Since α is unbalanced and has a fixed-point on (0,1), by Lemma 3.8, the fixed-point is not
1
2 . Hence, by Lemma 3.11, the fixed-point is irrational. Since the fraction of variables set to true in
any assignment is by definition rational, the fraction will always be strictly greater or strictly less
than the fixed-point t. Hence, by the standard amplification argument, the limiting distribution will
be concentrated on the threshold function Tdtne.

3.4. Growth Processes that use Monotone Connectives 31

Theorem 3.12 can easily be modified to cover the cases in which one or both constants are in
the support of µ. Combining proposition 3.6 and theorem 3.12 proves the initial claim:

Theorem 3.13 If (µ,α) is a growth process, where α is a monotone unbalanced connective and
the support of µ does not contain the negations of projections, then the limiting distribution will be
concentrated on a threshold function.

Convergence Bounds

Except in one case, all these growth processes converge rapidly to their limiting distribution. In the
exceptional case the convergence requires Cαnk iterations where k is the arity of the connective α;
we provide specific criteria that determine whether a process will converge rapidly or not. There are
two main cases: either Aα(p) has a fixed-point, or not. We first derive bounds for the latter case, and
then for the former. Unless explicitly stated, we assume that constants are not in supp(µ), however,
the following analysis changes little if constants are in supp(µ).

When Aα(p) has no Fixed-point on (0,1)

In this case, either Aα(p) > p for p ∈ (0,1), or Aα(p) < p, for p ∈ (0,1). Since the two cases are
symmetric, the same bounds apply to both. Hence, without loss of generality, assume that Aα(p) < p
on the interval (0,1).

Lemma 3.14 If α is a monotone connective such that Aα(p) < p on the interval (0,1) and, Aα(p)

has degree k > 2 and βk−1 ≤ k−2
k , then A′α(1− ε) > 35

24 for all positive ε < εk = 1
k2k+1 .

Proof: Begin by differentiating Aα(p):

A′α(p) =
d

d p

(

k

∑
i=0

βi

(

k
i

)

pi(1− p)k−i

)

=
d

d p

(

pk +βk−1kpk−1(1− p)+
k−2

∑
i=0

βi

(

k
i

)

pi(1− p)k−i

)

= kpk−1 +βk−1kpk−2(k− kp−1)−
k−2

∑
i=0

βi

(

k
i

)

pi−1(1− p)k−i−1(pk− i),

32 Chapter 3. Growth Processes on Formulas

and evaluate at 1− ε:

A′α(1− ε) = k(1− ε)k−2(1− ε+βk−1kε−βk−1)−
k−2

∑
i=0

βi

(

k
i

)

(1− ε)i−1(ε)k−i−1(k− i− kε)

> k(1− ε)k−2(1− ε+βk−1kε−βk−1)−
k−2

∑
i=0

βi

(

k
i

)

(1− ε)i−1(ε)k−i−1k

> k(1− ε)k−2(1− ε+βk−1kε−βk−1)−
k−2

∑
i=0

βi

(

k
i

)

(ε)k−i−1k

= k(1− ε)k−2(1− ε+βk−1kε−βk−1)− kε
k−2

∑
i=0

βi

(

k
i

)

(ε)k−i−2

> k(1− ε)k−2(1− ε+βk−1kε−βk−1)− kε
k

∑
i=0

(

k
i

)

> k(1− ε)k−2(1− ε+
k−2

k
(kε−1))− kε2k

= (1− ε)k−2(2+ kε(k−3))− kε2k.

For k > 2 and ε < εk,

A′α(1− ε) = (1− ε)k−2(2+ kε(k−3))− kε2k

> (1− ε)k−2(2+ kε(k−3))− 1
2

> (1− 1
48

)2− 1
2

=
35
24

.

Lemma 3.15 If α is a monotone connective such that Aα(p) < p on the interval (0,1) and, Aα(p)

has degree k > 2 and βk−1 = k−1
k , then, for all positive ε < k−1,

1+ εk < A′α(1− ε)≤ (1− ε)k−2(k(k−2)ε+1).

Proof: For the lower bound, observe that since

A′α(p) = kpk−1−
k−1

∑
i=0

βi

(

k
i

)

pi−1(1− p)k−i−1(pk− i),

for all p > 1− k−1, minimizing A′α(p) maximizes the coefficients βi, for all i = 2 . . .k− 2. Since

the connective is of the form α(x) = x j ∧α′(x), βi ≤
(k−1

i

)(k
i

)−1
= k−i

k . Hence,

A′α(p)≥ kpk−1−
k−1

∑
i=0

(

k−1
i

)

pi−1(1− p)k−i−1(pk− i) = 1+(1− p)k−2(kp−1).

3.4. Growth Processes that use Monotone Connectives 33

Thus, for all ε < k−1,

A′α(1− ε)≥ 1+ εk−2(k−1− kε) > 1+ εk−2 > 1+ εk.

For the upper bound we minimize all βi for i = 2 . . .k−2, i.e., βi = 0. Thus, for all p > 1− k−1,

A′α(p)≤ kpk−1− (k−1)pk−2(pk− k +1) = pk−2(k(k−2)(1− p)+1),

implying that for all ε < k−1,

A′α(1− ε)≤ (1− ε)k−2(k(k−2)ε+1).

Theorem 3.16 Let (µ,α) be a growth process where α is a k-adic monotone connective such that
Aα(p) < p on the interval (0,1), k > 2 and βk−1 ≤ k−2

k . There exists a constant cα, such that for all
n > 0, if i≥ 3log(n)+ cα, then for all f , |πi(f)−π(f)|< 2−n.

Proof: Let f̃i be a random variable with the distribution πi. Using an argument that is similar to
Valiant’s [Val84], we claim that if i≥ 3log(n)+ cα, then for |x| = n, P[f̃i(x) = 0] = 0, and for all x
such that |x| < n, P[f̃i(x) = 1] < 2−2n. The former follows from the monotonicity of α; regardless
of the number of iterations, a false negative will never occur.

In the latter case, assuming that all variables are independent, if |x|< n, P[f̃0(x) = 1] = |x|/n ≤
1−n−1. For i > 0, P[f̃i(x) = 1] = Ai

α(p), where Ai
α denotes the ith composition of Aα(p) with itself.

Expanding Aα(p) around 1,

Aα(p) = Aα(1)+A′α(1)(p−1)+O((p−1)2),

yields:
Aα(1− ε) = 1− εA′α(1)+O(ε2).

From Lemma 3.14, let γ = 35/24 and let εk = 1
k2k+1 . There exists an ε0 < εk such that, for all ε < ε0,

Aα(1− ε) < 1− εγ.

Since P[f̃0(x) = 1]≤ 1−n−1, for i≥ 2log(n)+2log(ε0) > (log(n)+ log(ε0))/ log(35/24),

Ai
α(1− ε) < 1− εγi < 1− ε0.

An additional constant number of iterations, say dα, yields

Adα
α (1− ε0) < c.

By Lemma 3.9, Aα(p) < k2 p2, thus we fix c < 1
2k2 and let j = log(n)+1. Hence,

A j
α(c) < (k2c)2 j

< 2−2 j
= 2−2n.

Therefore, for i≥ 3log(n)+2log(ε0)+dα +1 and all x such that |x| < n, P[f̃i(x) = 1] < 2−2n,
implying that |πi(f)−π(f)|< 2−n.

34 Chapter 3. Growth Processes on Formulas

Unfortunately, if βk−1 = k−1
k , convergence takes time polynomial in n, e.g., if α(x) = ∨k

i=2(x1∧
xi), convergence takes on the order of nk time!

Theorem 3.17 Let (µ,α) be a growth process where α is a k-adic monotone connective such that
Aα(p) < p on the interval (0,1), k > 2 and βk−1 = k−1

k . For any ε0 < 0, if Ai
α(1− n−1) < 1− ε0,

then for sufficiently large n,
i > p(n)(log(n)+ log(ε0)),

where (k−1)(k−2)n ≤ p(n)≤ nk−2

k−1 .

Proof: Let f̃i be a random variable with the distribution πi. If |x| = n− 1 then P[f̃0(x) = 1] =

1−n−1. Furthermore, by Lemma 3.15, for sufficiently large n,

A′α(1−n−1) < (1−n−1)k−2(k(k−2)n−1 +1).

Since γ < A′α(1−n−1), therefore

log(γ) < (k−2) log(1−n−1)+ log(k(k−2)n−1 +1),

implying that

1
log(γ)

>
(

(k−2) log(1−n−1)+ log(k(k−2)n−1 +1)
)−1

>
n

k2−3k +2
+O(1).

Thus, if Ai
α(1−n−1) < 1− ε0, then for sufficiently large n, Ai

α(1−n−1) < ε0 implies that

i > (k−1)(k−2)2n(log(n)+ log(ε0)).

In fact, this is the best case. If α(x) = ∨k
i=2(x1 ∧ xi), then Aα(p) = p− p(1− p)k−1. By

Lemma 3.15, γ < 1+n2−k(k−1− kn−1), implying that log(γ) < log(1+n2−k(k−1− kn−1)), and

1
log(γ)

>
(

log(1+n2−k(k−1− kn−1))
)−1

>
nk−2

k−1
.

Thus, if Ai
α(1−n−1) < 1− ε0, then for sufficiently large n, i > nk−2

k−1 (log(n)+ log(ε0)).

Consequently, a growth process that uses a connective whose characteristic polynomial has no
fixed-point can be classified as either rapidly converging or slowly converging, with the value of the
second last coefficient, βk−1, determining rate of convergence!

When Aα(p) has a Fixed-point on (0,1)

When the characteristic polynomial Aα(p) does have a fixed-point on the interval (0,1), a similar
analysis is used.

Lemma 3.18 Let Aα(p) be the characteristic polynomial of any k-adic monotone connective α. If
Aα(p) has a fixed-point s ∈ (0,1), then A′α(s)≥ 1+ k−2

2k−2 .

3.4. Growth Processes that use Monotone Connectives 35

Proof: Consider a projection connective, say χ(x) = xb, b∈ [1,n]. The corresponding characteristic
polynomial is

Aχ(p) = p = pk + p(1− p)k−1 +
k−1

∑
i=2

(

k−1
i

)

pi(1− p)k−i,

whose fixed-point is everywhere and whose slope is 1. Note that β1 = 1 and βk−1 = k−1
k . Let

η(x) =

(

k̂

i=2

xi

)

∨
(

k
_

i=2

(x1∧ xi)

)

,

be a k-adic monotone connective. The corresponding characteristic polynomial

Aη(p) = p− p(1− p)k−1 + pk−1(1− p)

= Aχ(p)− p(1− p)k−1 + pk−1(1− p)

= Aχ(p)+(Aη−Aχ(p))

has a fixed-point at 1
2 . Not surprisingly, this is almost Aχ(p) except that β1 = 0 and βk−1 = 1, i.e.,

the difference is just two terms. We claim that A′η(1
2)≤ A′α(s).

The claim is proved by contradiction. Assume that A′η(1
2) is not the minimum slope at a

fixed-point, then there exists a k-adic monotone connective ζ, whose degree k characteristic poly-
nomial Aζ(p) has a fixed-point t ∈ (0,1), such that A′ζ(t) < A′η(1

2) and A′ζ(t) is the minimum
slope. Since β1 = 0 and βk−1 = 1 must hold for Aζ, we write Aζ(p) in a manner similar to Aη(p):
Aζ(p) = Aη(p)+(Aζ(p)−Aη(p)). Specifically we are interested in the differences between Aζ(p)

and Aη(p). In fact,

Aζ(p) = Aη(p)+
[

pi0(1− p)k−i0 + pi1(1− p)k−i1 . . .
]

−
[

p j0(1− p)k− j0 + p j1(1− p)k− j1 . . .
]

,

where il ≤ il+1 ≤ k−2 and jl ≥ jl+1 ≥ 2.
Since Aζ(p) 6= Aη(p), and Aζ(p) has a fixed-point on (0,1), either i0 or j0 must exist. Without

loss of generality assume that i0 exists and consider the characteristic polynomial Aδ(p) = Aζ(p)−
pi0(1− p)k−i0 . Since the connective corresponding to Aζ(p) is monotone, kt < i0. which implies
that the derivative pi0−1(1− p)k−i0−1(i0− kp) of the term pi0(1− p)k−i0 is positive for all t ≤ i0

k .
Since the fixed-point u of Aδ(p) is bounded by i0+1

k , A′δ(u) < A′ζ(t), implying that A′ζ(t) is not the
minimum slope, which is a contradiction! In fact, iteratively subtracting the terms p il (1− p)k−il and
adding the terms p jl (1− p)k− jl , reduces Aζ(p) to Aη(p)!.

Noting that A′η(1
2) = 1+ k−2

2k−2 completes the proof.

Theorem 3.19 Let (µ,α) be a growth process where α is a k-adic monotone connective such that
Aα(s) = s ∈ (0,1). There exists a constant cα, such that for all n > 0, if

i≥ k2k log(n)+ cα,

then for all functions f , |πi(f)−π(f)|< 2−n.

36 Chapter 3. Growth Processes on Formulas

Proof: Let f̃i be a random variable with the distribution πi. Using an argument that is similar to
Valiant’s [Val84], we claim that if i ≥ k2k log(n)+ cα, then for all x such that |x| < sn, P[f̃i(x) =

1] < 2−2n, and for all x such that |x|> sn, P[f̃i(x) = 0] < 2−2n. We first argue the former.
Assuming that all variables are independent, if |x| < sn, P[f̃0(x) = 1] ≤ s− n−1εα(n), where

εα(n) = min j∈Z |s− j
n |= |s−

j0
n |. Since s is a root of degree k polynomial, by Liouville’s Approxi-

mation Theorem [Apo97]

εα(n) =

∣

∣

∣

∣

s− j0
n

∣

∣

∣

∣

>
eα

nk ,

where the constant eα depends only on the connective.
For i > 0, P[f̃i(x) = 1] = Ai

α(p). Expanding Aα(p) around s,

Aα(p) = Aα(s)+A′α(s)(p− s)+O((p− s)2),

yields
Aα(s− ε) = s− εA′α(s)+O(ε2).

By Lemma 3.18, fix γ = 1 + 2−k+1; there exists an ε0 such that for all ε < ε0, Aα(s− ε) < s− εγ.
Since P[f̃0(x) = 1]≤ s−n−1εα(n), if

i≥ log(n εα(n)−1ε0)/ log(γ)≥ log(nk+1e−1
α ε0)/ log(γ),

then
Ai

α(s− ε) < s− εγi < s− ε0.

An additional constant number of iterations, say dα, yields

Adα
α (s− ε0) < c.

By Lemma 3.9, Aα(p) < k2 p2, thus, we fix c < 1
2k2 and let j = log(n)+1. Hence,

A j
α(c) < (k2c)2 j

< 2−2 j
= 2−2n.

Therefore, if

i≥ k2k log(n)+
log(e−1

α ε0)

log(γ)
+dα +1,

for all x such that |x|< sn, P[f̃i(x) = 1] < 2−2n.
By the same argument, if |x| > sn, P[f̃i(x) = 0] < 2−2n. Since |x| > sn, for P[f̃0(x) = 0] ≤

1− s− n−1εα(n), P[f̃1(x) = 0] = Āα(p) = 1−Aα(1− p), and P[f̃ j(x) = 0] = Ā j
α(p), j > 0. Just

as in the preceding case, the composition of Āα with itself first yields a first order divergence from
1− s, followed by a second order convergence towards zero. Therefore, |π i(f)−π(f)|< 2−n.

To reduce the constant in front of the log term, one solution is to use a nonuniform initial
distribution to ensure that εα(n) is bounded from below by a constant, as is done by Valiant [Val84].

3.4. Growth Processes that use Monotone Connectives 37

3.4.2 Growth Processes that Use Balanced Connectives

In this subsection, it will be convenient to assume that the support of µ contains both constants, as
well as the projections, and to deal later with the cases in which one or both constants are missing
from the support of µ. If the connective is balanced, then by Lemma 3.8, its characteristic polyno-
mial has a fixed-point of 1

2 . If the number n of variables is odd, then the fraction of inputs that are
true for any assignment is bounded away from 1

2 , that is, for any j∈{1,2, ..,n+1}, | 12−
j

n+2 | ≥ 1
2n+4 .

Hence, by the standard amplification argument, the limiting distribution will be concentrated on the
n-adic majority function Tdn/2e. In fact, by Theorem 3.19, the convergence to the majority function
is rapid; if i≥ k2k log(n)+O(1), then |πi(f)−π(f)| < 2−n. When the number of variables is even,
however, something completely different happens.

The family of slice functions, denoted Sm,n and defined by Berkowitz [Ber82], are monotone
n-adic functions that assume the value 1 for all assignments of weight greater than m, assume the
value 0 for all assignments of weight less than m, and may take on either value for assignments of
weight m. Unlike other growth processes where the distribution is either concentrated on a single
function or is uniform on the support of the growth process, the following growth processes have

a limiting distribution that is uniform on the set Sn/2,n. This set includes a large number, 2(n
n/2),

of functions; but according to a result of Korshunov [Kor80], includes only a tiny fraction, less
than exp−(

(n
n/2+1

)

2−n/2), of the support of the growth process, which is the set of all monotone
functions Mn.

Define the n-adic functions

χn(x) =

{

1, |x|= n
2

0, otherwise
and υn(x) =

{

1, |x| > n
2

0, otherwise
.

Claim 3.20 The Fourier coefficients of the probability distribution π that is uniform on the slice
functions in Sn/2,n are given by

∆(f) =

{

0, 〈 f ,χn〉 6= 0
(−1)〈 f ,υn〉, 〈 f ,χn〉= 0

,

where the inner product is over Z.

Proof: Let c = |S n
2 ,n|−1 = 2−(

n
n/2). If 〈 f ,χn〉= 0, then

∆(f) = ∑
g∈Fn

(−1)〈 f ,g〉π(g) = c ∑
g∈S n

2 ,n

(−1)〈 f ,g〉 = c ∑
g∈S n

2 ,n

(−1)〈 f ,υn〉 = (−1)〈 f ,υn〉.

Otherwise let w be a singleton such that w≤ f ∧χn and let W = {g ∈ S n
2 ,n : g≥ w}. Then

∆(f) = c ∑
g∈S n

2 ,n

(−1)〈 f ,g〉 = c ∑
g∈W

(−1)〈 f ,g〉+(−1)〈 f ,g⊕w〉 = 0.

We combine amplification with Fourier methods to obtain our result in this case. The following
“Restriction Lemma” is the key to doing this.

38 Chapter 3. Growth Processes on Formulas

Claim 3.21 Let (µ,α) be a growth process, where α is a balanced monotone connective and where
n is even, and let f be a Boolean n-adic function. If f (x) = 1 for some x with |x|< n/2, or if f (x) = 0
for some x with |x|> n/2, then limi→∞ πi(f) = 0.

Proof: This follows from Theorem 3.19.

Lemma 3.22 (The Restriction Lemma)
Let (µ,α) be a growth process where α is a balanced monotone connective. Then for all w ∈ Fn,

lim
i→∞

∆i(w) = (−1)〈υn,w〉 lim
i→∞

∆i(w∧χn).

Proof: We begin with the definition

∆i(w) = ∑
v∈Bn

(−1)〈v,w〉πi(v),

then rewrite the equation as

∆i(w) = ∑
v∈Bn

(−1)〈v,w〉πi(v) = ∑
t≤χn

∑
u≤χn

(−1)〈t∨u,w〉πi(t ∨u),

and consider the restriction of w to the slice n
2 , that is, w∧χn. Since limi→∞ πi(t ∨u) = 0 if u 6= υn,

limi→∞ ∆i(w∧χn) can be rewritten as

lim
i→∞

∆i(w∧χn) = lim
i→∞ ∑

v∈Bn

(−1)〈v,w∧χn〉πi(v)

= lim
i→∞ ∑

t≤χn

∑
u≤χn

(−1)〈t∨u,w∧χn〉πi(t ∨u)

= ∑
t≤χn

∑
u≤χn

(−1)〈t∨u,w∧χn〉 lim
i→∞

πi(t ∨u)

= ∑
t≤χn

(−1)〈t∨υn,w∧χn〉 lim
i→∞

πi(t ∨υn)

= ∑
t≤χn

(−1)〈t,w∧χn〉(−1)〈υn,w∧χn〉 lim
i→∞

πi(t ∨υn)

= ∑
t≤χn

(−1)〈t,w∧χn〉 lim
i→∞

πi(t ∨υn)

= ∑
t≤χn

(−1)〈t,w〉 lim
i→∞

πi(t ∨υn).

This, in conjunction with

lim
i→∞

∆i(w) = lim
i→∞ ∑

t≤χn

∑
u≤χn

(−1)〈t∨u,w〉πi(t ∨u) = ∑
t≤χn

∑
u≤χn

(−1)〈t∨u,w〉 lim
i→∞

πi(t ∨u)

= ∑
t≤χn

(−1)〈t∨υn ,w〉 lim
i→∞

πi(t ∨υn) = ∑
t≤χn

(−1)〈t,w〉(−1)〈υn,w〉 lim
i→∞

πi(t ∨υn)

= (−1)〈υn,w〉 ∑
t≤χn

(−1)〈t,w〉 lim
i→∞

πi(t ∨υn) = (−1)〈υn,w〉 lim
i→∞

∆i(w∧χn),

yields the identity.

3.4. Growth Processes that use Monotone Connectives 39

Hence, all we need to show is that limi→∞ ∆i(w) = 0 for w such that 0 < w≤ χn. To do this we
use Savický’s [Sav90] argument, which uses induction on the weight of w and the recurrence

∆i+1(w) =
k

∑
j=1

a j(w)∆i(w) j + yi(w), (3.3)

where

a j(w) = ∑
t∈Bk
|t|= j

Sα(t)|w|,

yi(w) = ∑
v∈F k

n
0<v j<w

∏
a∈Bn

w(a)=1

Sα(v(a))
k

∏
j=1

∆i(v j),

Sα(t) =
1
2k ∑

r∈Bk

(−1)〈r,t〉(−1)α(r).

Note that unlike the analysis of growth processes with linear connectives in Proposition 3.1, this
recurrence is much more complicated. We first state two small lemmas of Savický’s [Sav90] and
then the main proposition.

Lemma 3.23 (Savický, 1990, Lemma 5.1 in [Sav90])
Let xi+1 = ∑k

j=1 a jx
j
i , such that |x0| < 1, ∑k

j=1 |a j| ≤ 1, and |a1| < 1. Then |xi+1| ≤ a|xi|, where
a≤ |a1|+ |x0|(1−|a1|). Hence, |xi| ≤ ai|x0| and limi→∞ xi = 0.

Lemma 3.24 (Savický, 1990, Lemma 5.2 in [Sav90])
Let xi+1 = yi + ∑k

j=1 a jx
j
i , such that |xi| ≤ 1, and a = ∑k

j=1 |a j| < 1. Then |xi+1| ≤ a|xi|+ yi and
limi→∞ xi = 0.

Proposition 3.25 Let (µ,α) be a growth process where α is a monotone balanced nonprojection
connective, n is even, and the support of µ comprises the projection functions and constants. If
0 < w≤ χn, then limi→∞ ∆i(w) = 0.

Proof: Let w≤ χn and recall equation 3.1:

∆0(w) = ∑
f∈Fn

π0(f)(−1)〈 f ,w〉 =
1

n+2 ∑
f∈supp(µ)

(−1)〈 f ,w〉.

To prove this proposition we substitute our base cases into Theorem 5.3 in [Sav90]. We need only
show that ∆0(w) = 0 if |w|= 1, and that |∆0(w)|< 1 if |w|= 2. In the first case, since w≤ χn, w is
true on a single assignment of weight n/2. Hence, 〈w,xi〉= 1 for exactly half the projections, where
xi is the ith projection function. Hence, the projections cancel each other out. Similarly, the two
constants annihilate one another. Hence, ∆0(w) = 0 if |w|= 1.

The latter case, |w| = 2, is only slightly harder. Since the constant 0 is part of the support,
there will be at least one positive contribution, −1〈0,w〉π0(0) = 1

n+2 . Hence, if |∆0(w)|= 1, all other
contributions must also be positive, specifically, 〈w,xi〉 = 0 for all xi; by the pigeonhole principle

40 Chapter 3. Growth Processes on Formulas

this is not possible. Hence, |∆0(w)|< 1 if |w|= 2. Since |w|= 2, yi(w) = 0 in equation 3.3 allowing
us to invoke Lemma 3.23.

For the case of |w| > 2, by induction limi→∞ yi(w) = 0 and, |∆i(w)| ≤ 1, hence we can invoke
Lemma 3.24 to complete the proof.

Proposition 3.25, together with Claim 3.20, yields one of our main results.

Theorem 3.26 Let (µ,α) be a growth process, where α is a monotone balanced nonprojection
connective, n is even and the support of µ comprises the projection functions and constants. Then
the limiting distribution is uniform on the functions in Sn/2,n.

Convergence Bounds

To bound the convergence within the slice we use a theorem of Savický [Sav95a]; the conditions of
the theorem are verified in Proposition 3.25.

Theorem 3.27 (Savický, 4.8 in [Sav95a]) If α is balanced and nonlinear, ∆0(w) = 0 for every w
such that |w| = 1, ∆0(w) < 1 for every w such that |w| = 2, and there exists a w such that |w| = 2
and ∆0(w) > 0, then

max
f∈Fn

|πi(f)−π(f)|= e−Ω(i).

A more explicit bound, in terms of the number of arguments and the arity of the connective, is
possible. We use a more explicit version of Lemma 3.22 and bound the convergence of the growth
processes characterized by Theorem 5.3 in [Sav90]. A corollary of Lemma 3.28 is that the same
bound also applies to the growth processes on monotone formulas whose limiting distribution is
uniform over the slice functions. We first prove Lemma 3.28, then prove a sequence of lemmas that
culminate in the bound: Theorem 3.34.

Lemma 3.28 Let (µ,α) be a growth process, where α is a balanced monotone connective, then for
some fixed ε < 0 and for all w ∈ Fn,

∆i(w) = O(ε2i
)+(−1)〈υn,w〉∆i(w∧χn).

Proof: Following the proof Lemma 3.22 begin with the definition

∆i(w) = ∑
v∈Bn

(−1)〈v,w〉πi(v),

and rewrite the equation as

∆i(w) = ∑
v∈Bn

(−1)〈v,w〉πi(v) = ∑
t≤χn

∑
u≤χn

(−1)〈t∨u,w〉πi(t ∨u).

Consider the restriction of w to the slice n
2 , that is, w∧ χn. By Theorem 3.19, after O(log(n))

iterations πi(t ∨u) = O(ε2i
), if u 6= υn. Hence, for i > O(log(n)), ∆i(w∧χn) can be rewritten as

3.4. Growth Processes that use Monotone Connectives 41

∆i(w∧χn) = ∑
v∈Bn

(−1)〈v,w∧χn〉πi(v)

= ∑
t≤χn

∑
u≤χn

(−1)〈t∨u,w∧χn〉πi(t ∨u)

= ∑
t≤χn

(−1)〈t∨υn,w∧χn〉πi(t ∨υn)+ ∑
t≤χn

∑
u≤χn,u6=υn

(−1)〈t∨u,w∧χn〉πi(t ∨u)

= ∑
t≤χn

(−1)〈t∨υn,w∧χn〉πi(t ∨υn)+ ∑
t≤χn

∑
u≤χn,u6=υn

O(ε2i
)

= O(ε2i
)+ ∑

t≤χn

(−1)〈t∨υn ,w∧χn〉πi(t ∨υn)

= O(ε2i
)+ ∑

t≤χn

(−1)〈t,w∧χn〉(−1)〈υn,w∧χn〉πi(t ∨υn)

= O(ε2i
)+ ∑

t≤χn

(−1)〈t,w∧χn〉πi(t ∨υn)

= O(ε2i
)+ ∑

t≤χn

(−1)〈t,w〉πi(t ∨υn).

This, in conjunction with

∆i(w) = ∑
t≤χn

∑
u≤χn

(−1)〈t∨u,w〉πi(t ∨u)

= ∑
t≤χn

(−1)〈t∨υn,w〉πi(t ∨υn)+ ∑
t≤χn

∑
u≤χn,u6=υn

(−1)〈t∨u,w〉πi(t ∨u)

= ∑
t≤χn

(−1)〈t∨υn,w〉πi(t ∨υn)+ ∑
t≤χn

∑
u≤χn,u6=υn

O(ε2i
)

= O(ε2i
)+ ∑

t≤χn

(−1)〈t∨υn ,w〉πi(t ∨υn)

= O(ε2i
)+ ∑

t≤χn

(−1)〈t,w〉(−1)〈υn,w〉πi(t ∨υn)

= O(ε2i
)+(−1)〈υn,w〉 ∑

t≤χn

(−1)〈t,w〉πi(t ∨υn)

= O(ε2i
)+(−1)〈υn,w〉∆i(w∧χn),

yields the identity.

Lemma 3.29 (Savický, 1990, Lemma 4.7 in [Sav90])
For any k-adic connective α, 1) ∑t∈Bk

Sα(1)2 = 1, and 2) α is balanced and nonlinear if and only if
Sα(0) = 0 and for all s ∈ Bk, |Sα(s)|< 1.

Theorem 3.30 (Savický, 5.3 in [Sav90]) Let (µ,α) be a growth process, where α is a k-adic non-
linear balanced connective, and assume that the initial distribution µ is uniform over the projections,
their negations, and constants. For all w ∈ Fn, such that w > 0, limi→∞ ∆i(w) = 0.

42 Chapter 3. Growth Processes on Formulas

Lemma 3.31 Let (µ,α) be a growth process, where α is a k-adic nonlinear balanced connective,
and assume that the initial distribution µ is uniform over the projections, their negations, and con-
stants. For any w ∈ Fn such that |w|= 2, and any positive c < 1, if

i > log(c−1)n2k,

then |∆i(w)| ≤ c.

Proof: By Theorem 5.3 in [Sav90],

∆i(w) =
k

∑
j=1

a j(w)∆i−1(w) j,

where
a j(w) = ∑

t∈Bk
|t|= j

Sα(t)|w| = ∑
t∈Bk
|t|= j

Sα(t)2.

By corollary 3.23, |∆i(w)| ≤ ai|∆0(w)|, where a ≤ a1(w) + ∆0(w)(1− a1(w)). By Theorem 5.3
in [Sav90], ∆0(w) < n−1

n+1 , hence,

a ≤ a1(w)+
n−1
n+1

(1−a1(w)) = 1− 2
n+1

(1−a1(w)),

and since a1(w)≤ 1−2−k,

a≤ 1− 2
n+1

2−k.

Setting x0 = ∆0(w) and solving for i in the inequality ai|∆0(w)| ≤ c yields

i≥ log(c)− log |x0|
log(a)

,

and substituting for a on the right,

log(c)− log |x0|
log(a)

=
log(c)− log |x0|
log
(

1− 2
n+1 2−k

)

< ((n+1)2k−1 +
1
2
)(log(c−1)+ log |x0|)

< ((n+1)2k−1 +
1
2
) log(c−1)

< n2k log(c−1).

Thus, for i > log(c−1)n2k , |∆i(w)| ≤ c.

Lemma 3.32 Let xi+1 = yi + ∑k
j=1 a jx

j
i , such that |xi| ≤ 1, and a = ∑k

j=1 |a j| < 1. If yi < (i− l +

2)kai−l+1 < a < 1 for some k ≥ 0 and l > 0. Then |xi| ≤ (i− l +1)k+1ai−l for all i≥ l.

3.4. Growth Processes that use Monotone Connectives 43

Proof: By Lemma 3.24, |xi+1| ≤ a|xi|+ yi. Hence, by induction on i

|xi+l | ≤ ai(|xl |+(i− l +2)kal)

≤ ai−l

(

1+
i

∑
j=l

(i− l +2)k

)

≤ ai−l(i− l +2)k+1.

Lemma 3.33 Let (µ,α) be a growth process, assume that the conditions of Theorem 3.30 are satis-
fied, and let

a = ∑
t∈Bk

|Sα(t)|3 < 1−2−k.

If |w|= d ≥ 2 and

id = n2k log(a−1)+
d

∑
j=3

(k +1) j j
log(a−1)

, (3.4)

then |∆i(w)| ≤ ai−id bd(i), where bd(i) = (i− i2 +2)(k+1)d−3
, and b2(i) = 1.

Proof: The proof is by induction on j. By Theorem 5.3 in [Sav90],

∆i(w) = yi(w)+
k

∑
j=1

a j(w)∆i−1(w) j,

where
a j(w) = ∑

{t∈Bk : |t|= j}
Sα(t)|w|,= ∑

{t∈Bk: |t|= j}
Sα(t)d ,

and

yi(w) = ∑
v∈Gk

w

(

∏
a∈Bn|w(a)=1

Sα(v(a))

)(

k

∏
j=1

∆i(v j)

)

,

where Gw = {v ∈ B2n : 0 < v < w}.
Since ∑t∈Bk

Sα(1)2 = 1 and |Sα(s)|< 1 for all s ∈ Bk,

a(w) =
k

∑
j=1

a j(w) =
k

∑
j=1

∑
t∈Bk :|t|= j

Sα(t)|w|

= ∑
t∈Bk

Sα(t)|w| ≤ ∑
t∈Bk

|Sα(t)||w|

≤ ∑
t∈Bk

|Sα(t)|3 < ∑
t∈Bk

Sα(t)2 = 1.

The base case, d = 2, is proved by Lemma 3.31. For the base case, d = 3, we first bound y i(w). By
Theorem 5.3 in [Sav90], ∆i(w) = 0 if |w|= 1 and by Lemma 3.31, ∆i(w)≤ ai−n2k log(a−1) if |w|= 2.

44 Chapter 3. Growth Processes on Formulas

Hence, for all w ∈ Gw, ∆i(w) ≤ ai−n2k log(a−1). If we let i2 = n2k log(a−1), then ∆i(w) ≤ ai−i2 b2(i)
and

yi(w) = ∑
v∈Gk

w

(

∏
a∈Bn|w(a)=1

Sα(v(a))

)(

k

∏
j=1

∆i(v j)

)

< ∑
v∈Gk

w

k

∏
j=1

∆i(v j)

< ∑
v∈Gk

w

(

ai−id−1 bd−1(i)
)k

=

(

d−1

∑
j=1

(

d
j

)

)k
(

ai−id−1bd−1(i)
)k

<
(

2dai−id−1 bd−1(i)
)k

.

Solving for i in the inequality
(

2dai−id−1bd−1(i)
)k

< a

yields
d + log(bd−1(i))

log(a−1)
+ k−1 + id−1 ≤

(k +1)dd
log(a−1)

+ id−1 = id ≤ i,

which reduces to equation 3.4 when evaluated at d = 3. Hence, for i≥ id

yi(w) <
(

2dai−id−1 bd−1(i)
)k

< bd−1(i)
kai−id < a,

and by Lemma 3.24 and Corollary 3.32 we complete the base case:

|∆i+1(w)| ≤ a|∆i(w)|+ yi(w)

≤ a|∆i(w)|+ai−id bd−1(i)
k

≤ ai−id

(

1+
i

∑
j=id

1

)

≤ ai−id (i− id +2)

≤ ai−id (i− i2 +2)

= ai−id bd(i).

Assume that the hypothesis holds for all w of weight less than some fixed d and let |w| = d.
Repeating the above calculations in terms of d we get an identical bound for y i(w),

yi(w) <
(

2dai−id−1 bd−1(i)
)k

< bd−1(i)
kai−id < a,

3.4. Growth Processes that use Monotone Connectives 45

where, by the inductive hypothesis,

id =
(k +1)dd
log(a−1)

+ id−1

=
(k +1)dd
log(a−1)

+n2k log(a−1)+
d−1

∑
j=3

(k +1) j j
log(a−1)

= n2k log(a−1)+
d

∑
j=3

(k +1) j j
log(a−1)

and hence

|∆i+1(w)| ≤ a|∆i(w)|+ yi(w)

≤ a|∆i(w)|+ai−id bd−1(i)
k

≤ ai−id

(

1+
i

∑
j=id

bk
d−1

)

≤ ai−id

(

1+
i

∑
j=id

(i− i2 +2)(k+1)d−1−3k

)

≤ ai−id (i− id +1)(i− i2 +2)(k+1)d−1−3k

≤ ai−id (i− i2 +2)(i− i2 +2)(k+1)d−1−3k

= ai−id (i− i2 +2)(k+1)d−3

= ai−id bd(i),

completing inductive step.

Theorem 3.34 Let (µ,α) be a growth process, assume that the conditions of Theorem 3.30 are
satisfied, let a be as in Lemma 3.33, and let

I = n2k log(a−1)+
22n(k +1)2n

log(a−1)
.

For any positive c < 1, if w 6= 0 and

i≥ log(c)
log(a)

+
log(i− I +2)

log(a−1)
(k +1)2n

+ I, (3.5)

then |∆i(w)| ≤ c.

Proof: By Lemma 3.33 the coefficient of weight 2n has the greatest converging bound:

|∆i+1(w)| ≤ ai−i2n (i−n2k log(a−1)+2)(k+1)2n

,

where

i2n = n2k log(a−1)+
2n

∑
j=3

(k +1) j j
log(a−1)

≤ n2k log(a−1)+
22n(k +1)2n

log(a−1)
= I.

46 Chapter 3. Growth Processes on Formulas

Solving for i in the inequality

ai−i2n (i−n2k log(a−1)+2)(k+1)2n

< c

completes the proof.

Thus, by equation 2.2,

πi(g) =
1

22n ∑
f∈Fn

(−1)〈 f ,g〉∆i(f)

=
1

22n +
1

22n ∑
f∈Fn\0

(−1)〈 f ,g〉∆i(f)

≤ 1
22n +

1
22n ∑

f∈Fn\0
|∆i(f)|

≤ 1
22n + max

f∈Fn\0
|∆i(f)|,

implying that for all g ∈ Fn, |π(g)−πi(g)| ≤ c if i satisfies equation 3.5. Although, the convergence
of the growth process is eventually exponentially fast, by Theorem 3.34, it may take an exponential
number of iterations (in n) before this occurs.

Varying the Initial Distribution

Proposition 3.25 can easily be modified to cover the cases in which one of the constants is missing
from the support of µ: in these cases there is concentration on a single function when n is even and
uniform distribution on a set of slice functions when n is odd. When the support of µ consists only
of the projection functions, however, the situation can be more complicated. If α is not self-dual or
n is odd, the result is the same as when both constants are present. If α is self-dual and n is even,
however, the limiting distribution is uniform on a subset of the slice functions.

Theorem 3.35 Let (µ,α) be a growth process where α is a monotone self-dual nonprojection con-
nective, n is even, and the support of µ comprise the projection functions. Then the limiting distri-
bution is uniform on the self-dual functions in Sn/2,n.

Proof: This is similar to that of theorem 3.5.

We note that there are 2
1
2(

n
n/2) self-dual functions in Sn/2,n. According to Sapozhenko’s [Sap89]

result, this is only a tiny fraction, less than exp−(
(n

n/2+1

)

2−n/2−1), of the support of the growth
process, which is the set of self-dual monotone functions.

3.5 Growth Processes that Use Other Functions

We can use the same method to analyze other growth processes. For example, the uniform distri-
bution on the set of bipreserving functions (that is, those functions satisfying f (0, . . . ,0) = 0 and

3.5. Growth Processes that Use Other Functions 47

f (1, . . . ,1) = 1) can be generated by a growth process that uses the bipreserving selection connec-
tive α(x,y,z) = xy∨ x̄z and an initial distribution that is uniform on the projection functions. The
same technique as in the monotone case is sufficient to prove this; the corresponding restriction
lemma yields the identity

lim
i→∞

∆i(w) = (−1)〈w,ηn〉∆(w∧κn),

where the two functions are

ηn =
n̂

j=1

x j and κn =

(

n
_

j=1

x j

)

∧
n̂

j=1

x j.

A similar analysis for the 0-preserving and 1-preserving functions follows easily.

Chapter 4

Growth Processes on Reversible Circuits

In this chapter we investigate growth processes on reversible circuits. The investigation is divided
into three parts. In Section 4.2 we show that the result of a growth process on reversible circuits
is either a limiting distribution or two alternating distributions. We show that in almost all cases
the limiting distribution does exist and is uniform over the set of functions that can be realized by
the growth process. In Section 4.3 we investigate what functions are realizable by a growth process
on reversible circuits, and in Section 4.4 we bound the convergence rate of growth processes on
reversible circuits. We first cover the basic definitions before proceeding to our results.

4.1 Definitions

Let S2n denote the symmetric group on 2n points and let A2n denote the alternating group on 2n

points; the groups will be regarded as acting on the points of the Boolean cube, Bn.
Let C denote an m-gate reversible circuit comprising n lines (wires) and let |C| = m denote the

size of C (the number of gates). A reversible circuit takes an assignment, x, of size n and yields
an output, denoted C(x), which is also of size n. Unless noted otherwise, reversible circuits are
assumed to comprise the standard reversible gates that include: the identity gate, the unary NOT
gate, the binary controlled-NOT gate (C-NOT), and the ternary Toffoli gate (controlled-controlled-
NOT gate).

An m-gate reversible circuit C is specified by a word of length m, C = g1g2 . . .gm, over an
alphabet Σ representing the set of possible gates; each gate, gi, is specified by its operation and the
lines on which it operates. A NOT gate, operating on line i, is denoted

L

i; a controlled-NOT gate,
operating on line j and controlled by line i, is denoted

Li
j; and a Toffoli gate, operating on line k

and controlled by lines i and j, is denoted by
Li∧ j

k . The identity gate, denoted ε, serves an important
purpose in our analysis, but performs no operation on the circuit. Since each of the gates is its own
inverse, the inverse of a gate, denoted g−1

i , is gi.
The composition of two n-line reversible circuits C = g1 . . .gm and C′ = g′1 . . .g′m′ is the con-

catenation of the two words C′′ = CC′ = g1 . . .gmg′1 . . .g′m′ . Composition is also denoted as C′(C),
and the output of the composition is denoted C ′′(x) = C′(C(x)). Since each standard gate is its own

49

50 Chapter 4. Growth Processes on Reversible Circuits

inverse, the inverse of a circuit, denoted C−1, is simply

C−1 = (C)−1 = (g1 . . .gm)−1 = g−1
m . . .g−1

1 = gm . . .g1.

Analogously, the inverse of a composition of two circuits is (CC ′)−1 = C′−1C−1.
Let S be a set of n-line reversible circuits. Since every element in S realizes a permutation on the

Boolean cube Bn, each reversible circuit corresponds to an element of S2n and the closure of S (under
composition), corresponds to a subgroup of S2n . Thus, every element in the subgroup is realized by
some composition of circuits from S. If a reversible circuit C realizes a permutation σ ∈ S2n , then
we say that C ∼ σ; if two circuits, C and C′, realize the same permutation, then we say that C ∼C ′.
An immediate consequence of the correspondence between reversible circuits and elements of S2n

is that the group axioms also apply to the composition and manipulation of reversible circuits. We
use the group-theoretic setting to prove many of our results dealing with reversible circuits.

A growth process on reversible circuits is denoted by a pair (µ,X) where µ is a uniform distribu-
tion on a subset of the gate set X . Let X = Xn, where unless otherwise noted, the set Xb, 1≤ b≤ n,
comprises

• 1 identity gate: ε, (no operation is performed)
• b NOT gates:

L

i, i = n−b+1, . . . ,n,
• b(n−1) controlled-NOT gates:

Li
j, j = n−b+1, . . . ,n, i = 1, . . . , j−1, j +1, . . . ,n, and

• b
(n−1

2

)

Toffoli gates:
Li∧ j

k , k = n−b+1, . . . ,n, j = 1, . . . ,k−1,k+1, . . . ,n, i = j+1, . . . ,k−
1,k +1, . . . ,n.

Since a reversible circuit realizes an element of S2n , the ith iteration of the growth process induces
a distribution πi on S2n in the following way. The distribution π0 is concentrated on the identity
element ε, i.e., π0(ε) = 1, and if σ ∈ S2n , then πi(σ) = Pr[Cσ̃i−1Cg̃ ∼ σ], where σ̃i−1 is a random
variable distributed according to distribution πi−1, and g̃ is a random variable distributed accord-
ing to distribution µ; Cσ̃i and Cg̃ denote the corresponding circuits that realize the elements of the
respective sample spaces.

Recalling the definitions from Chapter 3, a growth process has a limiting distribution, π, if π i

approaches π as i (the number of iterations) tends infinity; and a growth process has alternating
distributions if π2i and π2i+1 approach two distinct distributions as i tends to infinity. The support
of a growth process is the set of all functions that are realizable by the process, i.e., ∪ i>0supp(πi).

We say that a gate set S is alternating, if there does not exist a circuit C over S such that |C| is
odd and C∼ ε. A gate-symmetric gate set S⊆ Xb satisfies the condition that if a Toffoli (controlled-
NOT or NOT) gate is in S, then all Toffoli (controlled-NOT or NOT) gates that are in Xb are also in
S. Intuitively this means that no line within the circuit is preferred to any other line.

If supp(µ) ⊆ Xb, b < n, the support of a growth process (µ,X) will only contain circuits whose
bandwidth is less than n, i.e., some fixed set of lines is guaranteed to be read-only. We call such a
growth process bandwidth-limited or a bandwidth-b growth process, if b is known. If for each of
the n lines the support of µ includes gates that modify each of the n lines, then the growth process
is not bandwidth-limited. For conciseness, an n-bit input to a bandwidth-limited circuit is denoted
xx′ =(x1, . . . ,xr,x′1, . . . ,x′b), where x comprises the read-only inputs and x′ comprises the read-write
inputs.

4.2. The Limiting Distribution of Growth Processes on Reversible Circuits 51

4.2 The Limiting Distribution of Growth Processes on Reversible Circuits

Amazingly, the question of whether a growth process on reversible circuits has a limiting distribu-
tion is decoupled from the question of what that limiting distribution is. Assuming that the distribu-
tion µ on the gate set X is uniform, there is straightforward proof that the limiting distribution, if one
exists, will be uniform over some set of permutation functions, which corresponds to a subgroup of
S2n . In this section we prove the following theorem:

Theorem 4.1 Let (µ,X) be a growth process on reversible circuits, where µ is a distribution on X
and let Σ = supp(µ). The growth process has a limiting distribution if and only if Σ is not alternating.
Otherwise, the result of the growth process is two alternating distributions.

To prove this we first argue that the growth process is an ergodic Markov process with peri-
odicity at most 2 and then argue that the Markov process is aperiodic if and only if the support of
distribution µ is not alternating.

Lemma 4.2 If (µ,X) is a growth process, where X contains the standard gates and µ is a distri-
bution on X, then the growth process is an ergodic irreducible Markov process with periodicity at
most 2.

Proof: The state space of this Markov process is a subgroup of S2n that is generated by the set of
elements that are realized by the gates in the support of µ. Assuming that the transition matrix is
indexed by the elements of the subgroup, entry Mσ,τ of the transition matrix is equal to µ(g) where
Cg ∼ σ−1τ, i.e., the probability of drawing gate g according to distribution µ, such that composing σ
with the element realized by g yields τ. Since all gates are their own inverses, Mσ,τ = Mτ,σ, implying
that M is symmetric. Therefore, each state can be returned to after two transitions, which means
that, by definition, the period of the process is at most 2. Furthermore, since the state space is equal
to the subgroup, every state is reachable from the identity, and the identity is reachable from every
state. Hence, the Markov process is ergodic, irreducible, and has a period of at most 2.

Lemma 4.3 Let (µ,X) be a growth process, where X contains the standard gates and let Σ =

supp(µ). The Markov process is aperiodic if and only if Σ is not alternating.

Proof: By Lemma 4.2 the periodicity of the process is at most 2; hence, the process is either
aperiodic or has periodicity 2. If Σ is not alternating, there exists a circuit C ∈ Σ+, such that m = |C|
is odd and C ∼ ε. Hence, there is an odd length cycle in the graph induced by process. Since
gcd(2,m) = 1, the process is aperiodic by definition.

Conversely, if the process is aperiodic, there must be at least one odd cycle in the respective
graph. Concretely, starting in some state, say σ, after an odd number of transitions, the process
can end up in the same in the same state. Let C ∼ σ and let the transitions be denoted by g i, for
i = 1, . . . ,m, where m is odd. Thus, Cg1g2 . . .gm ∼C. Prefixing C−1 to both sides yields that

g1g2 . . .gm ∼C−1Cg1g2 . . .gm ∼C−1C ∼ ε,

completing the proof.

52 Chapter 4. Growth Processes on Reversible Circuits

Corollary 4.4 Let (µ,X) be a growth process, where X contains the standard gates and let Σ =

supp(µ). The Markov process has periodicity 2 if and only if Σ is alternating.

Additionally, we make use of a well known result from the Markov Theory.

Theorem 4.5 (Theorem 6.2, Page 132 in [MR95])
Any irreducible, finite, and aperiodic Markov process has the following properties:

1. All states are ergodic.
2. There is a unique limiting distribution π such that for each state s, π(s) > 0.
3. If N(s, t) is the number of times that process visits state s in t steps, then limt→∞

N(s,t)
t = π(s).

Proof of Theorem 4.1: By Lemma 4.2 the growth process is an ergodic and irreducible Markov
process. By Lemma 4.3 and by Theorem 4.5, the process has a limiting distribution.

The “otherwise” part follows from the Frobenius-Perron Theorem [Fro12, Per07]. Let M be the
transition matrix of the process, and let π0 be the initial distribution. The ith distribution may be
written as πi = Miπ0. Following Lovàsz [Lov96], πi can be written

πi = Miπ0 =
m

∑
j=1

λi
jv jv

T
j π0,

where m is the size of the subgroup of S2n , described in the proof of Lemma 4.2, and v j is the
jth eigenvector of M. We assume that the eigenvectors are orthogonal and that the eigenvalues,
λi, are in decreasing order. If the periodicity of the process is 2, then by the Frobenius-Perron
Theorem [Fro12, Per07], all but two of the eigenvalues have magnitude less than 1, λ1 = 1, and
λm =−1. Therefore

lim
i→∞

π2i = (v1vT
1 + vmvT

m)π0,

lim
i→∞

π2i+1 = (v1vT
1 − vmvT

m)π0,

which are the two alternating distributions.

The question of whether growth process (µ,X) has a limiting distribution is therefore reduced
to whether the support of µ is alternating or not. The answer, in most cases, is that the support is not
alternating. The following proposition enumerates sufficient conditions that ensure that the support
of µ is not alternating.

Proposition 4.6 Let (µ,X) be a growth process, let Σ = supp(µ), and assume that X comprises all
standard gates that operate on lines 1, . . . ,n. If one of the following conditions hold:

1. the identity gate ε is in Σ,

2. n≥ 2 and for some distinct i, j ∈ [1,n], the gates
L j

i ,
L

j, and
L

i are in Σ (see Figure 4.1),

3. n≥ 3 and for some distinct i, j,k ∈ [1,n], the gates
L j

i ,
Lk

j , and
Lk

i are in Σ (see Figure 4.2),

4.2. The Limiting Distribution of Growth Processes on Reversible Circuits 53

4. n ≥ 3 and for some distinct i, j,k ∈ [1,n], the gates
Lk∧ j

i ,
Lk

j , and
Lk

i are in Σ (see Fig-
ure 4.3),

5. n ≥ 3 and for some distinct i, j,k ∈ [1,n], the gates
Lk∧ j

i ,
L

k,
L

j , and
L

i are in Σ (see
Figure 4.4), or

6. n ≥ 4 and for some distinct i, j,k, l ∈ [1,n], the gates
Lk∧ j

i ,
Ll∧k

j , and
Ll∧k

i are in Σ (see
Figure 4.5),

then Σ is not alternating.

Proof: By inspection.

=
(i)

(j)

Figure 4.1: A NOT gate.

=
(k)

(j)

(i)

Figure 4.2: A C-NOT gate.

=(j)

(i)

(k)

Figure 4.3: A C-NOT gate.

=

(i)

(j)

(k)

Figure 4.4: A NOT gate.

=

(i)

(l)

(k)

(j)

Figure 4.5: A Toffoli gate.

If the support of µ on X is gate-symmetric and the circuit width is greater than or equal to
four, then Proposition 4.6 applies. Proposition 4.6 does not apply to growth processes on reversible
circuits of width 2 and 3 that only use controlled-NOT gates (and Toffoli gates, respectively)—
even-though the support of µ may be gate-symmetric. In general determining whether the support
is alternating may be as difficult as determining the support of the growth process.

If a limiting distribution does exist, then it will be a uniform distribution on the support of the
growth process. This result stems from the following lemma.

Lemma 4.7 (Lemma 6.3, Page 132 in [MR95])
Let G = (V,E) be a nonbipartite connected graph, let d(v) denote the degree of vertex v ∈V , and
let M be a transition matrix for a Markov process whose states are the vertices of G, such that

Mu,v =

{

d(u)−1, (u,v) ∈ E,

0, (u,v) 6∈ E
,

where u,v ∈ G. The limiting distribution π is given by π(v) = d(v)
2|E| .

54 Chapter 4. Growth Processes on Reversible Circuits

Corollary 4.8 If G = (V,E) is a d-regular, nonbipartite, connected graph, then the limiting distri-
bution of the Markov process defined in Lemma 4.7 is uniform over V .

Using this corollary we can characterize the shape of the limiting distribution of a growth pro-
cess on reversible circuits by the support of the growth process. The key observation is that a
growth process induces a Cayley graph of the subgroup of S2n , which is generated by the elements
in Σ = supp(µ) and is the support of the process. The vertices correspond to the elements of the
subgroup, where the degree of each vertex is equal to the size of Σ. The following theorem relates
the support of the process to the limiting distribution.

Theorem 4.9 Let (µ,X) be a growth process, where µ is a uniform distribution on Σ ⊆ X and X
comprises the standard reversible gates. If Σ is not alternating, then the limiting distribution is a
uniform distribution over the support of the growth process.

Proof: Since Σ is not alternating, by Theorem 4.1, a limiting distribution exists. The growth
process corresponds to the Markov process in Lemma 4.7, where G is the Cayley graph induced by
growth process. By Corollary 4.8, the limiting distribution is uniform over the vertices of G, which
correspond to the support of the process.

Thus, the limiting distribution is completely characterized by the support of the growth process.

4.3 The Support of Growth Processes on Reversible Circuits

The general problem of determining the support of a growth process reduces to the problem of
determining what group is generated by a given set of generating elements; this is a notoriously
hard problem. In the present context the generating set corresponds to the support of µ, a uniform
distribution on the set X of standard gates. Since it is natural to decouple gate type, i.e., NOT,
controlled-NOT, or Toffoli, from the lines on which a gate operates, we assume that the support
of µ is gate-symmetric. Additionally, under this assumption we can characterize the support of the
growth processes. We first discuss processes that are not bandwidth-limited, and then extend the
discussion to bandwidth-limited growth processes. In the former case, we first consider processes on
circuits with a small number of lines, n = 2 (Theorem 4.10) and n = 3 (Theorem 4.11), and then we
consider processes on larger circuits with various supports of µ (Theorems 4.13–4.15). Similarly,
for the bandwidth-limited case, Theorems 4.16, 4.17, and 4.19 characterize growth processes on
circuits with bandwidth 1, 3, and 2, respectively, and Theorem 4.18 characterizes growth processes
on circuits with bandwidth greater than 3.

4.3.1 The Support of Growth Processes that are not Bandwidth-limited

The maximum fan-in of any gate in the gate set X is three (the fan-in of the Toffoli gate). Conse-
quently, there are three cases, with respect to circuit width, that we need to consider. Namely, we
need to consider circuits of width n = 2, n = 3, and n > 3. The first two cases can easily be done by
computational enumeration, while the last case requires an analytical approach. The following two
theorems characterize the support of growth processes on two and three lines.

4.3. The Support of Growth Processes on Reversible Circuits 55

Theorem 4.10 Let (µ,X) be a growth process on two lines, where µ is a uniform distribution on a
subset of X such that Σ = supp(µ) is gate-symmetric with respect to X. Then

1. If Σ contains both controlled-NOT and NOT gates, then the support of the process corresponds
to the group S4.

2. If Σ contains only controlled-NOT gates, then the support of the process corresponds to the
group S3 on the inputs {1,2,3} and the input 0 is a fixed-point.

3. If Σ contains only the NOT gates, then the support of the process corresponds to the group
C2×C2.

Proof: By enumeration.

Theorem 4.11 Let (µ,X) be a growth process on three lines, where µ is a uniform distribution on a
subset of X such that Σ = supp(µ) is gate-symmetric with respect to X. Then

1. If Σ contains both Toffoli and NOT gates, then the support of the process corresponds to the
group S8.

2. If Σ contains only Toffoli gates, then the support of the process corresponds to the group S4

on the inputs {3,5,6,7} and the remaining inputs are fixed-points.
3. If Σ contains both Toffoli and controlled-NOT gates, then the support of the process corre-

sponds to the group S7 on all inputs except the input 0, which is a fixed-point.

Proof: By enumeration.

If we restrict a growth process on n > 2 lines to using only controlled-NOT gates and/or NOT
gates, then the resulting support will correspond to a subgroup of affine transformations on the
Boolean cube [CG75]. Hence, all interesting growth processes on n > 2 lines must use Toffoli gates.
Consequently, the three cases in Theorem 4.11 are the three sub-cases that need to be considered
when analyzing growth processes on n > 2 lines. To do this we use a theorem of Coppersmith and
Grossman [CG75].

A k-function, k ≤ n, is a permutation, σ ∈ S2n , on the Boolean cube defined by

((a0a2...an−1)σ)m =

{

am, m 6= j,
a j⊕ f (ai1 ,ai2 , ...,aik), m = j

,0≤ j ≤ n−1,

where a = (a0a1...an−1) ∈ Bn, and f is any k-adic Boolean function. If f is a singleton function,
i.e., true for only one input, then the k-function, σ, is also called a singleton. For a fixed k, the basic
set comprises the 2k

(n
k+1

)

k-functions, corresponding to each of the 2k singleton functions and the
(n

k+1

)

possible choices of inputs and output.

Theorem 4.12 (Coppersmith and Grossman, [CG75])
Let Gk,n denote the subgroup of S2n generated by basic set of k-functions, where n > 1. Then

1. If n > 3 and 1 < k < n−1, then Gk,n = A2n .
2. Gn−1,n = S2n , (k = n−1).
3. G1,n is the group of affine transformations on Bn, (k=1).

56 Chapter 4. Growth Processes on Reversible Circuits

A reversible gate that takes k control lines, computes a Boolean value, and performs an XOR
with the result on another line, realizes a k-function. Concretely, a Toffoli gate realizes a singleton
2-function—the conjunction of the two control lines—and placing NOT gates on one or both control
lines, before and after the gate, realizes the remaining three singleton 2-functions; see Figure 4.6.
Thus, Theorem 4.12 can be used to characterize the support of growth processes on n > 3 lines that
use Toffoli and NOT gates.

(1)

(0)

(1)

(2)

^ (2)(1) ^ (2)(1)^ (2) (2)(1)^

Figure 4.6: The four singleton 2-functions.

Theorem 4.13 Let (µ,X) be a growth process on n > 3 lines, where µ is a uniform distribution on a
subset of X such that Σ = supp(µ) is gate-symmetric with respect to X and contains both the Toffoli
and NOT gates. Then the support of the growth process corresponds to the alternating group A2n .

Proof: First, each of the four singleton 2-functions is a realized by a Toffoli gate along with 0, 2, or
4 NOT gates that bracket the control lines of the Toffoli gate. Second, one of the four singleton 2-
functions corresponds to a Toffoli gate, and a sequence of the four singleton 2-functions corresponds
to the NOT gate. Thus, by Theorem 4.12, the support of the growth process corresponds to the
alternating group.

If the support of µ does not contain both Toffoli and NOT gates, i.e., the support comprises either
solely Toffoli gates or, both Toffoli and controlled-NOT gates, then the support of the corresponding
growth process is an alternating group, on the set of inputs of weight greater than one and zero,
respectively; a similar phenomenon is observed in our analysis of growth processes on two and
three lines. The subsequent two theorems formalize this notion.

Let A2,n denote the set of all even permutations on the Boolean cube Bn where all inputs of
weight less than two are fixed-points; the set A2,n corresponds to the alternating group A2n−n−1

on all points of Bn that are of weight two or more. Similarly, let A1,n denote the set of all even
permutations on the Boolean cube Bn where the input of weight zero is a fixed-point. Naturally, A1,n

corresponds to the alternating group A2n−1 on all points of Bn except the one of weight zero.

Theorem 4.14 Let (µ,X) be a growth process on n > 3 lines, where µ is a uniform distribution on a
subset of X such that Σ = supp(µ) is gate-symmetric with respect to X and contains only the Toffoli
gates. Then the support of the growth process is A2,n.

Proof: Since Σ is a proper subset of the the support of µ in Theorem 4.13, the corresponding
subgroup must be a subgroup of A2n , and hence cannot have any odd permutations. Furthermore,

4.3. The Support of Growth Processes on Reversible Circuits 57

Toffoli gates are triggered only when both their control lines are 1. Thus, every input of weight
less than two will not trigger any Toffoli gate and cannot be permuted by a circuit of Toffoli gates.
Consequently, the n + 1 inputs of weight less than two must be fixed-points and the support of the
growth process can be at most A2,n. Thus, we only need to argue that the growth process can realize
all functions in A2,n.

The proof is by induction on n. The base case, n = 4, follows from the fact that the 3-cycles
that generate A2,4 can be constructed from at most five Toffoli gates; these are listed in Table 4.1
and were determined via computational enumeration. The generators for A2,4, which correspond to

L1∧2
4

L1∧3
4

L2∧4
3

L1∧3
4

L2∧4
3 ∼ (3 7 11)

L1∧2
3

L1∧4
3

L3∧4
2

L1∧2
3

L3∧4
2 ∼ (9 11 13)

L1∧2
4

L1∧3
4

L3∧4
2

L1∧2
4

L3∧4
2 ∼ (5 7 13)

L1∧2
3

L2∧4
3

L3∧4
1

L1∧2
3

L3∧4
1 ∼ (10 11 14)

L1∧2
4

L2∧3
4

L3∧4
1

L1∧2
4

L3∧4
1 ∼ (6 7 14)

L1∧3
2

L2∧4
1

L1∧3
2

L2∧4
1

L3∧4
2 ∼ (12 14 15)

Table 4.1: The 3-cycles that span A2,4.

the 12 different Toffoli gates, are listed in Table 4.2; however, by Proposition 4.6, only eight are
necessary. For a fixed n > 3 assume that the support of a growth process on n lines is A2,n. We now

L1∧2
3 ∼ (3 7)(11 15)

L1∧2
4 ∼ (3 11)(7 15)

L1∧3
2 ∼ (5 7)(13 15)

L1∧3
4 ∼ (5 13)(7 15)

L1∧4
2 ∼ (9 11)(13 15)

L1∧4
3 ∼ (9 13)(11 15)

L2∧3
1 ∼ (6 7)(14 15)

L2∧3
4 ∼ (6 14)(7 15)

L2∧4
1 ∼ (10 11)(14 15)

L2∧4
3 ∼ (10 14)(11 15)

L3∧4
1 ∼ (12 13)(14 15)

L3∧4
2 ∼ (12 14)(13 15)

Table 4.2: Generators of A2,4.

argue that the support of growth processes on n+1 is A2,n+1.
To prove the inductive step we show that all permutations in A2,n+1, which can be represented

by a 3-cycle, can be realized; this implies that all functions A2,n+1 are realizable. In fact, it suffices
to show that at least one 3-cycle can be realized. Fix the permutation σ′ = (3 7 15), let circuit
C′ ∼ σ′, which by the induction hypothesis can be realized by the growth process on n > 3 lines;
and assume that C′ comprises the lines labeled 1, . . . ,n. For σ = (7 15 31), we construct C ∼ σ, by
modifying C′ in the following manner. Assuming that the n+1 line in C is labeled 0, replace each
Toffoli gate in C′ by the construction of Barenco et al. [BBD+95], exhibited in Figure 4.7. Thus,
circuit C, exhibited in Figure 4.8, is a controlled version of C ′ that is controlled by line 0, that is,
C ∼ σ.

To construct a permutation represented by the 3-cycle (x 15 31), where |x|> 1, we construct an
additional circuit C′′ such that C′′ ∼ τ = (x7)(yz) where y and z are not 15 and 31, and conjugate σ
by τ to yield τστ−1 = (x 15 31). The circuit for τ can be realized in a manner similar to realizing
circuit C. Thus, every permutation in A2,n+1, which is represented by a 3-cycle can be realized,
implying that every permutation in A2,n+1 can be realized by the growth process.

58 Chapter 4. Growth Processes on Reversible Circuits

(0)

(i)

(j)

(k)

(l)

Figure 4.7: A (0)-controlled Toffoli.

(0)

(1)

(n)

Controlled−C’

Figure 4.8: The circuit C ∼ (7 15 31).

Theorem 4.15 Let (µ,X) be a growth process on n > 3 lines, where µ is a uniform distribution on a
subset of X such that Σ = supp(µ) is gate-symmetric with respect to X and contains the Toffoli and
controlled-NOT gates. Then the support of the growth process is A1,n.

Proof: Same argument as in Theorem 4.14.

Since the limiting distribution, if one exists, is uniform over the support of the growth process,
the limiting distribution of non-bandwidth-limited is uniform over a large fraction of the symmetric
group. One way to reduce the support is to use bandwidth-limited growth processes.

4.3.2 The Support of Growth Processes that are Bandwidth-limited

The support of bandwidth-limited growth processes is significantly smaller than the support of non-
bandwidth-limited growth processes. Since some fraction of the lines are fixed, i.e., read-only, the
realizable permutations correspond to a quotient group of the alternating group A2n . The n lines of
a bandwidth-limited growth process comprise r < n read-only lines and b = n− r read-write lines.
Without loss of generality, we assume that the first r lines, 1, . . . ,r are read-only and the remain-
ing lines, r +1, . . . ,n are read-write. Consequently, all realizable permutations are elements of the
quotient group A2n/Br, i.e., each element can be factored into 2r disjoint permutations, denoted σx,
such that the points of each permutation share the same unique r-bit prefix, x∈ Br. That is, for input
xx′, x remains fixed and x′ is permuted by σx, where σx is a function of x.

Since some lines are read-only, the support of distribution µ is naturally restricted to the set of
gates that only modify read-write lines. In this context, the notion of gate-symmetry is therefore
taken to be with respect to Xb, the set of gates that may comprise a circuit of bandwidth b.

The analysis of bandwidth-limited growth processes can be divided into four parts. Namely, we
consider processes where the number of read-write lines is 1, 2, 3, or greater than 3, i.e., b = 1,
b = 2, b = 3, or b > 3. In all but the b = 2 case the respective support of the growth processes can be
explicitly obtained. In the case of b = 2, determining the support is related to an open question that
is discussed in Chapter 5. We discuss the cases where b 6= 2 and then look at what happens when
b = 2.

4.3. The Support of Growth Processes on Reversible Circuits 59

Theorem 4.16 Let (µ,X1) be a bandwidth-limited growth process on n > 1 lines where b = 1,
r = n−1 and Σ = supp(µ) is gate-symmetric.

1. If Σ contains only the controlled-NOT gates, then the support of the process corresponds to
permutations σ of the form:

(x1, . . . ,xn−1,x
′
1)σ = (x1, . . . ,xn−1,x

′
1⊕ f1(x)),

where f1(x) =⊕n−1
i=1 cixi and ci ∈ {0,1}.

2. If Σ contains only Toffoli gates, then the support of the process corresponds to permutations
σ of the form:

(x1, . . . ,xn−1,x
′
1)σ = (x1, . . . ,xn−1,x

′
1⊕ f2(x)),

where f2(x) =⊕n
i=1⊕n

j=i+1 ci, jxi∧ x j and ci, j ∈ {0,1}.
3. If Σ contains both Toffoli and controlled-NOT gates, then the support of the process corre-

sponds to permutations σ of the form:

(x1, . . . ,xn−1,x
′
1)σ = (x1, . . . ,xn−1,x

′
1⊕ f1(x)⊕ f2(x)).

4. If the NOT gate is also present then the size of each of the supports is doubled, containing the
negation of the functions f1 and f2 as well.

Proof: Since all gates correspond to elements that commute with each other and each gate is its
own inverse, all circuits have a canonical form, i.e., either a circuit has one instance of the gate or
not. This corresponds to taking a linear sum (modulo 2) of the outputs of the gates and the last line
of the circuit.

In the present context, disallowing certain gates from Σ results in the same phenomenon that was
observed in the preceding subsection, namely, certain inputs are fixed-points of any permutation
realized by the growth process. Since we are interested in the general structure of the respective
support, we restrict our attention to growth processes whose distribution, µ, is uniform over the
entire set Xb, i.e., the set Σ is gate-symmetric and contains all the NOT gates, the controlled-NOT
gates, and the Toffoli gates. We now characterize the support of growth processes on circuits with
three read-write lines and processes on circuits with more than three read-write lines.

Theorem 4.17 Let (µ,X3) be a bandwidth-limited growth process on n > 3 lines, where b = 3,
r = n−3 and µ is a uniform distribution on X3. Then, the support of the growth process comprises
all permutations σ of the form (xx′)σ = x(x′τσx), where τ is a permutation on lines n−2, n−1, and
n, which is independent of x, and σx is a permutation on the three lines that is even and depends on
x.

Proof: To prove this we use a modification of Barrington’s [Bar85, Bar89] technique, which was
described in Section 2.5.2. Let ρ be a permutation on B3, and let circuit C be a realization of ρ on the
lines n−2, n−1, and n. We first need to show that if ρ is even, there is a corresponding controlled
circuit C(i), i.e., that there exists a circuit that realizes permutation ρ on lines n−2, n−1, and n, if

60 Chapter 4. Growth Processes on Reversible Circuits

and only if line i, i ≤ r, has a value of 1. Since we cannot implement a controlled-Toffoli gate on
three lines [CG75], we cannot use the construction in Theorem 4.13. However, we can leverage the
fact that ρ is even to avoid this problem.

By Theorem 4.11 we know that circuit C exists. Since the only gates that realize an odd per-
mutation on the three read-write lines are Toffoli gates and ρ must be even, there must be an even
number of Toffoli gates in C. Since there are three types of Toffoli gates

Ln−2∧n−1
n ,

Ln−2∧n
n−1 , and

Ln−1∧n
n−2 , we replace the latter two with the former, via the construction illustrated in Figure 4.9.

Note, that this does not change the number of Toffoli gates. Next replace all controlled-NOT gates
with Toffoli gates and all NOT gates with controlled-NOT gates, connecting the additional input to
line i, i.e., all controlled-NOT and NOT gates become (i)-controlled gates. Observe that if line i has
value 0, then none of the controlled gates will work; this leaves only the Toffoli gates, which are all
of the same type. Since Toffoli gates are their own inverses and there is an even number of them,
their computations will cancel each other out. Thus, if i has value 0, the resulting permutation is the
identity. However, if i has value 1, then all the controlled gates will trigger if and only they would
have triggered in the original circuit C; the resulting permutation is ρ. Thus, we have constructed a
controlled circuit C(i) that computes the even permutation ρ on lines n−2, n−1, and n.

=

(n−2)

(n−1)

(n)

Figure 4.9: A simulation of one Toffoli gate with another.

Since we can construct controlled circuits that can compute any permutation ρ ∈ A8, using
Barrington’s [Bar89] conjunction construction we can construct a circuit Cx which realizes the per-
mutation σx, that is, the circuit performs permutation ρ on lines n−2, n−1, and n if and only if the
lines 1, . . . ,r have the value x.

A controlled circuit that realizes an odd permutation can not be constructed. Using contra-
diction, suppose that we were able to construct a controlled circuit C(i) where C realizes an odd
permutation ρ. There exists an even permutation τ—which can be realized by a controlled circuit—
such such that ρτ ∼Ln−2∧n−1

n , i.e., realizes a Toffoli gate. Hence, the controlled circuit realizes
a Toffoli gate with three control lines, something that is impossible according to Coppersmith and
Grossman [CG75].

To complete the proof we show how an oblivious permutation on the lines n−1, n−1, and n is
realized. Consider a circuit comprising a C(i) control circuit and an oblivious circuit D on the three
lines. Let σxi ∼C(i) and let τ∼ D. Observe that σxiτ = τ(τ−1)xi σxi τxi = τ(τ−1στ)xi ; note that τ−1στ
is also an even permutation. Thus, C(i)D∼DC′(i), where C′ ∼ τ−1στ. Note that the oblivious circuit
D can realize any permutation in S8 on the lines n−2, n−1, and n.

A corollary of Theorem 4.17 is the following theorem, which characterizes the support of
bandwidth-b growth processes for b > 3. The proof parallels that of Theorem 4.17, except that

4.3. The Support of Growth Processes on Reversible Circuits 61

the Toffoli transformation argument is unnecessary because the construction technique used in The-
orem 4.14 suffices.

Theorem 4.18 Let (µ,Xb) be a bandwidth-limited growth process on n > b > 3 lines, r = n−b, and
µ is a uniform distribution on X3. Then, the support of the growth process comprises all permutations
σ of the form (xx′)σ = x(x′τσx), where τ is an even permutation on the b read-write lines that is
independent of x, and σx is an even permutation on the b read-write lines that depends on x.

Proof: Since only even permutations are realizable on the lines n− r +1, . . . ,n, the parity of τ
must also be even. Similarly, any even permutation ρ on Bb, can be realized by some circuit C. For
any line i, i ∈ [1,r], the circuit can be transformed into an (i)-controlled circuit via the construction
depicted in Figure 4.8. The rest of the proof mirrors Theorem 4.17.

Unfortunately, the case when b = 2 is much more challenging. Unlike the two proceeding
characterizations, characterizing the support of a bandwidth-2 growth process with currently known
techniques is not possible. In fact, such a characterization would go a long way to solving a problem
that has remained open for nearly 20 years; see Chapter 5 for an in depth discussion of the problem.

We complete this section by proving that a natural set of functions that are in the support of
bandwidth-b growth processes, where b > 2, are not in the support of bandwidth-2 growth processes.

Theorem 4.19 Let (µ,X2) be a bandwidth-limited growth process on n > 2 lines, where b = 2,
r = n−2, and µ is a uniform distribution on X2. If a realizable permutation is of the form (xx′)σ =

x(x′σx), where σx is a permutation on lines n−1 and n, and is performed for only a specific value
of x, then σx must be even.

Proof: The proof consists of two steps. First, we argue that for any i, 1≤ i≤ r, and any permutation
on lines n−1 and n of a bandwidth-2 circuit, an (i)-controlled and ¯(i)-controlled circuits that realize
the permutation can be constructed. Second, we show that if σx, for a particular x, can be realized,
then σx for any x can be realized. Finally, without loss of generality, we fix x to be 1, and argue that
any circuit that realizes σx must realize an even permutation.

Any permutation on B2 may be constructed from three permutations, (01), (02), and (03).
Figure 4.10 illustrates the controlled realizations for each of these permutations. Thus, any (i)-
controlled or ¯(i)l-controlled permutation on lines n−1 and n is realizable by combining these con-
structions in the natural way.

Suppose we have a circuit C that performs permutation σy if x = y 6= 1 and the identity if input
x 6= y. To construct a circuit C′ that realizes the same permutation if and only if x = 1, we replace all
gates that are controlled by lines i such that yi = 0. Since each such gate realizes an (i)-controlled
permutation, we replace it with a circuit that realizes the ¯(i)-controlled permutation. The only
exception is a Toffoli gate that is doubly controlled by lines i and j. However, each Toffoli gate can
be replaced by a sequence of gates that are not doubly controlled. For example, consider a Toffoli
gate that is controlled by lines i and j, i, j < n− 1 and operates on line n−1. This may be written
as ((01)(23))(i)∧(j) . Mimicking a technique of Barrington’s [Bar85], this gate may be replaced by
four singly controlled permutations (012)(i), (132)(j), (021)(i), (123)(j). Once all doubly controlled
gates are eliminated, the transformation is applied.

62 Chapter 4. Growth Processes on Reversible Circuits

(0 1) (0 1) (0 2) (0 2)(i)(i)(i)(i)

(0 3) (0 3)(i) (i)

(n)

���������
(i)

(n)

���������
(i)

Figure 4.10: Realizations of controlled 2-cycles.

Thus, without loss of generality we limit our attention to circuits that compute permutation σ1

if x = 1, and ε if x 6= 1. Let C be such a circuit and by the preceding argument, assume that C
comprises a sequence of uncontrolled and controlled circuits C(i), 1 ≤ i ≤ r. If any of the r lines
are 0, then C performs the identity permutation, ε, on the two read-write lines, and if all lines are 1
then the permutation σ1 is performed. Thus, if all lines are 0 then only gates that are not controlled
by the read-only lines will operate. Since the circuit performs ε, which is an even permutation,
the uncontrolled parts of the circuit must realize an even permutation. Now consider all singleton
inputs, i.e., where line i has value 1 and all other read-only lines are 0. On such an input, all parts
of the circuit controlled by line i will operate, however, since C must also perform the identity
permutation, the parity of the permutations performed by the controlled parts must be even. Thus,
since parity is preserved, σ1 must be even. Given any even permutation on the two read-write lines,
a circuit of length O(2n) can be constructed by mirroring the construction in [Bar85].

While the support of bandwidth-2 growth process includes a large number of permutations, it
lacks the natural set of permutations that perform a odd permutations for a single input. At the
same time, the support is much more complicated than that of bandwidth-1 growth processes. The
nature of the support of bandwidth-2 growth processes plays an important role in a well known
open problem regarding the computational power of bandwidth-4 permutation branching programs,
which are studied in Chapter 5.

4.4 Convergence of Growth Processes on Reversible Circuits

We have shown that a growth process on reversible circuits will either have a limiting distribution
or two alternating distributions. Unlike in the case of growth process on formulas, the limiting
distribution will be uniform on the support of the growth process. In fact, the size of the support is
usually quite large, on the order of Θ((2b!)2n−b

n−c), where b is the bandwidth of the growth process

4.4. Convergence of Growth Processes on Reversible Circuits 63

and c is some positive constant. Furthermore, the support of µ, the distribution on the gate set, is
relatively small, on the order of O(bn2) gates. Hence, it is not surprising that the convergence rate
of such processes is relatively slow, compared to growth processes on formulas.

To bound the rate of convergence we refer to the current literature on random walks on groups
and look at the Cayley graph induced by the growth process. The graph is d-regular, where the
degree d, is equal to the cardinality of Σ = supp(µ), and hence bounded by O(bn2). Additionally, the
size of the graph is equal to the size of the support of the growth process, and hence, is on the order of
Θ((2b!)2n−b

n−c). Thus, the diameter of the graph is bounded from below by Ω(b2n

logn), which means

that the convergence rate is also bounded from below by Ω(b2n

logn), and for non-bandwidth-limited
growth processes will in fact be polynomial in 2n. Thus, the convergence of growth processes on
reversible circuits is significantly slower than in the case of growth processes on formulas.

Using well known bounds we can bound the second eigenvalue; thus, bounding the rate of
convergence. The lower bound inequality, which was “discovered by many people” [Fri91] such as
McKay [McK81] and Alon [Alo86], bounds the second eigenvalue from below,

λ2 ≥
2
√

d−1
d

+O

(

1
d logd n

)

.

To bound the second eigenvalue from above we use the inequality exhibited by Diaconis and Saloff-
Coste [DSC93], versions of which also appeared in [Ald87] and in [Bab91]:

λ2 ≤ 1− 1
dl2 ,

where l is the diameter of G. Thus, the second eigenvalue is bounded by

1

O(n
√

b)
+O

(

logn
b2n22n

)

≤ λ2 ≤ 1−O

(

(log n)2

b3n222n

)

.

Thus, the rate of convergence will be polynomial in the diameter of the Cayley graph.

Chapter 5

Reversible Circuit Complexity

In this chapter we investigate the reversible circuit complexity of finite Boolean functions. This
chapter is divided into three parts. In Section 5.2 we investigate the complexity of finite Boolean
functions in the context of bounded bandwidth reversible circuits, in particular, when the bandwidth
is on the order of a couple of lines. The problem of characterizing the support of growth processes on
bandwidth-2 reversible circuits, which was discussed in Chapter 4, is closely related to the problem
of determining the complexity of conjunction within the context of bandwidth-2 reversible circuits.
Section 5.3 discusses polylogarithmic bandwidth reversible circuits, defines a natural hierarchy of
classes of problems that are decidable by reversible circuits with polylogarithmic bandwidth, and
relates the hierarchy to the SC hierarchy. Finally, in Section 5.4 we investigate the complexity and
constructions of several common families of Boolean functions and obtain some general criteria for
bounding the complexity of finite Boolean functions within the context of non-bandwidth-limited
reversible circuits.

5.1 Definitions

Recall from Chapter 4 that a reversible circuit C on n lines comprises a sequence of m gates, C =

g1 . . .gm, each of which is controlled by zero, one, or two lines, and each of which XOR another line
with the conjunction of the control lines; the gates are the NOT gate (

L

i), the controlled-NOT gate
(
L j

i), and the Toffoli gate (
L j∧k

i), where i, i = 1, . . . ,n, label the lines of the circuit. The output
of circuit C on input x ∈ Bn, is denoted C(x) ∈ Bn, and the composition and inverse of circuits
corresponds respectively to the concatenation and reversal of the circuits’ gate sequences. A circuit
C is bandwidth-limited if at least one line in the circuit is read-only; a bandwidth-b circuit, where
b≤ n, comprises b read-write lines and r = n−b read-only lines. We assume that lines 1, . . . ,r are
read-only lines and the remaining lines, r +1, . . . ,n, are read-write lines.

Each reversible circuit realizes a permutation on the Boolean cube Bn, which corresponds to an
element of the group S2n . We write C∼σ∈ S2n if C realizes σ and we write C∼C′ if C and C′ realize
the same permutation. An (i)-controlled circuit, denoted C(i), performs two different permutations
depending on the value of line i. If line i has value 1, the circuit performs a permutation in which line
i is fixed, otherwise the circuit performs the identity permutation. Additionally, we say that a circuit

65

66 Chapter 5. Reversible Circuit Complexity

is x-controlled, for some x ∈ Bk, k < n, if the circuit, denoted Cx, is controlled by a fixed subset of
lines of size k, called control lines. If the lines hold the value x, then Cx performs a permutation in
which the control lines are fixed, and performs the identity permutation otherwise. Unless otherwise
stated, x ∈ Br, and the control lines are the read-only lines, 1, . . . ,r.

Using the definitions of Barrington [Bar85, Bar89], a width-w permutation branching program
(w-PBP) P on n variables x1, . . . ,xn is a sequence of instructions of the form σxi or σ1, where
instruction σxi yields permutation σ ∈ Sw if xi = 1 and yields the identity, ε, otherwise; instruction
σ1 always yields σ. On input x, program P yields a permutation P(x) ∈ Sw, where P(x) is the
product of the yields of the instructions of P. A program P over group G is defined in a similar
manner [BST90], except that each instruction, σxi , yields either a group element σ ∈ G, or the
identity, and the yield of the program, P(x), is also an element of G. Thus, w-PBPs are also programs
over groups where G = Sw. The length of program P, denote |P|, is the number of instructions in P.

Let P be a program over group G on n variables, x1, . . . ,xn. Program P strongly accepts lan-
guage L⊆ Bn if there exists a σ ∈G, σ 6= ε, such that for all x ∈ Bn

P(x) =

{

ε, x 6∈ L
σ, x ∈ L

.

Program P weakly accepts language L⊆ Bn if for all x ∈ Bn

P(x) =

{

ε, x 6∈ L
σ 6= ε, x ∈ L

.

Since every finite group G can be embedded into a permutation group Sw for appropriate w, the
following definition makes sense for programs over any finite group. Adapting a definition due to
Borodin et al. [BDFP83], program P monotonically accepts L⊆Bn if there exists a point p∈ [1,w],
such that for all x∈Bn, p is not a fixed-point of yield P(x) if x∈L, and P(x) = ε if x 6∈L. Observe that
all strongly accepting programs are also monotonically accepting and all monotonically accepting
programs are also weakly accepting. Additionally, if f is the characteristic Boolean function of L,
i.e., f (x) = 1 if and only if x∈L, then we say that program P strongly computes, weakly computes,
or monotonically computes function f .

Just as in the case of reversible circuits, branching programs may be composed in several ways.
The concatenation of two programs P and P′, denoted PP′, is the concatenation of the instruction
sequences of P and P′. Since the inverse of a concatenation (PP′)−1 is P′−1P−1, the inverse of
a program P is the inverted sequence and reversed of the instructions of P. A commutator of
programs P and P′, [P,P′] = PP′P−1P′−1, mirrors the group-theoretic definition of a commutator.
Finally, the kth power of P is the concatenation of k copies of P, i.e., Pk = PP . . .P.

Let P be a program over group G. A program transformation Ψ takes a program P as an
argument and yields a new program via a basic set of operations. A transformation is either

1. a constant: Ψ(P) = τ1 for some τ ∈G,
2. a projection: Ψ(P) = P,
3. an inverse: Ψ(P) = P−1, or
4. a concatenation: Ψ(P) = Φ(P)ϒ(P) of two transformations.

5.2. Bounded Bandwidth Reversible Circuits 67

For conciseness, the composition of transformations, Ψ(Φ(P)), is commonly used, but is not
a basic operation because it is constructible from the preceding rules. An important feature is
that the resulting program Ψ(P) has length that is only a constant factor larger than the original
program. Concretely, a transformation is a word comprising placeholders and oblivious instructions,
e.g., τ1, where each placeholder is replaced by an instance of program P, or its inverse, when the
transformation is applied to P.

Applying a transformation to a constant program, which is a permutation, yields a permutation.
Hence, a program transformation is also map from G to itself. This concise characterization is used
extensively in our discussion; however, while each transformation is a map from G to itself, not all
maps are valid transformations.

5.2 Bounded Bandwidth Reversible Circuits

Bounded bandwidth reversible circuits share many similarities with bounded width permutation
branching programs (w-PBP). Thus, it is not surprising that many of the results obtained within the
context of the permutation branching program framework are also applicable to the reversible circuit
model; particularly, within the framework of bounded bandwidth reversible circuits. Thus, we first
derive the explicit relationship between bounded bandwidth reversible circuits and bounded permu-
tation branching programs, and then use the PBP framework to characterize bounded bandwidth
reversible circuits.

Theorems 5.1 and 5.3 show the equivalence between bandwidth-2 reversible circuits and width-
4 permutation branching programs. While Theorem 5.16 shows how weakly accepting 4-PBPs can
be transformed into monotonically accepting 4-PBPs of comparable size, Theorem 5.18 shows that
weakly accepting 4-PBPs cannot be transformed into strongly accepting 4-PBPs. This is in contrast
to Theorem 5.24, which shows how to transform a weakly accepting PBP of width 5 or greater into
a strongly accepting PBP!

5.2.1 Simulating Reversible Circuits with Branching Programs

In order to compare the two models we need to define what it means for one model to simulate the
other. A width-w permutation branching program P realizes a map from the Boolean cube to the
symmetric group, P : Bn→ Sw, and a reversible circuit C realizes a map C : Bn→ Bn. However, a
bandwidth-b reversible circuit C can be viewed in a different manner. Since the circuit comprises
b read-write lines and r read-only lines, depending on the values of the r read-only lines, circuit C
performs a permutation on the b read-write lines. Thus, C may also be viewed as a map of the form
C : Br→ S2b . We say that a bandwidth-b reversible circuit C simulates a w-PBP on n variables, if C
realizes the map C : Br→ S2b , where r = n and w≤ 2b, such that Cx performs permutation P(x) on
the b read-write lines. Similarly, a w-PBP on n variables simulates a bandwidth-b circuit, if w = 2b,
r = n, and P(x) is the permutation that Cx performs on the b read-write lines.

One immediate observation is that 2-PBPs cannot simulate bandwidth-1 reversible circuits if the
circuits contain Toffoli gates. Since each instruction of a 2-PBP depends on at most one variable,

68 Chapter 5. Reversible Circuit Complexity

i.e., σxi , and σ ∈ S2 must either be an identity, or the permutation (01), then each 2-PBP yields
(01) f (x), where f (x) = c0⊕

Ln
i=1 cixi, and ci ∈ {0,1}. Namely, 2-PBPs can strongly compute any

linear function and cannot compute, even weakly, any nonlinear function. Since the Toffoli gate
computes a conjunction of two inputs, no 2-PBP can simulate a Toffoli gate.

Another negative simulation result is that if 2b−2≤w≤ 2b, then bandwidth-b reversible circuits
cannot simulate all w-PBPs. A corollary of the results of Coppersmith and Grossman [CG75] is that
odd parity permutations cannot be realized by reversible circuits on more than three lines. Thus,
no instruction that yields an odd permutation can be simulated by a reversible circuit. However,
if w < 2b− 2, there exist two points, p1 = 2b− 1 and p2 = 2b− 2, such that any odd permutation
σ ∈ Sw, can be embedded into A2b as the even permutation σ(p1 p2) ∈ A2b . Thus, the permutations
yielded by the program P are preserved. Fortunately, 4-PBPs and bandwidth-2 reversible circuits
can simulate each other. For the remainder of our discussion we assume that all gates, Toffoli,
controlled-NOT, and NOT gates, are available.

Theorem 5.1 If P is a 4-PBP on n variables and length m, then there exists a bandwidth-2 re-
versible circuit of length 4m that simulates P.

Proof: There are two types of instructions that we need to consider, controlled instructions, σxi ,
and oblivious instructions, σ1. Let σxi be an instruction of P. By Theorem 4.19, the corresponding
controlled circuit, C(i) can be realized by concatenating in some order the controlled circuits that
realize the permutations (01), (02), and (03). In fact, via computational enumeration, all 24 per-
mutations can be realized in four gates or less. An oblivious instruction can be realized in nearly
identical manner by replacing all controlled gates with uncontrolled ones. Since each instruction
can be simulated by at most four gates, the result follows.

An immediate corollary of Theorem 5.1 is that any w-PBP P, w < 2b−1, can be simulated by a
bandwidth-b circuit C; furthermore, |C| ∈O(|P|).

Corollary 5.2 If P is a w-PBP on n variables such that w < 2b−1, for some b, then there exists a
bandwidth-b reversible circuit of length O(|P|) that simulates P.

Proof: By Theorems 4.17and 4.18, any even permutation on the b read-write lines may be realized
either in a controlled or oblivious form. Since every permutation in Sw can be embedded into A2b ,
using a number of gates that depends only on b, a w-PBP P can be simulated by a bandwidth-b
circuit that comprises O(|P|) gates.

The converse of Theorem 5.1 is also true.

Theorem 5.3 If C is a bandwidth-2 circuit comprising n read-only lines and m gates, then there
exists a 4-PBP of length 4m that simulates C.

Proof: To prove the latter, we need to show that each reversible gate: NOT, controlled-NOT, and
Toffoli gate, can be simulated by one or more instructions. There are three classes of gates that we
need to consider: gates that are not attached to any of the read-only lines, gates that are attached
to exactly one of the read-only lines, and gates that are attached to two read-only lines. Each gate

5.2. Bounded Bandwidth Reversible Circuits 69

that is not attached to any read-only lines and realizes a permutation, σ, on the two lines, can be
simulated by a single oblivious instruction σ1. Similarly, each gate that is attached to exactly one
read-only line, which performs a permutation σ on the two lines if the control line is 1, can be
simulated by a single controlled instruction σxi .

The only gate that is attached to two read-only lines is a Toffoli gate that is controlled by two
read-only lines and negates one of the two read-write lines, i.e.,

L j∧k
i , where j,k < n + 1 and

i = n + 1,n + 2. If both control lines j and k have value 1, then the Toffoli gate performs either
permutation (01)(23), if i = n+1, or permutation (02)(13), if i = n+2, on the two read-write lines.
The former Toffoli gate can be simulated via four instructions that form a commutator

[(012)x j ,(132)xk] = (012)x j (132)xk (021)x j (123)xk = ((01)(23))x j∧xk ,

and a similar set of four instructions simulate the latter Toffoli gate. Observe, that if either x j or xk

are 0, the commutator yields the identity and if both are 1, then the commutator yields (01)(23).
Thus, every gate can be simulated by either one or four instructions, completing the proof.

A corollary of Theorem 5.3 is that any circuit C of bandwidth b can be simulated by a 2b-PBP
that is at most four times the length of C.

Corollary 5.4 If C is a bandwidth-b circuit comprising n read-only lines and m gates, then there
exists a 2b-PBP of length 4m that simulates C.

Consequently, all characterizations of 4-PBPs are immediately applicable to bandwidth-2 re-
versible circuits. Additionally, an immediate characterization of all bounded bandwidth reversible
circuits, where b > 2, is possible, namely:

Corollary 5.5 The class of problems decidable by bandwidth-b reversible circuits, where b > 2, is
exactly NC1 [Bar89].

Proof: This is an immediate consequence of Corollaries 5.2 and 5.4, and Barrington’s characteri-
zation of w-PBP, w > 5.

5.2.2 On the Power of Bandwidth-2 Reversible Circuits and 4-PBPs

The power of 4-PBPs has long been a major open issue. It is well known that 3-PBP must be of
length exponential in n to compute the conjunction of n variables [Bar85], while a 5-PBP requires
a polynomial number of instructions to compute the conjunction on n variables [Bar89]. Thus,
a bandwidth-3 reversible circuit can compute the conjunction of n lines using only a polynomial
number of gates. In fact, bounded bandwidth reversible circuits of bandwidth greater than two,
have the computing power corresponding to the complexity class NC1. In the case of bandwidth-2
circuits, the question of whether polynomial length circuit can compute the conjunction of n lines
remains open. We further study this problem, by investigating programs over groups.

70 Chapter 5. Reversible Circuit Complexity

Programs over Subgroups of S4

Our first observation is that programs over the subgroups of S4, i.e., 4-PBPs whose instructions may
only yield elements of a subgroup of S4, are inherently not very powerful. There are few interesting
subgroups of S4; interesting in the sense of programs over the respective subgroup. Apart from
the groups S3 = D3, D4, and A4, all remaining subgroups of S4 are isomorphic to direct products
of cyclic groups, or the groups D3 and D4 [Bur11]. Since we are primarily interested in strongly
accepting programs, programs over direct products have the same computational power as programs
over one of the components of the direct product. Thus, we need only consider the three groups
listed above.

Barrington [Bar85] showed that programs over S3, which is also equal to D3, the dihedral group
of degree 3, can compute the conjunction of n variables, albeit using programs of exponential length.
Barrington et al. [BST90] also proved that programs over nilpotent groups are even weaker, they
cannot compute the conjunction of n variables for sufficiently large n. Since the dihedral group
of degree 4, D4, is nilpotent, no program over D4 can compute the conjunction of n variables ei-
ther. We give a tight bound proving that no program over D4 can compute the conjunction over
three variables. The lower bound, a conjunction on two variables, is realized by the program
(13)x1((01)(23))x2 (13)x1((01)(23))x2 .

Recall that an embedding D4 in S4 is generated by the elements {(0123),(13)}. Using a tech-
nique similar to the one in [Bar85] the following sequence of lemmas proves our claim. We first
show that the computational power of programs over D4, is equal to the computational power of
4-2-parity circuits and then argue that a 4-2-parity circuit cannot compute the conjunction function.

A 4-2-parity circuit is a two-level circuit comprising a single unbounded fan-in modulo-4 gate
fed by unbounded fan-in parity gates, whose inputs are the variables. A 4-2-parity circuit C com-
putes a Boolean function f if

C(x) =

{

ι, f (x) = 1
0, f (x) = 0

.

for some fixed ι ∈ {1,2,3}.

Lemma 5.6 Let C be a 4-2-parity circuit that computes f on n variables and contains s parity
gates. Then, there exists a program over D4 of length O(ns) that strongly computes f .

Proof: Let ni be the fan-in of the ith parity gate and let x jk be the kth input to the gate. The gate is
simulated by sequence Pi of 2ni instructions of the form

Pi = σx j1 σx j2 . . .σx jni τx j1 τx j2 . . .τx jni

where σ = (01)(23) and τ = (02) are in D4. Since σ and τ are their own inverses, the yield of Pi is
the identity if the parity of the inputs is even. Otherwise, if the parity of the inputs is odd, the yield
is στ = (0123), which is an increment modulo-4.

Concatenating the instruction sequences of length 2ni ≤ 2n for each of the s parity gates yields
a program of size at most 2ns that strongly computes f .

5.2. Bounded Bandwidth Reversible Circuits 71

Lemma 5.7 Let P be a program over D4 on n variables and of length m that strongly computes
function f . Then there is a 4-2-parity circuit C comprising O(m) parity gates that computes f .

Proof: For each instruction σxi in P, rewrite σ as a product of the two generators: σ = τbρc, where
τ = (13), ρ = (0123), b ∈ Z2, and c ∈ Z4, and hence, σxi = (τxi)b(ρxi)c. For conciseness, the ith
instruction is written as τaibiρaici , where ai ∈ {x1, . . . ,xn,1}, bi ∈ Z2, and ci ∈ Z4. Thus, program P
is a sequence of two types of instructions

P = τa1b1ρa1c1 τa2b2ρa2c2 . . .τambmρamcm ,

which we reorder such that all instructions of the form τaibi , i = 1, . . . ,n, precede all instructions of
the form ρaici , i = 1, . . . ,n. Observe that if ci ≡ 0 mod 2, then the instruction ρaici commutes with
all instructions of the form τp(x)—this is a short form for the sequence τx1q1τx2q2 . . .τxnqn , qi ∈ Z2,
where p(x) =⊕n

i=1qixii, qi ∈Z2, is a linear function on n variables. Thus, we need only worry about
the case where ci ≡ 1 mod 2.

If ci ≡ 1 mod 2, via the identities ρτ = τρ3 and ρ3τ = τρ, rewrite ρaiciτp(x) as τp(x)(ρ2)ai p(x)ρaici .
Starting from the end of the sequence and working towards the front, collect all τaibi instructions
and shuffle them towards the front of the sequence. The resulting sequence is of the form

P = τp(x)ρg1(x)ρg2(x)...ρgm(x),

where gi(x) is a function of the form ai(2di pi(x)+ ci), pi(x) is a parity function that corresponds to
a partial collection of instructions yielding τ, and di = ci mod 2. For example, the step (m− k) of
the shuffle looks like

P = τa1b1ρa1c1 τa2b2 ρa2c2 . . .τakbk ρakck τpk+1(x)ρgk+1(x) . . .ρgm(x)

= τa1b1ρa1c1 τa2b2 ρa2c2 . . .τakbk τpk+1(x)(ρ2)ak pk+1(x)ρakck ρgk+1(x) . . .ρgm(x)

= τa1b1ρa1c1 τa2b2 ρa2c2 . . .τpk(x)ρgk(x)ρgk+1(x) . . .ρgm(x).

Finally, since the modulo-4 gate always counts from zero, this corresponds to applying the yield
of P to point 0. Since 0 is a fixed-point of permutation τ, we can drop the prefix τ p(x) from the
transformed program, ending up with the program

P′ = ρg1(x)ρg2(x)...ρgm(x).

Since ρ corresponds to an increment modulo-4, each instruction performs g i(x) increments
modulo-4. Hence, we need only show how to compute g(x) using parity gates. Since g i(x) =

ai(2di pi(x) + ci) = 2aidi pi(x) + aici, ρgi(x) = ρ2aidi pi(x)ρaici , where ci and di = ci mod 2 are con-
stants. If di = 0, the resulting product is ρaici which is realized by ci parity gates, with input ai,
feeding into the modulo-4 gate. Otherwise, if di = 1, the first part of instruction ρ2ai pi(x)ρaici is
rewritten as

ρ2ai pi(x) = ρ1ρ1ρai⊕pi(x)ρai⊕1ρ1⊕pi(x),

which is realized using five parity gates; this concludes the proof.

72 Chapter 5. Reversible Circuit Complexity

An immediate corollary of the preceding lemmas is that programs over D4 and 4-2-parity circuits
are equivalent.

Corollary 5.8 The function f is strongly computable by a program over D4 if and only if the func-
tion is computable by a 4-2-parity circuit. Furthermore, the length of the program and the number
of parity gates in the circuit are within factor of O(n) of each other.

To complete our claim we prove that 4-2-parity circuits cannot compute the conjunction of three
variables, implying that neither can programs over D4.

Lemma 5.9 No 4-2-parity circuit can compute the conjunction of three variables.

Proof: A 4-2-parity circuit on three variables consists of at most seven different parity gates: the
power set of {x0,x1,x2}minus the constant parity gate—since conjunction is 0-preserving, constants
cannot be used. We need not consider parity gates that perform negation since each such parity gate
may be simulated by a constant parity gate followed by three copies of the unnegated gate, i.e., if a
parity gate computes 1⊕ p(x), this is the same as four parity gates: a constant 1 and three gates that
compute p(x). Each type of gate is used at most three times since all the parity gates feed into the
mod-4 gate. Hence, to construct the circuit we need to solve the following set of linear equations
modulo-4 where ap(x) denotes the number of times the parity gate that computes p(x) is used and
the right-hand side denotes the resulting value of the circuit—the circuit must yield a nonzero value
if and only if the conjunction is true.

ax0+ ax0⊕x1+ ax0⊕x2+ ax0⊕x1⊕x2 = 0 mod 4
ax1+ ax0⊕x1+ ax1⊕x2+ ax0⊕x1⊕x2 = 0 mod 4

ax2+ ax0⊕x2+ ax1⊕x2+ ax0⊕x1⊕x2 = 0 mod 4
ax0+ ax1+ ax0⊕x2+ ax1⊕x2 = 0 mod 4
ax0+ ax2+ ax0⊕x1+ ax1⊕x2 = 0 mod 4

ax1+ ax2+ ax0⊕x1+ ax0⊕x2 = 0 mod 4
ax0+ ax1+ ax2+ ax0⊕x1⊕x2 = y 6= 0 mod 4

Summing these equations together results in the unsatisfiable equation 0 = y 6= 0. Hence, a 4-2-
parity circuit cannot compute the conjunction of three or more variables.

This lemma, in conjunction with the preceding corollary, implies our claim.

Theorem 5.10 No program over D4 can strongly compute the conjunction of three variables.

Proof: By Corollary 5.8 the computational powers of 4-2-parity circuits and of programs over D4

are the same. By Lemma 5.9, 4-2-parity circuits cannot compute the conjunction of three or more
variables. Hence, neither can programs over D4.

The remaining proper subgroup of S4 is the alternating group A4. While programs over A4 can
compute the conjunction on n variables, via a construction that is similar to the one used in [Bar85],
Barrington et al. [BST90] showed that programs over A4 that strongly compute the conjunction of n

5.2. Bounded Bandwidth Reversible Circuits 73

variables must be of exponential length. In [Bar89, BST90] it is conjectured that no program over a
solvable group—all finite groups of order less than 60 are solvable [DH92]—can compute the con-
junction on n variables. If the conjecture is true, then the alternating group A5 is the smallest group
over which polynomial length programs can compute the conjunction on n variables. This would
imply that a reversible circuit must be of bandwidth-3 or greater in order to compute the conjunc-
tion over n variables. Since the conjecture remains open, there may yet be a clever construction that
realizes a polynomial length program over S4 that computes a conjunction. To get further insight
into this problem we differentiate between programs based on modes of acceptance, i.e., strongly
accepting, weakly accepting, or monotonically accepting. We study the computational power of
each class of programs and the relationships between the classes.

The Computational Power of Weakly Accepting and Monotonically Accepting 4-PBPs

The acceptance mode of a permutation branching program significantly affects the computational
power of the model. Since each mode of acceptance—weak, monotone, and strong—is subsumed
by its predecessors, a natural complexity hierarchy is formed. We show that weakly accepting
width-4 branching programs may be transformed into monotone accepting width-4 branching pro-
grams, and more importantly, that such programs cannot necessarily be transformed into strongly
accepting programs. However, in the case of width-w permutation branching programs, w > 4, weak
acceptance is equal to strong acceptance. Furthermore, transforming a weakly accepting program
into a monotonically accepting or a strongly accepting program requires only a linear increase in
size of the original program; the magnification factor only depends on w. Thus there is a natural gap
between width-4 and width-5 permutations branching programs. These comparisons are particularly
useful in the context of bounded bandwidth reversible circuits because it illustrates a natural trade-
off between the complexity of the computation and the complexity of the post-processing phase
that entails ‘reading’ the result from the outputs of the circuit. We first compare the computational
power of programs that accept weakly versus programs that accept strongly. Namely, we prove that
weakly accepting programs can be significantly shorter than their strongly accepting analogues. We
first need the following definition and lemma. An ordered sequence of permutations T is said to be
faithful if the product of any nonempty subsequence of T is not the identity.

Lemma 5.11 For any integer w > 1, there exists a faithful sequence Tw of all
(w

2

)

distinct 2-cycles
of Sw.

Proof: The proof is by induction on w. In the base case where, w = 2, S2 only has one 2-cycle.
Thus, the only nonempty subsequence of T2 is T2, which contains one 2-cycle and whose product is
not the identity; hence T2 is faithful.

Assume that for some w0 > 1 there exists a faithful sequence Tw0 . For w = w0 +1 we use Tw0 to
construct Tw.

Each 2-cycle in Sw either belongs to Tw0 , or is of the form (iw) where i < w. Let Uw be any
sequence comprising all 2-cycles of the form (iw). We claim that the concatenation Tw = Tw0Uw

is faithful. Let τ be the product of any nonempty subsequence of Tw0 and υ be the product of any
nonempty subsequence of Uw. First, υ can be represented by a single cycle (i1i2...ik w), i j < w,

74 Chapter 5. Reversible Circuit Complexity

i.e., the product will never be the identity. Second, by the inductive hypothesis, τ is not the identity.
Finally, since w is not a fixed-point of υ and is a fixed-point of τ, we have τ 6= υ−1, and thus the
product of any nonempty subsequence of Tw is not the identity.

Corollary 5.12 There is a linear time algorithm for constructing the sequence Tw.

Using the sequence Tw as the basis of our construction, we show that for some languages, such
as the disjunction on n variables, the weakly accepting program can be significantly shorter than a
strongly accepting one.

Theorem 5.13 Let g(n) be the complexity of strongly computing the disjunction on n variables by
a w-PBP, where w > 4. The complexity of weakly computing the disjunction of n variables by a
w-PBP is at most c ·g(n

c) where c =
(w

2

)

−1.

Proof: First, divide the n variables into groups of size n
c and for each group construct a strongly

accepting permutation branching program that computes their disjunction such that its complexity
is g(n

c). Furthermore, each of these subprograms, denoted Pi, will yield a specific permutation, σi,
if the disjunction is true, and ε otherwise.

Second, concatenate these subprograms P = P0P1 . . .Pc. If we choose the permutations appro-
priately, program P will yield ε if and only if each of the subprograms, Pi, yields ε, i.e., all of n

c

disjunctions are false. It only remains to choose the permutation.
By the Lemma 5.11, for any symmetric group Sw there is a sequence of

(w
2

)

2-cycles such that the
product of a subsequence is equal to ε if and only if the subsequence is empty; let T = τ1τ2 . . .τ(w

2)
be that sequence. If σi = τiτi+1, the sequence σ1σ2 . . .σc also has this property. Thus, Pi yields σi if
and only if the disjunctions of its share of variables is satisfied.

Hence, program P yields ε if and only if the disjunction of the n variables is false.

Since the yield P(x) of a strongly accepting program must either be ε or a fixed nonidentity
permutation, if the function being computed is nonlinear, in all likelihood the yield is an even
permutation. Thus, Theorem 5.13 assumes that each subprogram Pi yields an even permutation.
In all cases but one, the cycle-structure of Pi(x) is not an issue either. Using a single commutator
[Pi(x),σ1], where σ1 is an oblivious instruction, transforms the yield into a 3-cycle, and conjugating
the 3-cycle with another appropriate oblivious instruction yields the required 3-cycle; Table 5.1 lists
the six different forms of the yield Pi(x). If the yield of Pi is a 3-cycle or 2-cycle, no transformation,
apart from the conjugation, is necessary. Otherwise, each program Pi can be transformed into one
that yields a 3-cycle and whose length is at most 2|Pi|+4.

Only yields of the form (rs)(tu) of programs over S4 cannot be transformed. However, one
can construct programs over S4—albeit of exponential length—that compute the disjunction and
yield a 3-cycle length; in this case Theorem 5.13 is also applicable. In the case of programs over
A4 a weakly accepting program P = P1P2, which computes the disjunctions can be constructed,
where P1 and P2 compute the disjunction of half the variables each and yield (01)(23) and (02)(13)

respectively. Thus, P yields ε if the disjunction is false, or (01)(23), (02)(13), or (03)(12) if the
disjunction is true. Furthermore, program P is at most half the size of a strongly accepting program

5.2. Bounded Bandwidth Reversible Circuits 75

Form of P(x) w σ1

(r1r2 . . . rn) . . ., n > 3 w≥ n (r1r2 . . . rm), m = 2bn/2c−1
(rst)(uvw) . . . w≥ 6 (rwtus)
(rst)(uv) . . . w≥ 5 (rs)(uv)
(rst) w≥ 3 N/A
(rs)(tu)(vw) . . . w≥ 6 (rtv)
(rs)(tu) w≥ 5 (rsv), v 6= r,s, t,u
(rs) w≥ 3 N/A

Table 5.1: Forms of P(x) and the corresponding σ1.

over A4 that computes the disjunction. However, weakly accepting programs are unsatisfying in the
following sense.

Suppose C simulates a weakly accepting program over S4. Hence, the read-only lines correspond
to the variables and the two read-write lines represent the yield of the program. Suppose that the
read-write lines are initially 0. Since the program being simulated is weakly accepting, some of the
permutations that are yielded, e.g., (123) and (132), have 0 as a fixed-point. Thus, for those inputs
that yield such permutations, the output of the read-write lines of C remains unchanged—assuming
the read-write lines were initially 0. Hence, determining the result of the computation by reading
the output lines is not possible and requires that the computation be performed twice with different
initial values on the read-write lines. This requirement seems to inherently violate the notion of
what it means for a circuit to compute a Boolean function.

To solve this problem we use a slightly stronger notion of acceptance, namely, monotone ac-
ceptance. Recall that a program monotonically accepts x if it yields a permutation with a particular
fixed fixed-point if and only if x is not in the language. Thus, the corresponding circuit first initial-
izes the read-write lines to the fixed-point, simulates the program, and then XORs the result with
the fixed-point. The output is the disjunction of the read-write lines, which will be 0 if and only if
the input x to the circuit was not in the language. Fortunately, we can convert a weakly accepting
program over S4 into a monotonically accepting one.

Theorem 5.14 . Let P be a weakly accepting program over S4, such that for all x, P(x) ∈ A4. Then
the program Ψ(P) is a monotonically accepting program over S4, where

Ψ = P3 ((01)P2(02)P4(03)
)2

(02)(13).

Proof: The characteristic map of Ψ on elements of A4 is

Ψ(ε) = ε

Ψ((023)) = Ψ((01)(23)) = Ψ((031)) = (01)(23)

Ψ((123)) = Ψ((012)) = Ψ((02)(13)) = Ψ((132)) = Ψ((032)) = (02)(13)

Ψ((021)) = Ψ((03)(12)) = Ψ((013)) = (03)(12).

Since (01)(23), (02)(13), and (03)(12), have no fixed-points, the result follows.

76 Chapter 5. Reversible Circuit Complexity

Since transformation Ψ only works on programs whose yields are in A4, we use the following
theorem to transform programs that yield odd permutations into programs that only yield even
permutations.

Theorem 5.15 The characteristic map of transformation

Ψ = [(0123),P](P(23))6P6,

is such that Ψ(S4)⊆ A4 and Ψ(σ) = ε if and only if σ = ε.

Proof: By enumeration of the characteristic map on all 24 elements of S4.

Composing these theorems yields the desired theorem.

Theorem 5.16 There exists a transformation Ψ such that for any weakly accepting program over
S4, Ψ(P) is a monotonically accepting program for the same language over S4.

In fact, the transformation increases the length of P by a factor of at most 14× 15 + 1 = 211.
This implies that the computational power of programs over S4 that monotonically accept is the
same as the power of weakly accepting programs over S4. We can even say something stronger,
namely that monotonically accepting programs over A4 have the same power as weakly accepting
programs over A4.

Corollary 5.17 If P is program over A4 that weakly computes f , there exists a program over A4

that monotonically computes f and is of length 15|P|+O(1).

Proof: First apply Theorem 5.14 to P. Since the parity of the constant permutations in the trans-
formation is even, we can collect the permutations at one end of the program via the standard
conjugation technique used in Theorem 4.17. Thus, the resulting program will be over A4.

The equivalence between weakly accepting and monotonically accepting width-4 programs begs
the comparison between strongly accepting and monotonically accepting width-4 programs. The
comparison yields a natural characterization of the difference in computational power of 4-PBPs
versus 5-PBPs. Namely, we would like an analog of Theorem 5.16, that is, a general transformation
Ψ that transforms any weakly accepting program into a strongly accepting one. Amazingly, such a
transformation cannot exist for programs of width 4, but does exist for programs of greater width!
This is a natural distinction between the computational powers of 4- PBPs and 5-PBPs!

Theorem 5.18 There does not exist a transformation Ψ such that for any program P over S4, Ψ(P)

is a strongly accepting program computing the same Boolean function as P.

Proof: We shall consider weakly accepting programs over S4 whose yields are from the Klein
group

K = {ε,(01)(23),(02)(13),(03)(12)} ⊂ S4.

By contradiction, assume that there exists a transformation Ψ that converts weakly accepting pro-
grams into strongly accepting ones. Let σ1 = (12)(34), let σ2 = (13)(24), and let Q = σx1

1 σx2
2 be

5.2. Bounded Bandwidth Reversible Circuits 77

a program. Now, consider the structure of Ψ(Q). Ψ(Q) is a word comprising constant instructions
of the form τ1 and nonconstant instructions: either σx1

1 or σx2
2 . We can rewrite the program, without

changing the function, i.e., σxiτ1 = τ1(τ−1στ)xi . Furthermore, since conjugation preserves structure,
the structure of each instruction is preserved.

First, since Ψ(Q) must yield ε if Q yields ε, all the constant instructions cancel each other out.
Second, since all instructions of Q, and hence of Ψ(Q), belong to the Klein group, the instructions
commute. Hence, Ψ(Q) can be rewritten as Ψ(Q) = τx1

1 τx2
2 , where τ1,τ2 ∈ K. Unless τ1 = τ2,

Ψ(Q) is not strongly accepting, and if equality holds then Ψ(Q) yields ε on assignment x1 = x2 = 1,
contrary to what Q yields. Hence, Ψ cannot exist.

In fact, a similar argument can be extended to programs over A4. If a transformation did exist,
then a polynomial length program computing the conjunction of n variables would be possible.
Namely, we use Barrington’s divide and conquer construction [Bar89]. If P and P ′ each strongly
compute the conjunction on 2k disjoint variables, where the positive yields of P and P′ are distinct,
then PP′ weakly compute the conjunction of 2k+1 variables, and Ψ(PP′) strongly computes the
conjunction of 2k+1 variables. Repeating this composition logn times yields polynomial length
program, and this is impossible according to [BST90]. However, a general transformation does
exist on programs of width greater than four.

Weak Acceptance Equals Strong Acceptance for w-PBPs, w > 4

If w > 4 then a weakly accepting w-PBP can be transformed into a strongly accepting program with
only a linear increase in size. To outline the construction, the goal is to construct a transformation
Ψπ that is characterized by the map

Ψπ(σ) =

{

ρ, σ = π
ε, σ 6= π

,

for some ρ 6= ε and π,ρ,σ ∈ Sw. Hence, given program P, if Q = Ψπ(P), then Q yields ρ on input
x if and only if P yields π on input x, and yields ε otherwise. In fact, we need only exhibit the
construction for a fixed π0, say π0 = (01 . . .w−1) since

Ψπ(P) = Ψπ0(Pπ−1π0).

Concatenating |Sw|−1 copies of Ψπ(P) for each π ∈ Sw \ ε, yields the desired transformation.
To implement Ψπ, the transformation verifies the point order of permutation π0 by comparing the

adjacent points within the permutation. The comparison is performed by a simpler transformation
ϒτ on transpositions, where ϒτ(υ) = ε if and only if υ 6= τ. Computing the conjunction of these
comparisons via the standard commutator transformation of [Bar89] completes the construction.
We begin with the construction for ϒτ.

Lemma 5.19 Let w > 4 and let τ ∈ Sw be a 2-cycle. There exists a transformation ϒτ such that
ϒτ(ε) = ε and for every 2-cycle υ∈ Sw, ϒτ(υ) 6= ε if and only if υ = τ. Furthermore, the permutation
ϒτ(τ) can be represented by two disjoint 2-cycles.

78 Chapter 5. Reversible Circuit Complexity

Proof: Let τ = (rt) ∈ Sw and let (su) be a 2-cycle such that [(rt),(su)] = ε. The straight-line
composition of ϒτ is:

ϒ0 = [(rs),υ]

ϒ1 = [(rus),ϒ0]

ϒ2 = ϒ1(su)

ϒ3 = (ϒ2)
2

ϒ4 = ϒ3(tu)

ϒ(rt) = (ϒ4)
6

If υ commutes with (rs)—υ is either a disjoint 2-cycle or the identity—then ϒ0(υ) = ε, implying
that ϒ1(υ) = ϒ3(υ) = ϒ(rt)(υ) = ε. Otherwise, there are two cases: either υ = (rv), v 6= s or υ = (vs),
v 6= r.

If υ = (rv), then ϒ0((rv)) = (rvs). If v = u 6= t then ϒ1((rv)) = ε, and so does ϒ(rt)((rv)). Oth-
erwise, ϒ1((rv)) = (rs)(uv), ϒ2((rv)) = (ruvs), and ϒ3((rv)) = (rv)(su). If v 6= t, then ϒ4((rv)) =

(rv)(stu) and hence ϒ(rt)(rv) = ε. On the other hand, if v = t, then ϒ4((rt)) = (rust) and hence,
ϒ(rt)(rt) = (rs)(tu).

If υ = (vs), then ϒ0((vs)) = (rsv). If v = u 6= t. then ϒ1((vs)) = ε, and so does ϒ(rt)((vs)).
Otherwise, ϒ1((vs)) = (rv)(us), ϒ2((vs)) = (rv), and ϒ3((vs)) = ε, implying that ϒ(rt)(vs) = ε.

Hence, ϒ(rt)(υ) 6= ε if and only if υ = (rt), and ϒ(rt)((rt)) = (rs)(tu).

To construct the main transformation, Ψπ, we need to formalize the behaviour of the conjugate
operation.

Lemma 5.20 (Selection Lemma) Let σ be a cycle of the form (rs . . . tu . . .) where the ellipses (. . .)
represent zero or more additional points within the cycle. Then σ(su)σ−1 = (rt).

Proof: We can rewrite σ as:

σ = (rs . . . tu . . .)

= (rs . . . t)(ru . . .)

= (trs . . .)(ru . . .)

= (trs)(t . . .)(ru)(r . . .)

= (trs)(ru)(t . . .)(r . . .)

= (turs)(t . . .)(r . . .).

Setting ρ = (t . . .)(r . . .), and rewriting the conjugate

σ(su)σ−1 = (turs)ρ(su)ρ−1(tsru)

= (turs)(su)(tsru)

= (rt),

yields the result.

5.2. Bounded Bandwidth Reversible Circuits 79

Corollary 5.21 If σ is a permutation that is represented by the cycle (rst . . .), then σ(st)σ−1 = (rs).

To check the adjacent order of the points in a permutation, we use corollary 5.21 in conjunction
with lemma 5.19. To verify that the permutation is (12 . . .w), w checks must be performed, to ensure
that 1 follows w, 2 follows 1, and so on. Each of these checks is performed by a conjugation trans-
formation composed with ϒτ transformation. The conjunction of these w checks is then computed.
This formalized in the following theorem.

Theorem 5.22 Let w > 4 and let π0 = (01 . . .w− 1) ∈ Sw. There exists a width-w program trans-
formation Ψπ0 that is characterized by the map that sends every element except π0 to ε and sends
π0 to some nonidentity element.

Proof: Let Ξr = P(st)P−1, r = 0 . . .w−1, be the conjugation transformation where s = (r +1 mod
w) and t = (s+1 mod w), i.e., rst corresponds to a triple of points in permutation π0.

Without loss of generality, assume that the characteristic map of ϒ(rs) maps (rs) to (rs)(tu),
where u = (t + 1 mod w). Compose the Ξr transformation with ϒ(rs) to construct the adjacency
checking transformation

Φr(P) = φrϒ(rs)(Ξr(P))φ−1
r ,

where φr = (0r)(01)(0s)(03)(0t)(04)(0u). Conjugating by φr is characterized by a map that sends
ε to ε and sends (rs)(tu) to (01)(34).

Finally, Ψπ0 is a combination of the transformations Φr, r = 1 . . .w− 1. Define the recursive
commutator of an ordered set of permutations to be

[{ρ1,ρ2, . . . ,ρk}] = [ρ1, [{ρ2, . . . ,ρk}]],

where [{ρn−1,ρn}] = [ρn−1,ρn]. Since [(01)(34),(012)] = (012), the construction of Ψπ0 is the
recursive commutator of the set {Φ1,Φ2, . . . ,Φn,(012)},

Ψπ0 = [{Φ1(P),Φ2(p), . . . ,Φn(P),(012)}].

The characteristic map of Ψπ0 sends π0 to (012) and sends all other permutations to ε. If the
permutation is not π0 then the characteristic maps of at least one Φi, i = 1 . . .w− 1 will send the
permutation to the identity—the recursive commutator of the yields of the Φ is yields the identity.
On the other hand, if all Φis yield (01)(34), the yield of the recursive commutator is (012). Finally,
note that the size of the transformation Φπ0 only depends on Sw. Hence, the transformation increases
program size by a constant factor.

Corollary 5.23 For all w > 4 the width-w program transformation Ψπ = Ψπ0(Pπ−1π0) is charac-
terized by the map that sends every element except π to ε and sends π to (012).

Using the preceding corollary we can now construct the transformation Ψ that transforms any
weakly accepting program into a strongly accepting one.

80 Chapter 5. Reversible Circuit Complexity

Theorem 5.24 If P is a weakly accepting program over Sw, w > 4, which computes a Boolean
function f , then Ψ(P) strongly computes Boolean function f , where transformation Ψ is

Ψ = ∏
π∈Sw\ε

Ψπ(P).

Proof: Each of the Ψπ transformations transforms P into a program that yields (012) if and only
if P yields π. Hence, if P yields a nonidentity, exactly one of the transformed programs will yield
(012) and the rest will yield ε. Thus, for any input x, Ψ(P) yields (012) if and only if P does not
yield ε; Ψ(P) yields ε otherwise. The length of Ψ(P) is O(|P|) and depends only on w.

Thus, the computational power of weakly accepting and strongly accepting programs of width-
5 or greater is equivalent. The same is true for reversible circuit of bandwidth-3 or greater. Thus,
there is a natural distinction between the power of 4-PBPs (bandwidth-2 reversible circuits) and
(5+)-PBPs (bandwidth-(3+) reversible circuits)! Finally, by Corollary 5.5 the class of problems
decidable by bounded bandwidth reversible circuits of bandwidth greater than two is NC1. We now
shift our attention to polylogarithmic bandwidth reversible circuits.

5.3 Polylogarithmic Bandwidth Reversible Circuits

Polylogarithmic bandwidth (polylog-bandwidth) reversible circuits comprise b ∈ O((logn) i) read-
write lines and r = n−b read-only lines. Since such circuits of unlimited length can trivially com-
pute any Boolean function in P, we focus on polynomial size polylog-bandwidth circuits.

Define the class RCi to be the class of problems solvable by polynomial size reversible circuits
of bandwidth O((log n)i). Note that the class of problems decidable by bounded bandwidth polyno-
mial size reversible circuits, which is also NC1, is the class RC0, i.e., NC1 = RC0. Define the class
RC =∪i>0RCi to be the class of problems solvable by polynomial size polylog-bandwidth circuits.
Since RCi ⊆ RCi+1, the complexity classes RCi form a hierarchy, called the RC hierarchy.

There is a natural relationship between the RC hierarchy and the SC hierarchy, which comprises
the classes SCi. Recall from Section 2.5.3 that SCi is the class of problems that is decidable by a
Turing machine that uses O((logn)i) space and a polynomial amount of advice. In this section we
prove the equivalence between RC and SC by proving two things: first, we show that RC i ⊆ SCi,
and second, we show that SCi ⊆ RC2i.

Theorem 5.25 For all i > 0, RCi ⊆ SCi.

Proof: Let C be a polynomial size reversible circuit on n inputs that is of bandwidth O(log(n) i). We
construct a Turing machine T that simulates circuit C and uses a work tape of length O(log(n) i), an
input tape, and an advice tape. The input tape contains the input comprising the n input variables to
C and the advice tape contains the circuit, encoded in O(|C| log(n)) space as a sequence of 4-tuples
(g,c1,c2,o), where each 4-tuple comprises four integers, the gate type, the control lines, and the
output line. The work tape stores the state of the O(log(n)i) read-write lines of C, and a counter of
O(logn) bits to keep track of the input tape head and locate the read-write lines on the work tape.

5.3. Polylogarithmic Bandwidth Reversible Circuits 81

Machine T simulates circuit C one gate at a time and stores the intermediate result on the work
tape. The machine stores the gate type in its finite state, and uses the counter to locate the control
and output lines on the work tape. The output is computed within the finite state and written over
the previous state of the output line. The final output of T comprises the final state of all the read-
write lines. Since C is polynomial in size the computation of T takes O(|C|n log2 n) steps and uses
O(log(n)i) space. Thus, simulating C is in SCi, and hence RCi ⊆ SCi.

The converse is not necessarily true since the class SCi is defined within the framework of gen-
eral computation whereas the class RCi requires that the problems within it be decided reversibly.
However, via Bennett’s [Ben89], all problems in SCi are decidable by polynomial size reversible
circuits of bandwidth O((log n)2i).

Theorem 5.26 For all i > 0, SCi ⊆RC2i.

Proof: Let T be any Turing machine that only uses O((log n)i) work space and a polynomial
amount of advice, where n is the size of the input. Since i > 0, T may use at least O(logn) space,
we can use Bennett’s construction to construct a reversible Turing machine R that uses quadratic
space, O((logn)2i), and polynomial time to simulate T [Ben89]. Fixing n, and hence the advice
to R, we argue that R can be simulated by a polynomial size reversible circuit C of bandwidth
O((logn)2i).

Let c be a constant that depends only the size of the input alphabet, work tape alphabet, finite
state, and the degree of the polynomial p(n), where p(n) bounds the length of the advice tape.
Circuit C comprises of several parts:

input-tape lines: n read-only lines corresponding to the input,
advice-head lines: at most c log n read-write lines corresponding to the advice tape (counter),
input-head lines: at most c logn read-write lines corresponding to the input tape head (counter),
work-head lines: at most c log n read-write lines corresponding to the work tape head (counter),
finite-state lines: at most c log n read-write lines, corresponding to the finite state control of R, and
work-tape lines: at most c(log n)2i read-write lines corresponding to the work tape, where each

cell of the tape is simulated by O(1) read-write lines.

Using a simplification akin to the one in [Ben73], we assume that the instructions of R can either

• obliviously move the work tape head,
• read/write a cell of the work tape,
• obliviously move the input tape head,
• read a cell of the input tape,
• obliviously move the advice tape head,
• read a cell of the advice tape, or
• do nothing.

The three oblivious head movements correspond to an increment or decrement of the advice-head,
input-head, and work-head counters, a permutation that can be realized in a polynomial number of

82 Chapter 5. Reversible Circuit Complexity

gates since the counters are at most c log n lines wide. The increments and decrements are controlled
by the finite-state lines.

Since the advice tape can be thought of as a truth table of a Boolean function, say α, on at most
c log n variables, which can be realized by a polynomial size controlled circuit on the advice-head
lines. The circuit is controlled by the finite-state lines and the operation comprises three steps:
perform α on the advice-head lines, save the output in the finite-state lines, and perform α−1 on the
advice-head lines.

Similarly, reading the input corresponds to a controlled copy of a single input-tape line into
the finite-state lines. The copy is controlled by the input-head lines and the finite-state lines. The
reading and writing of the work tape is similarly performed, namely, a copy operation is performed
to or from the finite-state lines and is controlled by the work-head lines and the finite-state lines.
While the work-head lines are unnecessary because the work-head lines can be embedded into the
work-tape lines, their explicit use simplifies the construction.

Finally, we only need to note the finite-state lines. A polynomial size circuit on a constant
number of read-write lines is sufficient to realize a permutation that corresponds to the transitions
of the finite state. There is only one issue. Since the Turing machine is reversible, we’re guaranteed
that the transition function is a permutation. However, unlike a Turing machine, a circuit cannot
cease computing once the halting state is reached. A circuit must perform all m computational
steps, where m = maxx∈Bn TIME(R,x). Since the transition function must be a permutation, the
circuit simulates ‘halting early’ via an additional O(m) halting states that are iterated through for
m−TIME(R,x) steps. The additional halting states perform no operation and serve only as place
holders in the transition function. Since R takes polynomial time in n to complete, at most c log n
lines suffice to represent the finite state. If we were guaranteed that all computation paths of R on
inputs of size n were the same length, then we could make do with O(1) finite-state lines.

Thus, a polynomial size bandwidth-O((log n)2i) reversible circuit can simulate a Turing machine
T , which uses O((logn)i) space and polynomial time. Thus, SCi ⊆ RC2i.

An immediate corollary of the preceding two theorems is that polylog-bandwidth circuits can
decide exactly the problems contained in class SC.

Corollary 5.27 RC = SC.

Theorem 5.26 can easily be generalized to Turing machines that use polynomial space; the
corresponding circuits essentially have unbounded bandwidth.

5.4 Unbounded Bandwidth Reversible Circuits

Unbounded bandwidth reversible circuits—circuits comprising only read-write lines—are more
general than their bounded bandwidth analogues. Consequently, characterizing their computational
power is much more challenging. By the same argument as the one used in Theorem 5.26, polyno-
mial size unbounded bandwidth circuits can be used to decide exactly the same set of problems as
Turing machines that use polynomial space and time, i.e., the problems of class P.

5.4. Unbounded Bandwidth Reversible Circuits 83

In many physical contexts, such as quantum computation, using garbage lines—in addition to
the n lines containing the input—is expensive. Since the number of garbage lines must be kept to a
minimum, we focus on circuits that realize functions on n variables and comprise n + c read-write
lines, where c is 0, 1, or 2, and the c garbage lines are initialized to 0.

To compute a Boolean function f , function f is first embedded into a permutation on either Bn,
if f is balanced, or Bn+1 otherwise [Tof80]. Usually the exact embedding does not matter as long
as the resulting permutation σ induces a partition of Bn (or Bn+1) such that for some fixed i ∈ [1,n],
for all x ∈ Bn, (xσ)i = f (x). If f is Boolean function of the form f : Bn→ Bk, 1 < k ≤ n, a similar
criterion can be derived. Unfortunately, many such functions require more than a constant number
of garbage lines [Tof80]. A prime example of this is the multiplication function, that takes two
n-bit strings and yields a 2n bit string. Since there are 2n+1 inputs that map to the same output, i.e.,
multiplication by zero, multiplication can only be embedded into a permutation on Boolean cube of
order 4n or larger.

We limit our attention to Boolean functions that are either of the form f : Bn→ B1, or permu-
tations of the form f : Bn → Bn. In either case f can be embedded into an even permutation on
Bn or Bn+1. We first investigate how to realize permutations corresponding to some common func-
tions; in particular we provide an interesting recursive construction for realizing threshold functions.
Following this, we show that if a permutation has a polynomial size cycle representation, then the
permutation can be realized by a polynomial size circuit (Theorem 5.34). Based on the observations
that we derived from our constructions, we conclude this chapter by describing some heuristics for
realizing Boolean functions.

5.4.1 Reversible Circuit Constructions

We first investigate how to realize common permutations such as incrementors (decrementors) and
adders. After deriving realizations for these components, we use them to realize Boolean functions
such as the consensus function and various threshold functions. In most cases the constructions are
relatively efficient, requiring O(n2) gates. The exception is the majority function, which does not
seem to have an efficient realization.

For conciseness, we use several schematic short forms. First the k-line controlled Toffoli gate,
k < n−1, which computes the conjunction of k lines and XORs the output line. A k-line controlled
Toffoli (k-Toffoli) gate can be constructed using O(k) Toffoli gates [BBD+95] and is illustrated in
Figure 5.1a. Second, the controlled k-NOT, comprises k controlled-NOT gates that are all controlled
by the same line. In most cases, we will be using the controlled (n− 1)-NOT, which is illustrated
in Figure 5.1c. Additionally, we use blocks to denote a component of a circuit. A component may
either be simple, controlled by another line, as in Theorem 4.14, or the component may control
another line, i.e., compute a Boolean function on k lines and XOR another line with the results. The
block components are illustrated in Figures 5.1d, 5.1b, and 5.1e. The controlled k-NOT and the
k-Toffoli gate are examples of a controlled component and a component control.

84 Chapter 5. Reversible Circuit Complexity

a b c ed

co
n

tr
o

lle
d

−C

C
−c

o
n

tr
o

l

C
o

m
p

o
n

en
t

Figure 5.1: a) A k-Toffoli gate; b) a component control; c) a controlled n-NOT;
d) a controlled component; e) a simple component.

Realization of Various Incrementors

We begin by constructing a half-incrementor, a permutation function on Bn that is represented by
two disjoint cycles of the form

π = (0 1 . . . 2n−1−1)(2n−1 2n−1 +1 . . . 2n−1).

Realizing a full incrementor on Bn is impossible because the permutation (0 1 . . . 2n− 1) is odd,
and hence cannot be realized using regular Toffoli and NOT gates [CG75]. However, a nigh-
incrementor, corresponding to the permutation (0 1 . . . 2n−1−2), can be realized.

The half-incrementor can be realized via a sequence of k-Toffoli gates, where k = n− 2 . . .0.
Observe that an incrementor modifies the ith least significant bit of the input if and only if the
conjunction of the i− 1 least significant bits of the input is equal to 1. Thus, the circuit comprises
n− 1 components (k-Toffoli gates), where the jth gate is an (n− 2− j)-Toffoli gate that negates
line n−1− j and is controlled by the lines i, i = 1 . . .n− 2− j; the construction is illustrated in
Figure 5.2a.

ba

C
~(

0
 2

2
 −

1)

 n

−1

 n

Figure 5.2: Realizations of a) a half-incrementor and b) a nigh-incrementor.

The last line in the circuit in Figure 5.2a may seem superfluous, but it is required in order to
realize the (n−2)-Toffoli gate. The line is used as a temporary register and is returned to its original

5.4. Unbounded Bandwidth Reversible Circuits 85

value by the end of the computation of the (n− 2)-Toffoli gate. By straightforward induction on
n, it is easy to see that the circuit realizes permutation π. Since the realization of each k-Toffoli
gate requires O(k) normal Toffoli gates (2-Toffoli gates), the half incrementor may be realized in
O(n2) gates. It follows that if we use an additional garbage line, then a complete incrementor can
be realized, otherwise, the best we can hope to realize is a nigh-adder. Not surprisingly, the half-
incrementor forms the basis of the realization of a nigh-incrementor.

The nigh-incrementor may be realized by concatenating an additional circuit onto the one that
realizes a half-incrementor. Begin by noting that the nigh-incrementor corresponds to the permu-
tation τ = (0 1 . . . 2n−1− 2). Let ρ = π−1τ = (0 2n−1 2n− 1). Thus, the circuit in Figure 5.2b,
which realizes the nigh-incrementor, is a half-incrementor concatenated with a circuit that realizes
permutation ρ. By Corollary 5.32, which we prove in a later subsection, any permutation that is
represented by a 3-cycle can be realized by a circuit of size O(n). Thus, the nigh-incrementor
can be realized in O(n2) gates as well. The half-incrementor is also a primary component in the
construction of the adder.

A Realization of the Adder

We consider an adder that takes two n-bit inputs, on 2n lines and outputs the result on the latter n
lines, n+1, . . . ,2n, and the first summand on the former n lines, 1, . . . ,n. The adder comprises a
sequence of n controlled half-incrementors; see Figure 5.3. The kth half-incrementor is controlled
by line k, k ∈ [1,n], and increments the n− k most significant lines of the second summand, i.e., the
increment is performed on lines n+ k, . . . ,2n. This follows from the observation, that adding 2 j to
an n-bit value corresponds to performing an increment on the n− j most significant bits. The adder
does exactly that, performing a controlled increment for each of the n bits of the first summand.

se
co

n
d

su
m

m
an

d
fi

rs
t

su
m

m
an

d

}
}

H
.I.

H
.I.

H
.I.

H
.I.

Figure 5.3: A realization of the adder.

Since each half-incrementor can be realized in O(n2) gates, the entire adder can be realized
in O(n3) gates. Unfortunately, there seems little that can be done to reduce this bound. While
one would think that a ripple adder could be implemented, each stage of the ripple adder loses

86 Chapter 5. Reversible Circuit Complexity

information—the preceding carry—implying that in order for a ripple adder circuit to work re-
versibly, all carry information needs to saved. Currently, we know of no way to accomplish this.
The current realization trades space for time, which is the n stage adder just described.

In contrast to the incrementor, to realize an adder requires no additional lines, even though both
functions are permutations. The difference being that the adder is an even parity permutation and
the incrementor is not. The other sufficient condition for requiring the additional garbage line occurs
when the function being realized is not a permutation, such as unbalanced Boolean functions of the
form f : Bn → B1. Two families of such functions, the consensus and the threshold functions are
studied next.

A Realization of the Consensus Function

The consensus function on n inputs evaluates to 0 for all but two inputs, 1 and 0, i.e,

f (x) =
n

_

i=1

xi∨
n̂

i=1

xi.

Since the function is unbalanced an additional line is required to reversibly realize the function.
Without loss of generality, assume that the additional line, which is labeled 0 and initialized to zero,
is also the output line. The consensus function corresponds to the permutation

π = (0 1)(2n+1−2 2n+1−1),

the first 2-cycle toggles line 0 if all lines have value 0, and the second 2-cycle toggles line 0 if all
lines have value 1. The (n− 1)-Toffoli gate that is controlled by the lines 2, . . . ,n and toggles line
0, realizes the permutation

υ = (2n+1−4 2n+1−3)(2n+1−2 2n+1−1)

and differs from the required permutation only in the first 2-cycle. Thus, this gate forms the basis
of the circuit.

To repair the difference, we use the following observation. For any 2-cycle, τ =(st), conjugating
τ by σ = (rsu) and then by ρ = (qtu) yields yields the 2-cycle

ρστσ−1ρ−1 = (qtu)(rsu)(st)(rus)(qut) = (qtu)(rt)(qut) = (qr).

Setting q = 0, r = 1, s = 2n+1− 4, t = 2n+1− 3, and u to any other value but q, r, s, t, 2n+1− 2,
and 2n+1− 1 specifies two 3-cycles, such that conjugating υ by them, yields permutation π. The
consensus function can therefore be realized in the corresponding way, as is illustrated in Figure 5.4.

By Corollary 5.32, the circuits that realize the 3-cycles can be realized in O(n) gates. Hence,
the consensus function can be realized in O(n) gates. As we shall see, the fact that the consensus
function is heavily unbalanced means that a concise realization is possible. This trend is also evident
in the realization of threshold functions.

5.4. Unbounded Bandwidth Reversible Circuits 87

C
~(

1
 2

 −

4
 2

)

C
~(

1
 2

 2

 −
4)

 n
+1

 n
+1

C
~(

0
 2

 2

 −
3)

 n
+1

C
~(

0
 2

 −

3
 2

)

 n

+1

Figure 5.4: A realization of the consensus function.

A Realization of the Threshold functions Tn, T1, Tn−1, T2, Tn−2

Recall that a threshold function Tk on n variables is 1 if and only if the weight of the assignment
is greater or equal to k. Since the threshold function is unbalanced—unless k = dn/2e and n is
odd—an additional line, labeled 0, is required to realize the threshold function.

If the threshold functions Tn and T1 are treated like the conjunction and disjunction functions
on n variables, which correspond to an odd permutation, a realization of Tn would also realize an n-
Toffoli gate on n+1 lines—something that is not possible [CG75]. However, the threshold function
Tn can be embedded into an even permutation, say (2n+1− 2 2n+1− 1)(0 2). By Corollary 5.33,
which we prove later, this permutation is realizable in O(n) gates. Hence, both threshold functions
Tn and (by duality) T1 can be realized in O(n) gates. To gain further insight into reversible circuit
constructions, we consider more direct realizations of the threshold functions Tk, 1 < k < n.

We first show how to realize the threshold functions Tn−1 and T2. We only show how to realize
Tn−1 since the realization of T2 easily follows by negating the inputs and outputs.

���������

(n)

������	��

(0)
(1)

(3)
(2)

Figure 5.5: A realization of the threshold function Tn−1.

The realization, which is shown in Figure 5.5, comprises one controlled n-NOT gate and n
(n−1)-Toffoli gates. The circuit is composed of three stages. Stage one contains one (n−1)-Toffoli
gate that is controlled by lines 1, . . . ,n−1 and toggles line 0. Stage two consists of the controlled
n-NOT component that is controlled by line 0 and negates the lines 1, . . . ,n. Finally, stage three
consists of the remaining (n− 1)-Toffoli gates, each of which toggles line 0 and is controlled by a

88 Chapter 5. Reversible Circuit Complexity

different subset of the lines 1, . . . ,n; the subset 1, . . . ,n−1 is naturally excluded as a choice.
If the input is of weight less than n− 1, then given that line 0 is initialized to 0, none of the

(n− 1)-Toffoli gates performs the XOR; if the input is such that the lines 1, . . . ,n−1 have value
1, then the first (n− 1)-Toffoli gate toggles line 0, the second stage toggles all lines, which means
that none of the (n−1)-Toffoli gates in stage three will toggle line 0; this also covers the case when
the input is of weight n. Otherwise, if the input is of weight (n− 1), and line n is 1, then none
of the gates in the first two stages will toggle any of the lines, and only one of the (n− 1)-Toffoli
gates in stage three toggles line 0. Consequently, line 0 will be toggled exactly once. Thus, the
circuit realizes the threshold function Tn−1 and since the circuit comprises O(n) controlled-NOT
and (n− 1)-Toffoli gates, the circuit is of size O(n2). However, to realize the threshold function
Tn−2 requires O(n3) gates.

(0)
(1)
(2)
(3)

(n)

b) n is odda) n is even

gates gates
(n−1)−Toffoli

n choose n−2 n choose n−1

gates

n choose n−2
(n−2)−Toffoli(n−2)−Toffoli

Figure 5.6: Realizations of the threshold function Tn−2.

The realization of the threshold function Tn−2 depends on whether n is odd or even. If n is
even then the realization (a) in Figure 5.6 is used, and if n is odd, realization (b) is used. The
realizations comprise three and four stages, respectively. The first three stages of both realizations
are identical to the ones in the realization of Tn−1. Stage three of both realizations comprises

(n
n−2

)

components, each of which is an (n− 2)-Toffoli gate that is controlled by a different subset of the
lines 1, . . . ,n and controls line 0—the gates are too numerous to draw in Figure 5.6. Stage four of
the second realization comprises

(n
n−1

)

components, which are (n−1)-Toffoli gates, each controlled
by a different subset of the lines 1, . . . ,n and each of which controls line 0.

Both realizations perform identically on inputs whose weight is n, n−2, or less than n−2; the
dependence on the parity of n occurs only for inputs of weight n−1. For inputs of weight less than
n− 2, none of the (n− 1)-Toffoli gates or (n− 2)-Toffoli gates toggle line 0. For inputs of weight
n−2, exactly one (n−2)-Toffoli gate in stage three toggles line 0. For inputs of weight n (or where
the lines 1, . . . ,n−1 all have value 1), the first two stages of both realizations, toggle line 0, and
negate all n lines, 1, . . . ,n, preventing all subsequent gates from toggling line 0. For inputs of weight
n−1, where line n have value 1, the realizations perform slightly differently.

If n is even and the weight of the input is n−1, then line 0 will be toggled exactly
(n−1

n−2

)

= n−1
times by the (n− 2)-Toffoli gates in the last stage. Since n is even, n− 1 is odd, and hence line
0 will be toggled an odd number of times. However, if n is odd, then n− 1 is even and line 0

5.4. Unbounded Bandwidth Reversible Circuits 89

is toggled an even number of times. Since line 0 must be toggled an odd number of times if the
weight of the input is greater or equal to n−2, the last stage in realization (b) ensures that the line
is toggled one additional time if the input weight is n−1. Thus, the resulting realizations compute
the threshold function Tn−2. The third stage of both realizations comprises O(n2) (n− 2)-Toffoli
gates, thus the size of the circuit is O(n3). Using these as realizations as base cases we recursively
construct threshold functions Tk, where 1 < k < n.

Realization of the Threshold functions Tk

A realization of threshold function Tk comprises two realizations of simpler threshold function re-
alizations. Let Tk,m denote a threshold function on m variables with threshold k—in the preceding
discussion, the dependence on n was implicit, i.e., Tk = Tk,n. The two components of a realization of
Tk,n are a controlled realization of of Tk−1,n−1, and a controlled realization of Tk,n−1; the composition
is illustrated in Figure 5.7.

(n)

(1)
(0)

���������
Tk−1,n−1 Tk,n−1

Figure 5.7: A realization of the threshold function Tk.

If line n has value 1, then the circuit needs only to check that the weight of the remaining n−1
lines is k− 1 or greater. The first controlled component, which realizes Tk−1,n−1, performs this
function. Otherwise, if line n has value 0, the weight of the remaining n−1 lines must be of weight
k or greater if the threshold is to be met. The second controlled component, which realizes Tk,n−1,
controlled by the negation of line n, performs this task. Each of the components are realized in the
same way; the base cases, T2,m and Tm−2,m are realized by the nonrecursive constructions presented
in Figure 5.6.

Unfortunately, the complexity of this construction, particularly for the majority function, is
exponential in n. The recurrence relation R(k,n) = R(k−1,n−1)+R(k,n−1) describes the com-
plexity of the construction in terms of the number of m-Toffoli gates, 0 ≤ m < n, where each of
the two terms includes one of the two additional NOT gates in the construction. At the nth step
of the recursive construction, each of the gates from the realizations of Tk−1,n−1 and Tk,n−1 are ex-
tended by one control line, which is attached to line n. Since the realizations for T2,m and Tm−2,m

are the base cases with complexity c ∈ O(n2), R(2,m) = R(m− 2,m) = c. Recurrence R(k,n)

is the same as the one for binomial coefficients (with different boundary conditions), namely,
R(2,m) = R(m− 2,m) = c =

(m
2

)

· (c/
(m

2

)

). Hence, by inspection, R(k,n) = c ·
(n−4

k−2

)

. Finally,
since each m-Toffoli gate requires O(m) gates, our realization of the threshold function Tk,n requires

O
(

n3
(n−4

k−2

)

)

standard gates, i.e., NOT, controlled-NOT, and Toffoli gates. Note, that as the thresh-

90 Chapter 5. Reversible Circuit Complexity

old function becomes more balanced—k approaches n
2 —the realization becomes more complex.

The problem then is to determine when a polynomial realization is possible.

5.4.2 Sufficient Conditions for Realizing Permutations by Polynomial Size Circuits

Some of the constructions in Section 5.4.1 assume that a permutation represented by a 3-cycle
can realized by a circuit of size polynomial in n. In fact, any 3-cycle can be realized using O(n)

gates. We first prove this result in the subsequent lemma and two theorems and then discuss its
implication, namely, that every permutation that can be concisely described using cycle notation,
has a polynomial size realization! For the remainder of this discussion, assume that circuit C(x,y,z) ∼
(xyz), x,y,z ∈ Bn, and in general Cσ ∼ σ.

Lemma 5.28 If C(012) is a reversible circuit on n lines, then for any x,y ∈ Bn, x,y 6= 0, there exists
a reversible circuit C of size O(n), such that the circuit CC(012)C

−1 ∼C(0xy).

Proof: Select two lines i and j, setting u = xix j , v = yiy j , u,v ∈ B2, such that u 6= v and u,v ∈
{1,2,3}. Such a choice is possible, otherwise x = 0, y = 0, or x = y, none of which can happen
because (0xy) is a 3-cycle. Call the lines i and j control lines. The circuit C consists of three
stages. Stage one comprises |x|− |u| Toffoli gates plus |y|− |v| Toffoli gates. The first subsequence
is bracketed by a pair of NOT gates on line i (j) if xi (x j) is 0; the second sequence is analogously
bracketed if yi (y j) is 0. For each k 6= i, j if xk = 1 a Toffoli gate

Li∧ j
k , controlled by lines i and j,

toggles line k. The second subsequence of Toffoli gates is analogously specified. Thus, on input x
or y, all lines but lines i and j are toggled to 0.

Stage two swaps line i with line 1 and line j with line 2. This can be done using O(1) gates.
Finally, stage three manipulates lines 1 and 2 since these lines now hold the value of the control
lines. If u 6= 1 and v 6= 2, then stage three maps u to 1 and v to 2; this also takes O(1) gates.
Therefore, circuit C maps input 0 to 0, input x to 1, and input y to 2, using O(|x|+ |y|)⊆O(n) gates.
The circuit may permute other points in Bn, but this is of no consequence.

Since C ∼ (x 1 . . .y 2 . . .), composing circuit C with C(012) in the form of a conjugate yields

CC(012)C
−1 ∼ (x 1 . . .y 2 . . .)(012)(x 1 . . . y 2 . . .)−1 = (0xy) ∼C(0xy),

which completes the proof.

Corollary 5.29 If C(0xy) is a reversible circuit on n lines, then there exists a reversible circuit C of
size O(n), such that the circuit CC(0xy)C

−1 ∼C(012).

Theorem 5.30 follows easily from the lemma and the corollary.

Theorem 5.30 (3-cycle Hardness Theorem) If C(xyz) is a reversible circuit on n lines, then for any
distinct x′,y′,z′ ∈ Bn, there exists a circuit C of size O(n), such that CC(xyz)C

−1 ∼C(x′y′z′).

Proof: Since XORing the input with a constant bit vector can be performed by O(n) NOT gates,
we can transform C(xyz) into C0ȳz̄, where ȳ = y⊕ x and z̄ = z⊕ x. Similarly, for a circuit C(0ȳ′ z̄′),
where ȳ′ = y′⊕ x′ and z̄′ = z′⊕ x′, can be transformed into C(x′y′z′) using O(n) gates. Let Cx be the

5.4. Unbounded Bandwidth Reversible Circuits 91

circuit comprising |x| not gates such that CxC(xyz)C
−1
x ∼C(0ȳz̄) and correspondingly let Cx′ be such

that C(x′y′z′) ∼Cx′C(0ȳ′ z̄′)Cx′
−1.

By Corollary 5.29, circuit C(0ȳz̄) can be transformed into C(012) and by Lemma 5.28, this circuit
can be transformed into C(0ȳ′ z̄′), also in O(n) gates. Let C1 and C2 be the circuits such that C(012) ∼
C1C(0ȳz̄)C

−1
1 and C(0ȳ′ z̄′) ∼C2C(012)C

−1
2 .

Since
C(x′y′z′) ∼Cx′C2C1CxC(xyz)C

−1
x C−1

1 C−1
2 Cx′

−1,

setting C = Cx′C2C1Cx, which is of size O(n), completes the proof.

Thus, all 3-cycles are equally hard to realize in the sense that, given a polynomial size realization
of one 3-cycle, any other 3-cycle can be realized by using an additional O(n) gates. Fortunately, a
3-cycle can be realized by a reversible circuit of size O(n).

Theorem 5.31 For n > 1 there exists reversible circuit C(012) on n lines of size O(n).

Proof: If n ≤ 3 we can construct a reversible circuit that realizes any permutation and uses a
constant number of gates.

For n > 3, observe that (012) may be factored into τ1 = (01)(63) and τ2 = (02)(63). Thus, we
need only demonstrate that permutations τ1 and τ2 can be realized in O(n) gates.

First, the permutation (01)(23) (respectively (02)(13)) may be realized by O(n) gates. The
circuit comprises three stages: a negation, followed by a toggling, followed by a negation. Stages
one and three negate the n− 2 lines 3, . . . ,n. The middle stage is an (n− 2)-Toffoli gate, con-
trolled by lines 3, . . . ,n, that toggles line 1 (respectively line 2); each stage requires O(n) gates. Let
C(01)(23) ∼ (01)(23) and C(02)(13) ∼ (02)(13) respectively.

Next, we construct a reversible circuit C(01)(63) that realizes permutation (01)(63). The re-
versible circuit Cσ1 =

L

1
L1∧2

3
L

1 realizes a permutation that transposes 2 and 6 and whose
fixed-points include all points that are congruent to 0, 1, or 3 modulo 4. Since the conjugate
σ1(01)(23)σ1 = (01)(63), therefore C(01)(63) = Cσ1C(01)(23)Cσ1

−1.
Similarly, we construct C(01)(63). The circuit Cσ2 =

L

2
L1∧2

3
L

2 transposes points 1 and 5, with
fixed-points comprising all points that are congruent to 0, 2, and 3 modulo 4. Using conjugation,
we construct circuit C(02)(53) = Cσ2C(02)(13)Cσ2 . The circuit Cρ =

L2∧3
1

L1∧3
2

L2∧3
1 , switches the

values of the lines 1 and 2, using line 3 as the control. Permutation ρ transposes 5 and 6; only
points congruent to 5 or 6 modulo 8 are permuted. Since the conjugate ρ(02)(53)ρ−1 = (02)(63),
therefore C(02)(63) = CρC(02)(53)C

−1
ρ .

The required circuit is C(012) = C(01)(63)C(02)(63) is of size O(n).

In conjunction with Theorem 5.30, we get the following two corollaries.

Corollary 5.32 Any 3-cycle can be realized by a reversible circuit on n > 1 lines of size O(n).

Corollary 5.33 A permutation on Bn comprising two disjoint transpositions, can be realized by a
reversible circuit on n lines of size O(n).

Proof: If σ = (ab)(cd), then σ can be factored into two 3-cycles σ = (abc)(cad).

92 Chapter 5. Reversible Circuit Complexity

Since every cycle comprising m points can be represented by m− 1 transpositions, another
corollary is that a permutation can be realized using O(nk+1) gates if its cycle representation—the
number of non-fixed-points—is O(nk) in size.

Theorem 5.34 A permutation on Bn that permutes O(nk) points can be realized by a reversible
circuit on n lines of size O(nk+1).

Thus, any function that can be embedded into an even permutation that has a polynomial size
cycle representation can be realized by a polynomial size reversible circuit. The converse is not
true. There are many functions, such as negation or the incrementor, that have an exponential
cycle representation, but a concise reversible circuit realization. This chapter culminates with a
description of some design heuristics for reversible circuits.

5.4.3 Techniques and Heuristics for Reversible Circuit Constructions

Several techniques and heuristics have emerged for realizing functions with reversible circuits.
These techniques include: using commutators, using conjugation, embedding functions within per-
mutation groups, and taking advantage of “don’t cares” to yield polynomially realizable permuta-
tions.

The commutator of two circuits [Cσ,Cτ] = CσCτC−1
σ C−1

τ —assuming that permutations σ and τ
do not commute—provides a useful mechanism for constructing controlled circuits in a bandwidth-
limited environment. Although this is not a major issue in the unbounded-bandwidth framework,
it is useful for combining circuits that are controlled by distinct sets of control lines into one that
is controlled by union of the control lines. This technique is used by Barenco et al. [BBD+95] to
construct (n−2)-Toffoli gates.

Conjugating one group element by another, στσ−1, preserves the cycle structure of τ, but
changes the points on which the permutation operates. Conjugating one reversible circuit with
another, CσCτC−1

σ , performs the same function, the structure of the realized permutation remains
unchanged, but the inputs that the resulting circuit permutes are changed. This technique is most
useful for adapting a circuit that does ‘almost the right thing’ to one that performs the required per-
mutation. Conjugation was heavily used in the preceding subsection, particularly in the construction
and transformation of 3-cycles. Conjugation allows the circuit designer to decouple circuit structure
from input representation, i.e., if the structure of the permutation that is realized by the circuit is
correct, then the circuit can easily be adapted to work on the right set of inputs.

Permutation functions induce a strict structure on the reversible circuit, namely, the circuit must
perform a very specific permutation, modulo the parity issue—odd parity functions need to be em-
bedded into even parity permutations. Boolean functions of the form f : Bn→B1, need to be embed-
ded into a permutation on either Bn, Bn+1, or Bn+2—in the case of the conjunction and disjunction
functions. Since the right embedding allows a much more efficient realization of the function than
a wrong embedding, choosing the right embedding is paramount. An example of this is choosing
a polynomially representable permutation rather than an exponentially representable one. In this

5.4. Unbounded Bandwidth Reversible Circuits 93

case, we have a simple method to construct a polynomial size circuit. First, decompose the per-
mutation into transpositions. Create a realization for each transposition using the technique from
Corollaries 5.32 and 5.33. Concatenate the transpositions to yield the final circuit.

If a function is heavily unbalanced, i.e., the ratio of 1s to 0s in the truth table is 2±Ω(n), then the
number permutations that must toggle the output line is small. Thus, the circuit can be constructed
by realizing a transposition for each entry belonging to the minority of the truth and concatenating
the realizations. This does not always yield an optimal circuit; by allowing the circuit to perform
additional permutations that do not affect the the output line, a size reduction may be obtained.

The realization of the threshold function Tn−1 permutes two of the 2n inputs. If we were to use
the transposition composition technique for realizing the circuit, the number of gates, used in the
alternative realization would be much greater than in the hand-crafted realization. Since we “don’t
care” what the circuit does for certain inputs, we can craft the circuit, by ignoring entire ranges of
inputs, a similar method, involving Karnaugh-maps [Kar53], is used for optimizing general combi-
nation circuits.

Unfortunately, if a function is balanced or the permutation is not polynomially representable,
it is not known how to determine if an efficient realization is possible or how to derive one. One
approach is to decompose the function into a linear component and a nonlinear component, i.e.,
f (x) = L(x)⊕N(x), where L and N are the linear and nonlinear components. The former can be
realized in O(n) gates and if the latter can be embedded into a polynomially representable permuta-
tion, then f can be efficiently realized. However, in the case of some functions, such as the majority
function, this technique does not suffice; it is not even clear if the majority function can even be
efficiently realized.

Chapter 6

Conclusion and Future Work

In this thesis we investigated growth processes on formulas and reversible circuits, and the complex-
ity of finite Boolean functions in the reversible circuit model. First, we analyzed growth processes
on formulas, characterizing the processes based on the existence and shape of their limiting distribu-
tion. Since a comparable characterization of growth processes on general circuits is intractable, due
to the dependencies between the probabilities associated with various circuit components, we intro-
duced a growth process over reversible circuits. As before, we characterized these processes based
on the existence and shape of their limiting distribution. Second, we investigated the complexity
of finite Boolean functions within the framework of reversible circuits and derived relationships
between reversible circuits and other models of computation.

In the first part of the thesis we derived a method—applicable under a broad set of conditions—
for characterizing growth processes on formulas. The characterizations included growth processes
that use linear, self-dual, and monotone connectives. Unlike growth processes that use linear or self-
dual connectives, where the limiting distribution is either uniform over the support or concentrated
on a single function, we showed that growth processes that use balanced monotone connectives have
a limiting distribution that is uniform over the slice functions. To prove this, we created a novel
technique for analyzing growth processes that combines amplification arguments [Val84, Bop85]
and spectral analysis [Raz88, Sav90, Sav95a].

Additionally, we derived convergence bounds for most of these growth processes and proved
that the convergence rate of a process strongly depends on the connective. In most cases we showed
that the convergence is logarithmic in the number of variables. Our analysis of the characteristic
polynomial of the monotone connectives yielded a well defined set of monotone connectives that
have no internal fixed-points, but whose corresponding growth processes take exponentially more
time to converge!

A general theory for all connectives—not just balanced [Sav90], linear, or monotone—remains
to be developed. Initial empirical work has shown that the limiting distribution of a growth process
ceases to be uniform if the characteristic polynomial of the corresponding connective has multiple
internal fixed-points; current techniques are inapplicable in this situation. While there is evidence
of intriguing relationships between the characteristic polynomial of a connective and the limiting
distribution, we cannot make any conjecture at this time. A first step is to consider connectives

95

96 Chapter 6. Conclusion and Future Work

such that for every depth d greater than some constant, the projection function can be realized by a
formula that is a complete depth-d tree built from the connective.

In contrast to growth processes on formulas, we showed that the limiting distribution of a growth
process on reversible circuits—if one exists—is guaranteed to be uniform over the support of the
growth process. Furthermore, we showed that either a limiting distribution exists, or the growth
process has two alternating distributions. Hence, we derived a broad set of sufficient conditions
under which a limiting distribution exists. We introduced the notion of gate-symmetry and showed
that apart from two cases, the limiting distribution exists if the support of the initial distribution is
gate-symmetric.

The notion of gate-symmetry also proved useful in characterizing the support of a growth pro-
cess. We showed that if the support of the initial distribution of a growth process is gate-symmetric,
then in all cases but one, the support of the respective growth process could be characterized. As
part of the characterization we introduced the notion of the bandwidth of a reversible circuit; the
growth processes whose supports were not amenable to characterization were growth processes on
bandwidth-2 circuits.

Characterizing the support of the growth processes allowed us to bound their convergence rates.
We showed that the convergence rate is very slow—polynomial in the diameter of the corresponding
Cayley graph—in contrast to the convergence rates of growth processes on formulas. This is due to
the fact that unlike growth processes on formulas, where the formula is grown by a constant multiple
every iteration, growth processes on reversible circuits grow the circuit by an additive constant every
iteration. Thus, it is not surprising that the convergence rate of the latter processes is much slower.

In the third part of the thesis we investigated the reversible circuit complexity of finite Boolean
functions. We first showed that bounded-bandwidth reversible circuits can be simulated by bounded-
width permutation branching programs and vice-versa; bandwidth-2 reversible circuits have ex-
actly the same power as width-4 permutation branching programs and reversible circuits of greater
bounded bandwidth are characterized by the class NC1. Within the context of bounded width per-
mutation branching programs, we introduced a transformation framework, under which we showed
that weakly accepting and monotonically accepting width-4 programs have the same computation
power—a weakly accepting program can be transformed into a monotonically accepting one with
only a constant-factor increase in size. However, we proved that such weakly accepting programs
cannot be transformed into strongly accepting ones. This is in stark contrast to programs of width
5 or more, for which we derived a transformation that transforms every weakly accepting program
into a strongly accepting one. Thus, we demonstrated a natural gap between width-4 and width-
5 programs; correspondingly, there is also a natural gap between bandwidth-2 and bandwidth-3
reversible circuits.

We considered polylogarithmic bandwidth circuits and defined a natural hierarchy of complexity
classes, RCi. We showed that RCi ⊆ SCi ⊆RC2i and hence, that the union of all RCi, RC, is equal
to SC. Thus, polylogarithmic bandwidth bounded circuits provide another natural framework for
studying low-lying complexity classes such as SC.

Lastly, within the context of unbounded bandwidth reversible circuits we derived concrete con-
structions and upper bounds for several common functions including the incrementor, adder, consen-

97

sus, and threshold functions. We proved that if a function can be embedded into a permutation that
has a polynomial size cyclic representation, then the function has a polynomial size realization; we
presented an explicit method for constructing a polynomial size realization of the respective func-
tions. This is in contrast to the space parsimonious reversible construction of Lange et al. [LMT00],
which only guarantees an exponential size realization.

There are several tracks along which this research can proceed. Our investigation has yielded
new insight into the problem of whether polynomial size width-4 permutation branching programs
can compute the conjunction of n variables, but the answer still remains elusive. One approach
to this problem is to further investigate various program transformations. If it is possible to trans-
form a weakly accepting program into a strongly accepting one, with a bounded increase in size,
then a construction for a polynomial size width-4 program that computes the conjunction follows.
Otherwise, this provides further evidence that the conjecture of Barrington [Bar89] is correct.

While the sufficient conditions for polynomial-size realizations are useful, we would also like
to ascertain when a function is not polynomially realizable. For example, our construction for the
majority function is exponential in the number of variables. The question remains as to whether this
bound is tight. In fact the majority function is a good place to begin for characterizing functions that
cannot be realized by polynomial-size reversible circuits (without an additional O(logn) lines).

Bibliography

[AB87] N. Alon and R. B. Boppana. The monotone circuit complexity of Boolean functions.
Combinatorica, 7(1):1–22, 1987.

[ABH+86] M. Ajtai, L. Babai, P. Hajnal, J. Komlós, P. Pudlák, V. Rödl, E. Szemerédi, and
G. Turán. Two lower bounds for branching programs. In Proceedings of the 18th
Annual ACM Symposium on Theory of Computing, pages 30–38, May 1986.

[ABO84] M. Ajtai and M. Ben-Or. A theorem on probabilistic constant depth computations.
In Proceedings of the 16th annual ACM Symposium on Theory of Computing, pages
471–474, 1984.

[ABOIN96] D. Aharonov, M. Ben-Or, R. Impagliazo, and N. Nisan. Limitations of noisy reversible
computation, 1996.

[Adl78] L. Adleman. Two theorems on random polynomial time. In Proceedings of the 19th
Annual IEEE Symposium on Foundations of Computer Science, pages 75–83, October
1978.

[AKS83] M. Ajtai, J. Komlós, and E. Szemerédi. An O(n log n) sorting network. In Proceedings
of the 15th Annual ACM Symposium on Theory of Computing, pages 1–9, 1983.

[Ald87] D. Aldous. On the Markov-chain simulation method for uniform combinatorial and
simulated annealing. Prob. Engng. Info. Sci., 1:33–46, 1987.

[Ald89] D. Aldous. Lower bounds for covering times for reversible markov chains and random
walks on graphs. Journal of Theoretical Probability, 2(1):91–100, January 1989.

[Alo86] N. Alon. Eigenvalues and expanders. Combinatorica, 6:83–96, 1986.

[And85] A. Andreev. A method for obtaining lower bounds for the complexity of individual
monotone functions. Dokl. Akad. Nauk USSR (Russian), 282(5):1033–1037, 1985.
English translation in Soviet Math. Dokl. 31(3):530–534, 1985.

[Apo97] T. Apostol. Modular Functions and Dirichlet Series in Number Theory. Springer, 2nd
edition, 1997.

99

100 Bibliography

[Bab91] L. Babai. Local expansion of vertex-transitive graphs and random generation in finite
groups. In Proceedings of the 23rd annual ACM Symposium on Theory of Computing,
pages 164–174, 1991.

[Bar85] D. Barrington. Width-3 permutation branching programs. Technical Memo
MIT/LCS/TM-293, Massachusetts Institute of Technology, Laboratory for Computer
Science, 1985.

[Bar89] D. Barrington. Bounded-width polynomial-size branching programs recognize exactly
those languages in NC1. J. Comput. System Sci., pages 150–164, 1989.

[BBD+95] A. Barenco, C. Bennett, D. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. Smolin,
and H. Weinfurter. Quantum gates and circuits. Phys. Rev. A., 52:3457–3467, 1995.

[BDFP83] A. Borodin, D. Dolev, F. Fich, and W. Paul. Bounds for width two branching programs.
In Proceedings of the 15th Annual ACM Symposium on Theory of Computing, pages
87–93, April 1983.

[Ben73] C. Bennett. Logical reversibility of computation. IBM Journal of Research and De-
velopment, 17:198–200, November 1973.

[Ben82] C. Bennett. The thermodynamics of computation–a review. International Journal of
Theoretical Physics, 21:905–940, 1982.

[Ben88a] C. Bennett. Notes on the history of reversible computation. IBM Journal of Research
and Development, 32(1), 1988.

[Ben88b] C. Bennett. Notes on the history of reversible computation. IBM Journal of Research
and Development, 44(1/2):270–277, January 2000 (reprint of Bennett, 1988).

[Ben89] C. Bennett. Time/space trade-offs for reversible computation. SIAM Journal on Com-
puting, 18(4):766–776, 1989.

[Ber82] S. Berkowitz. On some relationships between monotone and nonmonotone cir-
cuit complexity. Technical report, Department of Computer Science, University of
Toronto, Canada, Toronto, Canada, 1982.

[BG81] C. Bennett and J. Gill. Relative to a random oracle A, PA 6= NPA 6= co-NPA with
probability 1. SIAM Journal on Computing, 10(1):96–113, February 1981.

[BGL+93] C. Bennett, P. Gacs, M. Li, P. Vitányi, and W. Zurek. Thermodynamics of computation
and information distance. In Proceedings of the 25th Annual ACM Symposium on the
Theory of Computing, 1993.

[Bop85] R. Boppana. Amplification of probabilistic Boolean formulas. In Proceedings of the
26th Annual IEEE Symposium on Foundations of Computer Science, pages 20–29,
October 1985.

Bibliography 101

[Bop89] R. Boppana. Amplification of probabilistic Boolean formulas. Advances in Computing
Research 5: Randomness and Computation, pages 27–45, 1989.

[BS95] D. Barrington and H. Straubing. Superlinear lower bounds for bounded-width branch-
ing programs. Journal of Computer and System Sciences, 50(3):374–381, June 1995.

[BST90] D. Barrington, H. Straubing, and D. Thérien. Non-uniform automata over groups.
Information and Computation, 89(2):109–132, December 1990.

[BT88] D. Barrington and D. Thérien. Finite monoids and the fine structure of NC1. Journal
of the ACM, 35(4):941–952, October 1988.

[BTV01] H. Buhrman, J. Tromp, and P. Vitányi. Time and space bounds for reversible simula-
tion. In arXiv:quant-ph/0101133, 2001.

[Bur11] W. Burnside. Theory of groups of finite order. Cambridge University Press, 2nd
edition, 1911.

[CFL83] A. Chandra, M. Furst, and R. Lipton. Multi-party protocols. In Proceedings of the
15th Annual ACM Symposium on Theory of Computing, pages 94–99, April 1983.

[CG75] D. Coppersmith and E. Grossman. Generators for certain alternating groups with ap-
plications to cryptogaphy. SIAM Journal on Applied Mathematics, 29(4):624–627,
December 1975.

[Cle90] R. Cleve. Methodologies for Designing Block Ciphers and Cryptographic Protocols.
PhD thesis, University of Toronto, 1990.

[CM87] S. Cook and P. McKenzie. Problems complete for deterministic logarithmic space.
Journal of Algorithms, 8:385–394, 1987.

[Coo74] S. Cook. An observation on time-storage trade-off. Journal of Computer and System
Sciences, 9(3):308–316, December 1974.

[Coo79] S. Cook. Deterministic CFL’s are accepted simultaneously in polynomial time and
log squared space. In Proceedings of the 11th Annual ACM Symposium on Theory of
Computing, pages 338–345, May 1979.

[Coo85] S. Cook. A taxonomy of problems with fast parallel algorithms. Information and
Control, 64:2–22, 1985.

[DH92] K. Doerk and T. Hawkes. Finite Soluble Groups. Berlin: de Gruyter, 1992.

[DSC93] P. Diaconis and L. Saloff-Coste. Comparison techniques for random walk on finite
groups. Ann. Probab., 21:2131–2156, 1993.

102 Bibliography

[DZ92] M. Dubiner and U. Zwick. Amplification and percolation. In Proceedings of the
33rd Annual IEEE Symposium on Foundations of Computer Science, pages 258–267,
October 1992.

[DZ97] M. Dubiner and U. Zwick. Amplification by read-once formulas. SIAM Journal on
Computing, 26(1):15–38, January 1997.

[Fri91] J. Friedman. On the second eigenvalue and random walks in random d-regular graphs.
Combinatorica, 11, 1991.

[Fro12] G. Frobenius. Uber matrizen aus nicht negativen elementen. S.-B. Deutsch. Akad.
Wiss. Berlin, Math.-Nat. Kl., pages 456–477, 1912.

[FSS81] M. Furst, J. Saxe, and M. Sipser. Parity, circuits, and the polynomial-time hierarchy.
In Proceedings of the 22nd Annual IEEE Symposium on Foundations of Computer
Science, pages 260–270, October 1981.

[FT82] E. Fredkin and T. Toffoli. Conservative logic. International Journal of Theoretical
Physics, 21(3/4):219–253, 1982.

[GM91] Q. Gu and A. Maruoka. Amplification of bounded depth monotone read-once Boolean
formulae. SIAM Journal on Computing, 20(1):41–55, February 1991.

[Has86] J. Hastad. Almost optimal lower bounds for small depth circuits. In Proceedings of
the 18th Annual ACM Symposium on Theory of Computing, pages 6–20, May 1986.

[Has89] J. Hastad. Almost optimal lower bounds for small depth circuits. ADVCR: Advances
in Computing Research, 5, 1989.

[HN77] T. Hikita and A. Nozaki. A completeness criterion for spectra. SIAM Journal on
Computing, 6(2):285–297, June 1977.

[HN79] T. Hikita and A. Nozaki. Corrigenda: A completeness criterion for spectra. SIAM
Journal on Computing, 8(4):656, November 1979.

[HPV75] J. Hopcroft, W. Paul, and L. Valiant. On time versus space and related problems.
In Proceedings of the 16th Annual IEEE Symposium on Foundations of Computer
Science, pages 57–64, October 1975.

[HR98] T. Hikita and I. Rosenberg. A completeness criterion for uniformly delayed circuits.
Acta Applicandae Mathematicae, 52:49–61, 1998.

[HS65] J. Hartmanis and R. Stearns. On the computational complexity of algorithms. Trans.
Amer. Math. Soc. (AMS), 117:285–306, 1965.

[Joh94] D. Johnson. A catalog of complexity classes. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, volume A, chapter 2. Elsevier Science Publisher, 1994.

Bibliography 103

[Kar53] M. Karnaugh. The map method for synthesis of combinational logic circuits. AIEE
Transactions, Part I Communication and Electronics, 72:593–599, November 1953.

[Khr71] V. Khrapchenko. Complexity of the realization of a linear function in the class of π-
circuits. Mat. Zametki, (Mathematical Notes of the Academy of Science of the USSR,
10:21–23, 1971.

[Khr72] V. Khrapchenko. A method of of obtaining lower bounds for the complexity of π-
schemes. Mat. Zametki, (Mathematical Notes of the Academy of Science of the USSR,
11:474–479, 1972.

[KLNS89] J. Kahn, N. Linial, N. Nisan, and M. Saks. The cover time of random walks on graphs.
Journal of Theoretical Probability, 2(1):121–128, January 1989.

[Kor65] V. Korobjov. O monotonnykh funktsiyakh algebry logiki. Prob. Cyb., 13:5–28, 1965.

[Kor66] V. Korobjov. Sur le nombres des functions booleennes monotones de n variables. C.R.
Acad. Sc. Paris, 262:1088–1090, 1966.

[Kor80] A. Korshunov. O chisle monotonnykh bulevykh funktsiı̆. Problemy Kibernetiki, 38:5–
100, 1980.

[Kri61] R. Krichevskii. Realizations of functions by superpositions. Prob. Cyb., 2:458–477,
1961.

[Kud60a] V. Kudryavcev. Completeness theorem for a class of automata without feedback cou-
plings. Soviet Math. Doklady, 1:537–539, 1960.

[Kud60b] V. Kudryavcev. Problems of completeness for automatic machine systems. Soviet
Math. Doklady, 1:146–149, 1960.

[Lad75] R. Ladner. The circuit value problem is log space complete for P. SIGACTN: SIGACT
News (ACM Special Interest Group on Automata and Computability Theory), 7, 1975.

[Lan61] R. Landauer. Irreversibility and heat generation in the computing process. IBM Journal
of Research and Development, 5:183–191, 1961.

[Lec63] Y. Lecerf. Machines de turing reversibles. C.R. Acad. Sc. Paris, 257:2597–2600, 1963.

[Lee59] C. Lee. Representation of switching circuits by binary-decision programs. Bell System
Technical Journal, 38:985–999, July 1959.

[LMT97] K. Lange, P. McKenzie, and A. Tapp. Reversible space equals deterministic space. In
Proceedings of the 12th IEEE Conference on Computational Complexity, pages 45–50,
1997.

[LMT00] K. Lange, P. McKenzie, and A. Tapp. Reversible space equals deterministic space.
Journal of Computer and System Sciences, 60(2):354–367, 2000.

104 Bibliography

[Loo65] H. Loomis, Jr. A theory of high-speed clocked logic. IEEE Trans. Elektron. Comput.,
EC-14:157–172, 1965.

[Lov96] L. Lovász. Random walks on graphs - a survey. In D. Miklos, V. T. Sos, T. Szony, and
Janos Bolyai, editors, Combinatorics, Paul Erdős is Eighty, volume 2, pages 353–398.
Mathmatical Society Budapest, 1996.

[LS90] R. Levine and A. Sherman. A note on Bennett’s time-space tradeoff for reversible
computation. SIAM Journal on Computing, 19(4):673–677, 1990.

[LS97] H. Lefmann and P. Savický. Some typical properties of large and/or Boolean functions.
Random Structures and Algorithms, 10:337–351, 1997.

[LTV98] M. Li, J. Tromp, and P. Vitányi. Reversible simulation of irreversible computation.
Physica D, 120:168–176, 1998.

[Lup58] O. Lupanov. A method for synthesizing circuits. Izv. vysshykh uchebnykh zavedenii,
Radiofizika, 1:120–140, 1958.

[Lup61a] O. Lupanov. Implementing the algebra of logic functions in terms of bounded depth
formulas in the basis {+,∗,−}. Soviet Physics Doklady, 6:107–108, 1961.

[Lup61b] O. Lupanov. O realizatsiı̆ funktsiı̆ algebry logiki formulami iz konechnykh klassov
(formulami ogranichennoı̆ glubiny) v bazise &, ∨, . Problemy Kibernetiki, 6:5–14,
1961.

[Lup65] O. Lupanov. Ob odnom podkhode k sintezu upravlyayushchikh sistem. Problemy
Kibernetiki, 14:31–110, 1965.

[LV96a] M. Li and P. Vitányi. Reversibility and adiabatic computation: Trading time and space
for energy. In Proceedings of the Royal Society of London, Series A, volume 452 of A,
pages 769–789, 1996.

[LV96b] M. Li and P. Vitányi. Reversible simulation of irreversible computation. In Proceed-
ings of the 11th IEEE Computational Complexity Conference, pages 306–306, 1996.
Submitted to Physica D, 1997.

[LV97] M. Li and P. Vitányi. An introduction to Kolmogorov complexity and its applications.
Springer, 2nd edition, 1997.

[Max71] J. Maxwell. Theory of Heat. Longmans, Green and Co., London, 1871.

[McK81] B. McKay. The expected eigenvalue distribution of a large regular graph. Linear
Algebra and its Applications, 40:203–216, 1981.

[MR95] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press,
New York, 1995.

Bibliography 105

[MS56] E. Moore and C. Shannon. Reliable circuits using less reliable relays. Journal of
Franklin Institute, 262(3):191–208, 1956.

[Neč66] E. Nečiporuk. A Boolean function. Russian Academy of Sciences Doklady. Mathe-
matics, 7, 1966.

[Ost54] A. M. Ostrowski. On two problems in abstract algebra connected with horner’s rule. In
O. Taussky-Todd, editor, Studies in Mathematics and Mechanics Presented to Richard
von Mises, pages 40–48. Academic Press, New York, 1954.

[Per07] O. Perron. Über Matrizen. Mathematische Annalen, 64:248–263, 1907.

[PH70] M. Paterson and C. Hewitt. Comparative schematology. In Proj. MAC Conference on
Concurrent Systems and Parallel Computation, pages 119–128, December 1970.

[Pip76] N. Pippenger. The realization of monotone Boolean functions. In Proceedings of the
8th Annual ACM Symposium on Theory of Computing, pages 204–210, 1976.

[Pip79] N. Pippenger. On simultaneous resource bounds. In Proceedings of the 20th Annual
IEEE Symposium on Foundations of Computer Science, pages 307–311, October 1979.

[Pip80] N. Pippenger. Pebbling. In Proceedings of the 5th IBM Japan Symposium on Mathe-
matical Foundations of Computing, 1980.

[Pud84] P. Pudlák. A lower bound on complexity of branching programs. In Proceedings of
the 11th Symposium on Mathematical Foundations of Computer Science, volume 176
of LNCS, pages 480–489, September 1984.

[Raz85] A. Razborov. Lower bounds on the monotone complexity of some Boolean functions.
Doklady Akad. Nauk USSR, 282:1033–1037, 1985.

[Raz88] A. Razborov. Formulas of bounded depth in basis (∧,⊕) and some combinatorial
problems. Voprosy Kibernetiky, USSR, pages 149–166, 1988.

[Rez62] V. Reznik. The realization of monotonic functions by means of networks consisting of
functional elements. Soviet Physics Doklady, 6(7):558–561, 1962.

[Rot76] O. Rothaus. On bent functions. Journal of Combinatorial Theory, Series A, 20:300–
305, 1976.

[RS42] J. Riordan and C. Shannon. The number of two-terminal series-parallel networks. J.
Math. Phys., 21:83–93, 1942.

[RS94] J. Radhakrishnan and K. Subrahmanyam. Directed monotone contact networks for
threshold functions. Information Processing Letters, 50(4):199–203, May 1994.

[Ruz79] W. Ruzzo. Tree-size bounded alternation. In Proceedings of the 11th Annual ACM
Symposium on Theory of Computing, pages 352–359, April 1979.

106 Bibliography

[Sap89] A. Sapozhenko. O chisle antitsepeı̆ v mnogosloı̆nykh ranzhirovannykh mnozhestvakh.
Diskretnaya Matematika, 1:110–128, 1989.

[Sav88] P. Savický. Random Boolean formulas representing any Boolean function with asymp-
totically equal probability (extended abstract). In Proceedings of the 12th Symposium
on Mathematical Foundations of Computer Science, volume 324 of lncs, pages 512–
517. Springer, September 1988.

[Sav90] P. Savický. Random Boolean formulas representing any Boolean function with asymp-
totically equal probability. Discrete Mathematics, 83:95–103, 1990.

[Sav94] P. Savický. On the bent Boolean functions that are symmetric. European Journal of
Combinatorics, pages 407–410, 1994.

[Sav95a] P. Savický. Bent functions and random Boolean formulas. Discrete Mathematics,
147:211–234, 1995.

[Sav95b] P. Savický. Improved Boolean formulas for the Ramsey graphs. Random Structures
and Algorithms, 6:407–415, 1995.

[Sav98] P. Savický. Complexity and probability of some Boolean formulas. Combinatorics,
Probability and Computing, 7(4):451–463, 1998.

[Sha38] C. Shannon. A symbolic analysis of relay and switching circuits. AIEE Trans., 57:713–
723, 1938.

[Sha48] C. Shannon. A mathematical theory of communication. The Bell System Technical
Journal, 27(3):379–423, July 1948.

[Sha49] C. Shannon. The synthesis of two–terminal switching circuits. Bell System Technical
Journal, 28:59–98, 1949.

[Sip80] M. Sipser. Halting space-bounded computations. Theoretical Computer Science,
10(3):335–338, March 1980.

[SW49] C. Shannon and W. Weaver. A Mathematical Theory of Communication. University of
Illinois Press, Urbana, Illinois, 1949.

[Szi29] L. Szilard. Über die Entropieverminderung in einem thermodynamischen System bei
eingriffen intelligenter wesen. Zeitschrift für Physik, 53:829–856, 1929.

[Tar88] E. Tardos. The gap between monotone and non-monotone circuit complexity is expo-
nential. Combinatorica, 8(1), 1988.

[Tof80] T. Toffoli. Reversible computing. In Automata, Languages and Programming, 7th
Colloquium, volume 85 of Lecture Notes in Computer Science, pages 632–644, 1980.

Bibliography 107

[Val84] L. Valiant. Short monotone formulae for the majority function. Journal of Algorithms,
5:363–366, 1984.

[vN56] J. von Neumann. Probabilistic logics and the synthesis of reliable organisms from
unreliable components. In C. Shannon and J. McCarthy, editors, Automata Studies.
Princeton University Press, 1956.

[Weg79] I. Wegener. Switching functions whose monotone complexity is nearly quadratic.
Theoretical Computer Science, 9(1):83–97, July 1979.

[Weg82] I. Wegener. Boolean functions whose monotone complexity is of size n2 logn. Theo-
retical Computer Science, 21(2):213–224, November 1982.

[Weg87] I. Wegener. The Complexity of Boolean Functions. Wiley Teubner Series in Computer
Science. John Wiley and Sons, New York, 1987.

[Yao83] A. Yao. Lower bounds by probabilistic arguments (extended abstract). In Proceedings
of the 24th Annual IEEE Symposium on Foundations of Computer Science, pages 420–
428, 1983.

[Yao85] A. Yao. Separating the polynomial-time hierarchy by oracles (preliminary version).
In Proceedings of the 26th Annual IEEE Symposium on Foundations of Computer
Science, pages 1–10, October 1985.

[Zur89] W. Zurek. Thermodynamic cost of computation, algorithmic complexity and the in-
formation metric. Nature, 341:119–124, September 1989.

