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ABSTRACT 
This paper presents and evaluates the storage management 
and caching in PAST, a large-scale peer-to-peer persistent 
storage utility. PAST is based on a self-organizing, Internet- 
based overlay network of storage nodes that  cooperatively 
route file queries, store multiple replicas of files, and cache 
additional copies of popular files. 

In the PAST system, storage nodes and files are each as- 
signed uniformly distributed identifiers, and replicas of a file 
are stored at nodes whose identifier matches most closely the 
file's identifier. This statistical assignment of files to storage 
nodes approximately balances the number of files stored on 
each node. However, non-uniform storage node capacities 
and file sizes require more explicit storage load balancing 
to permit graceful behavior under high global storage uti- 
lization; likewise, non-uniform popularity of files requires 
caching to minimize fetch distance and to balance the query 
load. 

We present and evaluate PAST, with an emphasis on its 
storage management and caching system. Extensive trace- 
driven experiments show that  the system minimizes fetch 
distance, that  it balances the query load for popular files, 
and that  it displays graceful degradation of performance as 
the global storage utilization increases beyond 95%. 

1. INTRODUCTION 
Peer-to-peer Internet applications have recently been pop- 
ularized through file sharing applications such as Napster, 
Gnutella and FreeNet [1, 2, 13]. While much of the atten- 
tion has been focused on the copyright issues raised by these 
particular applications, peer-to-peer systems have many in- 
teresting technical aspects like decentralized control, self- 
organization, adaptation and scalability. Peer-to-peer sys- 
tems can be characterized as distributed systems in which 
all nodes have identical capabilities and responsibilities and 
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all communication is symmetric. 

There are currently many projects aimed at constructing 
peer-to-peer applications and understanding more of the is- 
sues and requirements of such applications and systems [1, 2, 
8, 13, 15, 20]. We are developing PAST, an Internet-based, 
peer-to-peer global storage utility, which alms to provide 
strong persistence, high availability, scalability and security. 

The PAST system is composed of nodes connected to the 
Internet, where each node is capable of initiating and rout- 
ing client requests to insert or retrieve files. Optionally, 
nodes may also contribute storage to the system. The PAST 
nodes form a self-organizing overlay network. Inserted files 
are replicated across multiple nodes for availability. With 
high probability, the set of nodes over which a file is repli- 
cated is diverse in terms of geographic location, ownership, 
administration, network connectivity, rule of law, etc. 

A storage utility like PAST is attractive for several reasons. 
First, it exploits the multitude and diversity (in geography, 
ownership, administration, jurisdiction, etc.) of nodes in the 
Internet to achieve strong persistence and high availability. 
This obviates the need for physical transport of storage me- 
dia to protect backup and archival data; likewise, it obviates 
the need for explicit mirroring to ensure high availability 
and throughput for shared data. A global storage utility 
also facilitates the sharing of storage and bandwidth, thus 
permitting a group of nodes to jointly store or publish con- 
tent that  would exceed the capacity or bandwidth of any 
individual node. 

While PAST offers persistent storage services, its semantics 
differ from that  of a conventional filesystem. Files stored in 
PAST are associated with a quasi-unique fileld that  is gener- 
ated at the time of the file's insertion into PAST. Therefore, 
files stored in PAST are immutable since a file cannot be 
inserted multiple times with the same fileId. Files can be 
shared at the owner's discretion by distributing the fileId 
(potentially anonymously) and, if necessary, a decryption 
key. 

An efficient routing scheme called Pastry [27] ensures that  
client requests are reliably routed to the appropriate nodes. 
Client requests to retrieve a file are routed, with high prob- 
ability, to a node that is "close in the network" to the client 
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tha t  issued the request 1, among the live nodes tha t  store 
the requested file. The number of PAST nodes traversed, as 
well as the number of messages exchanged while routing a 
client request, is logarithmic in the total  number of PAST 
nodes in the system under normal operation. 

To retrieve a file in PAST, a client must know its fileId 
and, if necessary, its decryption key. PAST does not pro- 
vide facilities for searching, directory lookup, or key distri- 
bution. Layering such facilities on top of Pastry, the same 
peer-to-peer substrate that  PAST is based on, is the  sub- 
ject of current research. Finally, PAST is intended as an 
archival storage and content distribution utility and not as 
a general-purpose filesystem. It  is assumed that  users inter- 
act primarily with a conventional filesystem, which acts as 
a local cache for files stored in PAST. 

In this paper,  we focus on the storage management and 
caching in PAST. In Section 2, an overview of the PAST 
architecture is given and we briefly describe Pastry, PAST's  
content location and routing scheme. Section 3 describes 
the storage management and Section 4 the mechanisms and 
policies for caching in PAST. Results of an experimental 
evaluation of PAST are presented in Section 5. Related 
work is discussed in Section 6 and we conclude in Section 7. 

2. PAST OVERVIEW 
Any host connected to the Internet can act as a PAST node 
by installing the appropriate software. The collection of 
PAST nodes forms an overlay network in the Internet.  Min- 
imally, a PAST node acts as an access point for a user. Op- 
tionally, a PAST node may also contribute storage to PAST 
and part icipate in the routing of requests within the PAST 
network. 

The PAST system exports the following set of operations to 
its clients: 

• fileId ffi Insert(name, owner-credentials, k, file) 
stores a file at  a user-specified number k of diverse nodes 
within the PAST network. The operation produces a 160-bit 
identifier (fileId) that  can be used subsequently to identify 
the file. The fileId is computed as the secure hash (SHA-1) 
of the file's name, the owner's public key, and a randomly 
chosen salt. This choice ensures (with very high probabil- 
ity) tha t  fileIds are unique. Rare fileId collisions are detected 
and lead to the rejection of the later inserted file. 

• f i l e  ffi Loo lmp( f i l e Id )  reliably retrieves a copy of the 
file identified by fileId if it  exists in PAST and if one of the 
k nodes that  store the file is reachable via the Internet.  The 
file is normally retrieved from a live node "near" the PAST 
node issuing the lookup (in terms of the proximity metric), 
among the nodes that  store the file. 

* R e ¢ l a i m ( f i l e I d ,  o w n e r - c r e d e n t i a l s )  reclaims the stor- 
age occupied by the k copies of the file identified by fileId. 
Once the operation completes, PAST no longer guarantees 
tha t  a lookup operation will produce the file. Unlike a delete 
operation, reclaim does not guarantee that  the file is no 

1Network proximity is based on a scalar metric such as the 
number of IP routing hops, bandwidth,  geographic distance, 
etc. 

longer available after it was reclaimed. These weaker seman- 
tics avoid complex agreement protocols among the nodes 
storing the file. 

Each PAST node is assigned a 128-bit node identifier, called 
a nodeId. The nodeId indicates a node's position in a circu- 
lar namespace, which ranges from 0 to 212s - 1. The nodeId 
assignment is quasi-random (e.g., SHA-1 hash of the node's  
public key) and cannot be biased by a malicious node op- 
erator. This process ensures tha t  there is no correlation 
between the value of the nodeId and the node's geographic 
location, network connectivity, ownership, or jurisdiction. I t  
follows then that  a set of nodes with adjacent nodeIds are 
highly likely to be diverse in all these aspects. Such a set 
is therefore an excellent candidate for storing the replicas of 
a file, as the nodes in the set are unlikely to conspire or be 
subject to correlated failures or threats. 

During an insert operation, PAST stores the file on the k 
PAST nodes whose nodeIds are numerically closest to the 
128 most significant bits (msb) of the f le ' s  fileId. This in- 
variant is maintained over the lifetime of a file, despite the 
arrival, failure and recovery of PAST nodes. For the rea- 
sons outlined above, with high probability, the k replicas 
are stored on a diverse set of PAST nodes. 

Another invariant is that  both the set of existing nodeId 
values as well as the set of existing ffieId values are uni- 
formly distr ibuted in their respective domains. This prop- 
erty follows from the quasi-random assignment of nodeIds 
and fileIds; it  ensures that  the number of files stored by 
each PAST node is roughly balanced. This fact provides 
only an initial approximation to balancing the storage uti- 
lization among the PAST nodes. Since files differ in size and 
PAST nodes differ in the amount of storage they provide, 
additional, explicit means of load balancing are required; 
they are described in Section 3. 

The number k is chosen to meet the availability needs of 
a file, relative to the expected failure rates of individual 
nodes. However, popular files may need to be maintained 
at many more nodes in order to meet and balance the query 
load for the file and to minimize latency and network traffic. 
PAST adapts  to query load by caching additional copies 
of files in the unused portions of PAST node's local disks. 
Unlike the k pr imary replicas of a file, such cached copies 
may be discarded by a node at  any time. Caching in PAST 
is discussed in Section 4. 

PAST is layered on top of Pastry, a peer-to-peer request 
routing and content location scheme. Pastry is fully de- 
scribed and evaluated in [27]. To make this paper self- 
contained, we give a brief overview of Pastry. 

2.1 Pastry 
Pastry is a peer-to-peer routing substrate that  is efficient, 
scalable, fault resilient and self-organizing. Given a fileId, 
Pastry routes an associated message towards the node whose 
nodeId is numerically closest to the 128 msbs of the fileId, 
among all live nodes. Given the PAST invariant that  a file is 
stored on the k nodes whose nodeIds are numerically closest 
to the 128 msbs of the fileId, it  follows that  a file can be 
located unless all k nodes have failed simultaneously (i.e., 
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within a recovery period). 

Assuming a PAST network consisting of N nodes, Pastry 
can route to the numerically closest node for a given fileId 
in less than rlog2b N] steps under normal operation (b is a 
configuration parameter  with typical value 4). Despite con- 
current node failures, eventual delivery is guaranteed unless 
[l/2J nodes with adjacent nodeIds fall simultaneously (l is 
a configuration parameter  with typical value 32). 

The tables required in each PAST node have only (2 b - -  1) * 
[log2b N] +2l  entries, where each entry maps a nodeId to the 
associated node's IP address. Moreover, after a node failure 
or the arrival of a new node, the invariants can be restored by 
exchanging O(log2b N) messages among the affected nodes. 
In the  following, we briefly sketch the Pas t ry  routing scheme. 

For the purpose of routing, nodeIds and filelds are thought 
of as a sequence of digits with base 2 b. A node's routing 
table is organized into rlog2v N] levels with 25 - 1 entries 
each. The 2 b - 1 entries at  level n of the  routing table 
each refer to a node whose nodeId shares the  present node's  
nodeId in the first n digits, but  whose n + l t h  digit has 
one of the 2 b - 1 possible values other than  the n + l t h  
digit  in the present node's  id. Each entry in the routing 
table points to one of potentially many nodes whose nodeId 
have the appropriate  prefix; in practice, a node is chosen 
tha t  is close to the present node, according to the proximity 
metric. If  no node is known with a suitable nodeId, then the 
routing table entry is left empty. The uniform distribution 
of nodeIds ensures an even populat ion of the  nodeId space; 
thus, only [log2bN ] levels are populated in the routing table. 

In addit ion to the  routing table,  each node maintains IP ad- 
dresses for the nodes in its leaf set and its neighborhood set. 
The leaf set is the set of nodes with the I/2 numerically clos- 
est larger nodeIds, and the 1/2 nodes with numerically clos- 
est smaller nodeIds, relative to the present node's  nodeId. 
The  neighborhood set is a set of I nodes tha t  are near the 
present node, according to the  proximity metric. I t  is not 
used in routing, but  is useful during node addition/recovery. 
Figure 1 depicts the s ta te  of a PAST node with the nodeId 
10233102 (base 4), in a hypothetical  system tha t  uses 16 bit  
nodeIds and values of b = 2 and l = 8. 

In each routing step, a node normally forwards the message 
to a node whose nodeId shares with the fileId a prefix tha t  
is at  least one digit (or b bits) longer than  the prefix tha t  
the fileId shares with the present node 's  id. If no such node 
is known, the message is forwarded to a node whose nodeId 
shares a prefix with the fileId as long as the current node, but  
is numerically closer to the  fileId than the present node's  id. 
Such a node must be in the leaf set unless the message has 
already arrived at  the node with numerically closest nodeId. 
And, unless [l/2J adjacent nodes in the leaf set have failed 
simultaneously, at least one of those nodes must  be live. 

L o c a l i t y  Next,  we briefly discuss Pas t ry ' s  properties with 
respect to the network proximity metric. Recall tha t  the 
entries in the node routing tables are chosen to refer to a 
nearby node, in terms of the proximity metric, with the ap- 
propriate  nodeId prefix. As a result, in each step a message 
is routed to a '~nearby" node with a longer prefix match 

Nodeld 10233102 
Leaf set I SMALLER II LARGER I 

,.10233033 ~ 10233021 t 10233120 11 10233122 
102~001 II 10233000 j 1023=30 II 1 0 2 ~  

Routing table 
-0-2212102 

1-1-301233 
10-0-31203 10-1-32.102 
102-0-0230 102-1-1302 

]1 I I I 

Neighborhood set 
13021022 JL 10200~0 Jl 113012~ II 313012~  
o2212102 II 2230120~ I ~  ~2i--~'-~-~ 

F i g u r e  1: S ta te  o f  a hypothe t i ca l  Pas try  node  w i t h  
n o d e I d  10233102,  b = 2, a n d  I = 8. A l l  n u m b e r s  
are in base  4. T h e  t o p  r o w  o f  the  rout ing table  
represents  l eve l  ze ro .  T h e  s h a d e d  cel l  at each l eve l  
o f  the  rout ing  table  shows  the  corresponding  d i g i t  
o f  the  present  n o d e ' s  n o d e I d .  T h e  n o d e I d s  in  e a c h  
entry  h a v e  b e e n  split  to  show the  common prefi~ with 
10233102 - next digit - rest of nodeld. T h e  a s s o c i a t e d  I P  
addresses  are not  s h o w n .  

(by one digit). This local heuristic obviously cannot achieve 
globally shortest routes, but  simulations have shown tha t  
the  average distance traveled by a message, in terms of the 
proximity metric, is only 50% higher than the corresponding 
"distance" of the  source and destination in the underlying 
network [27]. 

Moreover, since Pas t ry  repeatedly takes a locally "short" 
routing step towards a node tha t  shares a longer prefix with 
the  fileId, messages have a tendency to first reach a node, 
among the k nodes tha t  store the  requested file, tha t  is near 
the  client, according to the proximity metric. One exper- 
iment shows tha t  among 5 replicated copies of a file, Pas- 
t ry  is able to find the "nearest" copy in 76% of all lookups 
and it finds one of the two "nearest" copies in 92% of all 
lookups [27]. 

N o d e  addit ion a n d  f a i l u re  A key design issue in Pas t ry  is 
how to efficiently and dynamically maintain the node state,  
i.e., the  routing table, leaf set and neighborhood sets, in 
the  presence of node failures, node recoveries, and new node 
arrivals. The protocol is described and evaluated in full 
detail  in [27]. 

Briefly, an arriving node with the newly chosen nodeId X 
can initialize its s ta te  by contacting a "nearby" node A (ac- 
cording to the proximity metric) and asking A to route a 
special message with the destination set to X.  This mes- 
sage is routed to the  existing node Z with nodeId numer- 
ically closest to X 2. X then obtains the leaf set from Z, 
the  neighborhood set from A, and the i th  row of the routing 

2In the  exceedingly unlikely event tha t  X and Z are equal, 
the new node must  obtain a new nodeId. 
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table from the i th  node encountered along the route from 
A to Z. One can show tha t  using this information, X can 
correctly initialize its s tate and notify all nodes tha t  need to 
know of its arrival, thereby restoring all of Pastry 's  invari- 
ants. 

To handle node failures, neighboring nodes in the nodeld 
space (which are aware of each other by virtue of being in 
each other's leaf set) periodically exchange keep-alive mes- 
sages. Ifa node is unresponsive for a period T, it is presumed 
failed. All members of the failed node's leaf set are then no- 
tiffed and they update their leaf sets to restore the invariant. 
Since the leaf sets of nodes with adjacent nodeIds overlap, 
this update is trivial. A recovering node contacts the nodes 
in its last known leaf set, obtains their current leafs sets, 
updates its own leaf set and then notifies the members of 
its new leaf set of its presence. Routing table entries that 
refer to failed nodes are repaired lazily; the details are not 
relevant to the subject of this paper [27]. 

Pastry, as described so far, is deterministic and thus vulner- 
able to malicious or failed nodes along the route that  ac- 
cept messages but  do not correctly forward them. Repeated 
queries could thus fail each time, since they are likely to take 
the same route. To overcome this problem, the routing is ac- 
tually randomized. To avoid routing loops, a message must 
always be forwarded to a node tha t  shares at  least as long a 
prefix with, but  is numerically closer to the destination node 
in the namespace than the current node. The choice among 
multiple such nodes is random. In practice, the probabil- 
ity distribution is heavily biased towards the best choice to 
ensure low average route delay. In the event of a malicious 
or failed node along the path,  the client may have to issue 
several requests, until a route is chosen that  avoids the bad 
node. 

A full description and evaluation of Pastry can be found 
in [27]. In principle, it  should be possible to layer PAST 
on top of one of the other peer-to-peer routing schemes de- 
scribed in the literature, such as Tapestry [31], Chord [30] or 
CAN [25]. However, some of PAST's  properties with respect 
to network locality and fault resilience may change in this 
case, depending on the properties of the underlying routing 
scheme. 

2.2 PAST operations 
Next, we briefly describe how PAST implements the insert, 
lookup and reclaim operations. 

In response to an insert request, a fileId is computed as the 
SHA-1 hashcode of the file's textual  name, the client's public 
key, and a random salt. The required storage (file size times 
k) is debited against the client's storage quota, and a file 
certificate is issued and signed with the owner's private key. 
The certificate contains the fileId, a SHA-1 hash of the file's 
content, the replication factor k, the salt, a creation date 
and other optional file metadata .  

The file certificate and the associated file are then routed 
via Pastry, using the fileId as the destination. When the 
message reaches the first among the k nodes closest to the 
fileId, that  node verifies the file certificate, recomputes the 
content hashcode and compares it with the content hashcode 

in the file certificate. If everything checks out, then the node 
accepts responsibility for a replica of the file and forwards 
the insert request to the other k - 1 nodes with nodeIds 
numerically closest to the fileId. 

Once all k nodes have accepted a replica, an acknowledg- 
ment is passed back to the client, to which each of the k 
replica storing nodes at tach a store receipt. The client veri- 
fies the store receipts to confirm tha t  the requested number 
of copies have been created. If something goes wrong at  any 
point during the insertion process, such as an illegitimate 
file certificate, corrupted content, or a failure to locate suf- 
ficient storage to store the k copies, an appropriate error 
indication is returned to the client. 

In response to a lookup request, the client node sends an 
appropriate request message, using the requested fileId as 
the destination. As soon as the request message reaches a 
node that stores the file, that node responds with the content 
and the stored file certificate; the request message is not 
routed further. Due to the locality properties of the Pastry 
routing scheme and the fact that file replicas are stored on 
k nodes with adjacent nodeIds, a lookup is likely to find a 
replica that is near the client, according to the proximity 
metric. 

A reclaim request proceeds analogous to an insert request. 
The client's node issues a reclaim certificate, which allows 
the replica storing nodes to verify tha t  the file's legitimate 
owner is requesting the operation. The storing nodes each 
issue and return a reclaim receipt, which the client node 
verifies for a credit against the user's storage quota. More 
detail about  quota management can be found in [16]. 

2.3 Security 
While the details of security in PAST are beyond the scope 
of this paper, we give here a brief overview. More detail can 
be found in [16] and in a forthcoming paper. 

Each PAST node and each user of the system hold a smart- 
card (read-only clients don't need a card). A private/public 
key pair is associated with each card. Each smartcard's pub- 
lic key is signed with the smartcaxd issuer's private key for 
certification purposes. The smartcards generate and verify 
the various certificates and they maintain storage quotas. It 
is possible to operate PAST without smartcards; however, 
providing comparable security and a quota system without 
smaxtcards complicates the system [16]. 

The following assumptions underly PAST's security model: 
(1) It is computationally infeasible to break the public-key 
cryptosystem and the cryptographic hash function used in 
PAST; (2) while clients, node operators and node software 
are not t rusted and attackers may control the behavior of 
individual PAST nodes, it  is assumed that  most nodes in 
the overlay network axe well-behaved; and, (3) an attacker 
cannot control the behavior of the smartcards. 

The smartcards ensure the integrity of nodeId and fileId 
assignments, thus preventing an attacker from controlling 
adjacent nodes in the nodeId space, or directing file inser- 
tions to a specific portion of the fileId space. Store receipts 
prevent a malicious node from causing the system to create 
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fewer than k diverse replicas of a file without the client notic- 
ing it. The file certificates allow storage nodes and clients to 
verify the integrity and authenticity of stored content. File 
and reclaim certificates help enforce client storage quotas. 
If desired, a client can ensure file privacy by encrypting the 
content before inserting the file into PAST. 

The Pastry routing scheme can be randomized, thus pre- 
venting a malicious node along the path from repeatedly 
intercepting a request message and causing a denial of ser- 
vice. All routing table entries (i.e. nodeId to IP address 
mappings) are signed by the associated node and can be 
verified by other nodes. Therefore, a malicious node may 
at worst suppress valid entries, but  it cannot forge entries. 
Also, routing information in Pastry is inherently redundant 
and not globally disseminated. Owing to all these factors, 
Pastry is highly resilient to malicious nodes, and limits their 
impact to a degradation in routing performance as long as 
most nodes are well-behaved. In the worst case, widespread 
corruption of nodes could cause routing failures and thus 
denial of service. 

In the following sections, we describe the storage manage- 
ment and the caching in PAST. The primary goal of storage 
management is to ensure the availability of files while bal- 
ancing the storage load as the system approaches its maxi- 
mal storage utilization. The goal of caching is to minimize 
client access latencies, to maximize the query throughput 
and to balance the query load in the system. 

3. STORAGE MANAGEMENT 
PAST's storage management aims at allowing high global 
storage utilization and graceful degradation as the system 
approaches its maximal utilization. The aggregate size of 
file replicas stored in PAST should be able to grow to a 
large fraction of the aggregate storage capacity of all PAST 
nodes before a large fraction of insert requests are rejected 
or suffer from decreased performance. While it is difficult to 
predict if systems such as PAST will be typically operated 
at high levels of storage utilization, it is our contention that  
any highly efficient and reliable system must remain robust 
in the event of extreme operating conditions. 

In line with the overall decentralized architecture of PAST, 
an important design goal for the storage management is to 
rely only on local coordination among nodes with nearby 
nodeIds, to fully integrate storage management with file in- 
sertion, and to incur only modest performance overheads 
related to storage management. 

The responsibilities of the storage management are to (1) 
balance the remaining free storage space among nodes in 
the PAST network as the system-wide storage utilization 
is approaching 100%; and, (2) to maintain the invariant 
that  copies of each file are maintained by the k nodes with 
nodeIds closest to the fileId. Goals (1) and (2) appear to be 
conflicting, since requiring that  a file is stored on k nodes 
closest to its fileId leaves no room for any explicit load bal- 
ancing. PAST resolves this conflict in two ways. 

First, PAST allows a node that  is not one of the k numeri- 
caily closest nodes to the fileId to alternatively store the file, 
if it is in the leaf set of one of those k nodes. This process is 

called replica diversion and its purpose is to accommodate 
differences in the storage capacity and utilization of nodes 
within a leaf set. Replica diversion must be done with care, 
to ensure that the file availability is not degraded. 

Second, file diversion is performed when a node's entire leaf 
set is reaching capacity. Its purpose is to achieve more global 
load balancing across large portions of the nodeId space. A 
file is diverted to a different part of the nodeId space by 
choosing a different salt in the generation of its fileId. 

In the rest of this section, we discuss causes of storage im- 
balance, state assumptions about per-node storage and then 
present the algorithms for replica and file diversion. Finally, 
we describe how the storage invariant is maintained in the 
presence of new node addition, node failure and recovery. 
An experimental evaluation of PAST's storage management 
follows in Section 5. 

3.1 Causes of storage load imbalance 
Recall that each PAST node maintains a leaf set, which 
contains the I nodes with nodeIds numerically closest to the 
given node (I/2 with larger and I/2 with smaller nodelds). 
Normally, the replicas of a file are stored on the k nodes that 
are numerically closest to the fileld (k can be no larger than 
(1/2) + 1). 

Consider the case where not all of the k closest nodes can ac- 
commodate a replica due to insufficient storage, but  k nodes 
exist within the leaf sets of the k nodes that  can accommo- 
date the file. Such an imbalance in the available storage 
among the l + k nodes in the intersection of the k leaf sets 
can arise for several reasons: 

• Due to statistical variation in the assignment of nodeIds 
and fileIds, the number of files assigned to each node may 
differ. 

• The size distribution of inserted files may have high vari- 
ance and may be heavy tailed. 

• The storage capacity of individual PAST nodes differs. 

Replica diversion aims at balancing the remaining free stor- 
age space among the nodes in each leaf set. In addition, as 
the global storage utilization of a PAST system increases, file 
diversion may also become necessary to balance the storage 
load among different portions of the nodeId space. 

3.2 Per-node storage 
We assume that  the storage capacities of individual PAST 
nodes differ by no more than two orders of magnitude at a 
given time. The following discussion provides some justifi- 
cation for this assumption. 

PAST nodes are likely to use the most cost effective hard- 
ware available at the time of their installation. At the time 
of this writing, this might be a PC with a small number 
of 60GB disk drives. Given that the size of the most cost 
effective disk size can be expected to double in no less than 
one year, a node with a typical, low-cost configuration at 
the time of its installation should remain viable for many 
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years, i.e., its capacity should not drop below two orders of 
magnitude of the largest newly installed node. 

Our assumption does not prevent the construction of sites 
tha t  provide large-scale storage. Such a site would be con- 
figured as a cluster of logically separate PAST nodes with 
separate nodeIds. Whether  the associated hardware is cen- 
tralized (large multiprocessor node with RAID storage sub- 
system or cluster of PCs, each with a small number of at-  
tached disks) is irrelevant, although considerations of cost 
and fault resilience normally favor clusters of PCs. Even 
though the multiple nodes of a site are not administrat ively 
independent and may have correlated failures, the use of 
such sites does not significantly affect the average diversity 
of the nodes selected to store replicas of a given file, as long 
as the number of nodes in a site is very small compared to 
the total  number of nodes in a PAST system. 

PAST controls the distribution of per-node storage capaci- 
ties by comparing the advertised storage capacity of a newly 
joining node with the average storage capacity of nodes in 
its leaf set. If  the node is too large, it is asked to split and 
join under multiple nodeIds. If  a node is too small, it is 
rejected. A node is free to advertise only a fraction of its 
actual disk space for use by PAST. The advertised capacity 
is used as the basis for the admission decision. 

3.3 Replica diversion 
The purpose of replica diversion is to balance the  remaining 
free storage space among the nodes in a leaf set. Replica 
diversion is accomplished as follows. 

When an insert request message first reaches a node with 
a nodeId among the k numerically closest to the fileId, the 
node checks to see if it  can accommodate a copy of the file in 
its local disk. If so, it  stores the file, issues a store receipt, 
and forwards the message to the other k - 1 nodes with 
nodeIds closest to the fileId. (Since these nodes must exist in 
the node's leaf set, the message can be forwarded directly). 
Each of these nodes in turn a t tempts  to store a replica of 
the file and returns a store receipt. 

If a node A cannot accommodate a copy locally, it considers 
replica diversion. For this purpose, A chooses a node B in 
its leaf set tha t  is not among the k closest and does not 
already hold a diverted replica of the file. A asks B to store 
a copy on its behalf, then enters an entry for the file in its 
table with a pointer to B, and issues a store receipt as usual. 
We say tha t  A has diverted a copy of the file to node B. 

Care must be taken to ensure tha t  a diverted replica con- 
tr ibutes as much towards the overall availability of the file 
as a locally stored replica. In particular,  we must ensure 
tha t  (1) failure of node B causes the creation of a replace- 
ment replica, and that  (2) the failure of node A does not 
render the replica stored on B inaccessible. If it did, then 
every diverted replica would double the probabil i ty  tha t  all 
k replicas might be inaccessible. The node failure recovery 
procedure described in Section 3.5 ensures condition (1). 
Condition (2) can be achieved by entering a pointer to the 
replica stored on B into the file table of the node C with 
the k + l t h  closest nodeId to the fileId. 

If node A fails then node C still maintains a pointer to the 
replica stored on B, maintaining the invariant tha t  the k 
closest nodes maintain either a replica or a reference to a 
dist inct  diverted replica. If node C fails then node A installs 
a reference on the now k + l t h  closest node. 

Results presented in Section 5 show tha t  replica diversion 
achieves local storage space balancing and is necessary to 
achieve high overall storage utilization and graceful degra- 
dation as the PAST system reaches its storage capacity. The 
overhead of diverting a replica is an additional entry in the 
file tables of two nodes (A and C, both  entries pointing to 
B),  two additional RPCs during insert and one addit ional 
RPC during a lookup that  reaches the diverted copy. To 
minimize the impact of replica diversion on PAST's  perfor- 
mance, appropriate policies must be used to avoid unneces- 
sary replica diversion. 

3.3.1 Policies 
We next describe the policies used in PAST to control replica 
diversion. There are three relevant policies, namely (1) ac- 
ceptance of replicas into a node's local store, (2) selecting a 
node to store a diverted replica, and (3) deciding when to 
divert a file to a different part  of the nodeId space. In choos- 
ing appropriate  policies for replica diversion, the following 
considerations are relevant. 

First, it is not necessary to balance the remaining free stor- 
age space among nodes as long as the utilization of all nodes 
is low. Doing so would have no advantage but incur the cost 
of replica diversion. Second, it is preferable to divert a large 
file rather than multiple small ones. Diverting large files 
not only reduces the insertion overhead of replica diversion 
for a given amount of free space that needs to be balanced; 
taking into account that workloads are often biased towards 
lookups of small files, it can also minimize the impact of the 
lookup overhead of replica diversion. 

Third, a replica should always be diverted from a node whose 
remaining free space is significantly below average to a node 
whose free space is significantly above average; when the 
free space gets uniformly low in a leaf set, it  is be t ter  to 
divert the file into another par t  of the nodeId space than 
to a t t empt  to divert replicas at  the risk of spreading locally 
high utilization to neighboring parts of the nodeId space. 

The policy for accepting a replica by a node is based on the 
metric So/FN, where So is the size of a file D and FN is 
the remaining free storage space of a node N. In particu- 
lar, a node N rejects a file D if So/FN > t, i.e., D would 
consume more than a given fraction t of N's remaining free 
space. Nodes that are among the k numerically closest to 
a fileld (primary replica stores) as well as nodes not among 
the k closest (diverted replica stores) use the same criterion, 
however, the former use a threshold tpri while the latter use 
tdiv, where tpri ~ tdiv. 

There are several things to note about  this policy. First ,  
assuming that  the average file size is much smaller than  a 
node's  average storage size, a PAST node accepts all but  
oversized files as long as its utilization is low. This prop- 
erty avoids unnecessary diversion while the node still has 
plenty of space. Second, the policy discriminates against 
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large files, and decreases the size threshold above which files 
get rejected as the node's utilization increases. This bias 
minimizes the number of diverted replicas and tends to di- 
vert large files first, while leaving room for small files. Third,  
the criterion for accepting diverted replicas is more restric- 
tive than that  for accepting primary replicas; this ensures 
tha t  a node leaves some of its space for pr imary replicas, 
and tha t  replicas are diverted to a node with significantly 
more free space. 

A pr imary store node N tha t  rejects a replica needs to select 
another node to hold the diverted replica. The policy is to 
choose the node with maximal remaining free space, among 
the nodes tha t  are (a) in the leaf set of N,  (b) have a nodeId 
tha t  is not also one of the  k nodes closest to the fileId, and 
(c) do not already hold a diverted replica of the same file. 
This policy ensures tha t  replicas are diverted to the  node 
with the most free space, among the eligible nodes. Note 
tha t  a selected node may reject the diverted replica based 
on the above mentioned policy for accepting replicas. 

Finally, the policy for diverting an entire file into another 
par t  of the nodeId space is as follows. When one of the k 
nodes with nodeIds closest to the fileId declines to store its 
replica, and the node i t  then chooses to hold the diverted 
replica also declines, then the entire file is diverted. In this 
case, the  nodes tha t  have already stored a replica discard the 
replica, and a negative acknowledgment message is re turned 
to the client node, causing a file diversion. 

3.4 File diversion 
The purpose of file diversion is to balance the remaining free 
storage space among different portions of the nodeId space 
in PAST. When a file insert operation fails because the  k 
nodes closest to the  chosen fileId could not accommodate  
the file nor divert the replicas locally within their  leaf set, a 
negative acknowledgment is returned to the client node. The 
client node in turn  generates a new fileId using a different 
salt  value and retries the insert operation. 

A client node then repeats  this process for up to three times. 
If, after four a t tempts  the insert operation still fails, the 
operat ion is aborted and an insert failure is reported to the 
application. Such a failure indicates tha t  the system was 
not  able to locate the necessary space to store k copies of 
the file. In such cases, an application may choose to re t ry  
the  operation with a smaller file size (e.g. by fragmenting 
the file) and /o r  a smaller number of replicas. 

3.5 Maintaining replicas 
PAST maintains the invariant that  k copies of each inserted 
file are maintained on different nodes within a leaf set. This 
is accomplished as follows. 

First ,  recall tha t  as par t  of the Pas t ry  protocol, neighboring 
nodes in the nodeId space periodically exchange keep-alive 
messages. If a node is unresponsive for a period T, it  is 
presumed failed and Pas t ry  triggers an adjustment  of the  
leaf sets in all affected nodes. Specifically, each of the  l 
nodes in the leaf set of the failed node removes the failed 
node from its leaf set and includes instead the live node 
with the  next closest nodeId. 

Second, when a new node joins the system or a previously 
failed node gets back on-line, a similar adjustment  of the  
leaf set occurs in the l nodes that  constitute the leaf set of 
the joining node. Here, the joining node is included and 
another node is dropped from each of the previous leaf sets. 

As par t  of these adjustments,  a node may become one of 
the  k closest nodes for certain files; the storage invariant 
requires such a node to acquire a replica of each such file, 
thus re-creating replicas that  were previously held by the 
failed node. Similarly, a node may cease to be one of the  k 
nodes for certain files; the invariant allows a node to discard 
such copies. 

Given the current ratio of disk storage versus wide-area In- 
ternet  bandwidth,  it is time-consuming and inefficient for 
a node to request replicas of all files for which it has jus t  
become one of the k numerically closest nodes. This is par- 
t icularly obvious in the case of a new node or a recovering 
node whose disk contents were lost as part  of the failure. To 
solve this problem, the joining node may instead install  a 
pointer in its file table, referring to the node tha t  has just  
ceased to be one of the k numerically closest to the  fileId, 
and requiring tha t  node to keep the replica. This process 
is semantically identical to replica diversion, and the exist- 
ing mechanisms to ensure availability are reused (see Sec- 
t ion 3.3). The affected files can then be gradually migrated 
to the joining node as par t  of a background operation. 

When  a PAST network is growing, node additions may cre- 
ate the si tuation where a node that  holds a diverted replica 
and the node tha t  refers to that  replica are no longer par t  of 
the same leaf set. Because such nodes are not automatical ly  
notified of each other 's  failure, they must explicitly exchange 
keep-alive messages to maintain the invariants. To minimize 
the associated overhead, affected replicas are gradually mi- 
grated to a node within the referring node's leaf set whenever 
possible. 

Consider the  case when a node fails and the storage uti-  
lization is so high tha t  the remaining nodes in the leaf set 
are unable to store additional replicas. To allow PAST to 
maintain its storage invariants under these circun~stances, a 
node asks the two most distant members of its leaf set (in 
the  nodeId space) to locate a node in their respective leaf 
sets tha t  can store the file. Since exactly half of the node 's  
leaf set overlaps with each of these two nodes'  leaf sets, a 
total  of 21 nodes can be reached in this way. Should none 
of these nodes be able to accommodate the file, then it is 
unlikely tha t  space can be found anywhere in the system, 
and the number of replicas may temporari ly drop below k 
until more nodes or disk space become available. 

The observant reader may have noticed at this point tha t  
maintaining k copies of a file in a PAST system with high 
util ization is only possible if the  total  amount of disk stor- 
age in the system does not decrease. If total  disk storage 
were to decrease due to node and disk failures that  were not  
eventually balanced by node and disk additions, then the 
system would eventually exhaust all of its storage. Beyond 
a certain point, the  system would be unable to re-replicate 
files to make up for replicas lost due to node failures. 
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Maintaining adequate resources and utilization is a prob- 
lem in systems like PAST that axe not centrally managed. 
Any solution must provide strong incentives for users to 
balance their resource consumption with the resources they 
contribute to the system. PAST addresses this problem by 
maintaining storage quotas, thus ensuring that  demand for 
storage cannot exceed the supply. A full discussion of these 
management and security aspects of PAST is beyond the 
scope of this paper. 

3.6 File encoding 
Storing k complete copies of a file is not the most storage- 
efficient method to achieve high availability. With Reed- 
Solomon encoding, for instance, adding m additional check- 
sum blocks to n original data blocks (all of equal size) allows 
recovery from up to m losses of data or checksum blocks [23]. 
This reduces the storage overhead required to tolerate m 
failures from m to (m + n ) / n  times the file size. By frag- 
menting a file into a large number of data blocks, the storage 
overhead for availability can be made very small. 

Independent of the encoding, storing fragments of a file at 
separate nodes (and thereby striping the file over several 
disks) can also improve bandwidth. However, these poten- 
tial benefits must be weighed against the cost (in terms of 
latency, aggregate query and network load, and availability) 
of contacting several nodes to retrieve a file. This cost may 
outweigh the benefits for all but  large files; exploring this 
option is future work. The storage management issues dis- 
cussed in this paper, however, are largely orthogonal to the 
choice of file encoding and striping. 

4. CACHING 
In this section, we describe cache management in PAST. The 
goal of cache management is to minimize client access laten- 
cies (fetch distance), to maximize the query throughput and 
to balance the query load in the system. Note that  because 
PAST is running on an overlay network, fetch distance is 
measured in terms of Pastry routing hops. 

The k replicas of a file are maintained by PAST primarily for 
reasons of availability, although some degree of query load 
balancing and latency reduction results. To see this, recall 
that  the k nodes with adjacent nodeIds that  store copies of 
a file are likely to be widely dispersed and that  Pastry is 
likely to route client lookup request to the replica closest to 
the client. 

However, a highly popular file may demand many more than 
k replicas in order to sustain its lookup load while minimiz- 
ing client latency and network traffic. Furthermore, if a file 
is popular among one or more local clusters of clients, it is 
advantageous to store a copy near each cluster. Creating 
and maintaining such additional copies is the task of cache 
management in PAST. 

PAST nodes use the "unused" portion of their advertised 
disk space to cache files. Cached copies can be evicted and 
discarded at any time. In particular, when a node stores 
a new primary or redirected replica of a file, it typically 
evicts one or more cached files to make room for the replica. 
This approach has the advantage that  unused disk space in 
PAST is used to improve performance; on the other hand, 

as the storage utilization of the system increases, cache per- 
formance degrades gracefully. 

The cache insertion policy in PAST is as follows. A file 
that  is routed through a node as part of a lookup or insert 
operation is inserted into the local disk cache if its size is 
less than a fraction c of the node's current cache size, i.e., 
the portion of the node's storage not currently used to store 
primary or diverted replicas. 

The cache replacement policy used in PAST is based on 
the GreedyDual-Size (GD-S) policy, which was originally 
developed for caching Web proxies [11]. GD-S maintains 
a weight for each cached file. Upon insertion or use (cache 
hit), the weight Ha associated with a file d is set to c(d)/s(d), 
where c(d) represents a cost associated with d, and s(d) is 
the size of the file d. When a file needs to be replaced, the 
file v is evicted whose H~ is minimal among all cached files. 
Then, H~ is subtracted from the H values of all remaining 
cached files. If  the value of c(d) is set to one, the policy 
maximizes the cache hit rate. Results presented in Section 5 
demonstrate the effectiveness of caching in PAST. 

5. EXPERIMENTAL RESULTS 
In this section, we present experimental results obtained 
with a prototype implementation of PAST. The PAST node 
software was implemented in Java. To be able to perform 
experiments with large networks of Pastry nodes, we also im- 
plemented a network emulation environment, through which 
the instances of the node software communicate. 

In all experiments reported in this paper, the Pastry nodes 
were configured to run in a single Java VM. This is largely 
transparent to the Pastry implementation--the Java run- 
time system automatically reduces communication among 
the Pastry nodes to local object invocations. 

All experiments were performed on a quad-processor Com- 
paq AlphaServer ES40 (500MHz 21264 Alpha CPUs) with 
6 GBytes of main memory, running True64 UNIX, version 
4.0F. The Pastry node software was implemented in Java 
and executed using Compaq's Java 2 SDK, version 1.2.2-6 
and the Compaq FastVM, version 1.2.2-4. 

It was verified that  the storage invariants are maintained 
properly despite random node failures and recoveries. PAST 
is able to maintain these invariants as long as Pastry is able 
to maintain proper leaf sets, which is the case unless [l/2J 
nodes with adjacent nodeIds fall within a recovery period. 
The remaining experimental results are divided into those 
analyzing the effectiveness of the PAST storage manage- 
ment, and those examining the effectiveness of the caching 
used in PAST. 

5.1 Storage 
For the experiments exploring the storage management, two 
different workloads were used. The first consists of a set 
of 8 web proxy logs from NLANR s for 5th March 2001, 
which were truncated to contain 4,000,000 entries, referenc- 

3National Laboratory for Applied Network Research, 
ftp:/[ircache.nlanr.net/Traces. National Science Founda- 
tion (grants NCR-9616602 and NCR-9521745). 

195 



ing 1,863,055 unique URLs, totaling 18.7 GBytes of con- 
tent, with a mean file size of 10,517 bytes, a median file 
size of 1,312 bytes, and a largest/smallest file size of 138 

MBytes  and 0 bytes, respectively. The second of the work- 
loads was generated by combining file name and file size 
information from several file systems at the authors' home 
institutions. The files were sorted alphabetically by filename 
to provide an ordering. The trace contained 2,027,908 files 
with a combined file size of 166.6 GBytes, with a mean file 
size of 88,233 bytes, a median file size of 4,578 bytes, and a 
largest/smallest file size of 2.7 GBytes and 0 bytes, respec- 
tively. 

Selecting an appropriate workload to evaluate a system like 
PAST is difficult, since workload traces for existing peer-to- 
peer systems are not available and relatively little is known 
about their characteristics [28]. We chose to use web proxy 
and filesystems workloads to evaluate storage management 
and caching in PAST. The file-size distributions in the two 
workloads are very different and should bracket the range 
of size distributions likely to be encountered by PAST. For 
the purposes of evaluating caching, the locality properties 
in the web proxy log should give a rough idea of the locality 
one would expect of a PAST workload. 

In all experiments, the number of replicas k for each file 
was fixed at 5, b was fixed at 4, and the number of PAST 
nodes was fixed at 2250. The number of replicas was chosen 
based on the measurements and analysis in [8], which consid- 
ers availability of desktop computers in a corporate network 
environment. The storage space contributed by each PAST 
node was chosen from a truncated normal distribution with 
mean m, standard deviation a, and with upper and lower 
limits at m + x a  and m - x a ,  respectively. 

Table 1 shows the values of m and a for four distributions 
used in the first set of experiments. The lower and upper 
bounds indicate where the tails of the normal distribution 
were cut. In the case of dl and d2, the lower and upper 
bound was defined as m - 2.3a and m + 2.3a, respectively. 
For d3 and d4, the lower and upper bound was fixed arbi- 
trarily, and a large a was used. We have also experimented 
with uniform distributions, and found that  the results were 
not significantly affected. 

The mean storage capacities of these distributions axe ap- 
proximately a factor of 1000 below what one might expect in 
practice. This scaling was necessary to experiment with high 
storage utilization and a substantial number of nodes, given 
that  the workload traces available to us have only limited 
storage requirements. Notice that  reducing the node stor- 
age capacity in this way makes storage management more 
difficult, so our results are conservative. 

The first set of experiments use the NLANR traces. The 
eight separate web traces were combined, preserving the 
temporal ordering of the entries in each log to create a sin- 
gle log. The first 4,000,000 entries of that  log were used in 
sequence, with the first appearance of a URL being used to 
insert the file into PAST, and with subsequent references to 
the same URL ignored. Unless otherwise stated, the node 
storage sizes were chosen from distribution dl. 

Dist. m a Lower Upper Total 
name bound bound capacity 

dl 27 10.8 2 51 61,009 
d2 27 9.6 4 49 61,154 
d3 27 54.0 6 48 61,493 
d4 27 54.0 1 53 59,595 

Table  1: T h e  p a r a m e t e r s  o f  four  n o r m a l  dis tr ibu-  
t i on s  o f  n o d e  s torage  s i zes  u s e d  in  t h e  e x p e r i m e n t s .  
All  f igures  in M B y t e s .  

In the first experiment, both replica diversion and file di- 
version were disabled by setting the threshold 4 for primary 
replica stores to tpri -- 1, setting the threshold for the di- 
verted replica stores to t d ~  = 0 and by declaring a file inser- 
tion rejected upon the first insert failure (i.e., no re-salting). 
The purpose of this experiment is to demonstrate the need 
for explicit storage load balancing in PAST. 

The entire web log trace was played against the PAST sys- 
tem. With no replica and file diversion, 51.1% of the file in- 
sertions failed and the global storage utilization of the PAST 
system at the end of the trace was only 60.8%. This clearly 
demonstrates the need for storage management in a system 
like PAST. 

In Table 2 shows the results of the same experiment with 
file and replica diversion enabled, tpri -- 0.1, tdiv  = 0.05, 
for the various distributions of storage node sizes, and for 
two settings of the leaf set size l, 16 and 32. The table 
shows the percentage of successful and unsuccessful inserts, 
"Success" and "Fail" respectively. The "File diversion" col- 
umn shows the percentage of successful inserts that  involved 
file diversion (possibly multiple times), and "Replica diver- 
sion" shows the fraction of stored replicas that  were diverted. 
"Util" shows the global storage utilization of the PAST sys- 
tem at the end of the trace. 

}Dist I ii File I N a m e ]  Succeed diversion ] Replica diversion I Util. 

l=16 
dl 97.6% 2.4% 8.4% 
d2 97.8% 2.2% 8.0% 
ds 96.9% 3.1% 8.2% 
d4 94.5% 5.5% 10.2% 

14.8% 94.9% 
13.7% 94.8% 
17.7% 94.0% 
22.2% 94.1% 

l---32 
dl 99.3% 0.7% 3.5% 
d2 99.4% 0.6% 3.3% 
d3 99.4% 0.6% 3.1% 
d4 97.9% 2.1% 4.1% 

16.1% 98.2% 
15.0% 98.1% 
18.5% 98.1% 
23.3% 99.3% 

~ab le  2: Effects  o f  v a r y i n g  t h e  s t o r age  d i s t r i b u t i o n  
a n d  leaf  se t  s i ze ,  w h e n  tpri --- 0.1 a n d  tdi~ = 0.05. 

The results in Table 2 show that  the storage management in 
PAST is highly effective. Compared to the results with no 
replica or file diversion, the utilization has risen from 60.8% 
to > 94% and > 98% with l ---- 16 and l ---- 32, respectively. 
Furthermore, the distribution of node storage sizes has only 

4Recall that  file size/free storage space > threshold t for a 
file to be stored on a node. 
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a minor impact  on the performance of PAST, for the set 
of distributions used in this experiment. As the number of 
small nodes increases in d3 and d4, the number of replica di- 
versions and, to a lesser degree, the number of file diversions 
increases, which is expected. 

There is a noticeable increase in the performance when the 
leaf set size is increased from 16 to 32. This is because a 
larger leaf set increases the scope for local load balancing. 
Wi th  the storage size distributions used in our experiments, 
increasing the leaf set size beyond 32 yields no further in- 
crease in performance, but  does increase the  cost of PAST 
node arrival and departure.  Therefore, for the remainder of 
the experiments a leaf set size (l) of 32 is used. 

The next set of experiments examines the sensitivity of our 
results to the setting of the parameters tp~i and tdi~, which 
control replica and file diversion. In the first of these ex- 
periments, the value of tpri was varied between 0.05 and 0.5 
while keeping tdiv constant at 0.05 and using dz as the node 
storage size distribution. Table 3 shows the results. 

tp~i Succeed Fail File Replica Util. 
divers, divers. 

0.5 88.02% 11.98% 4.43% 18.80% 99.7% 
0.2 96.57% 3.42% 4.41% 18.13% 99.4% 
0.1 99.33% 0.66% 3.47% 16.10% 98.2% 
0.05 99.30% 0.27% 2.17% 12.86% 97.4% 

Table  3: I n s e r t i o n  s ta t i s t i c s  a nd  u t i l i z a t i o n  o f  P A S T  
as  tp~i is var ied  a n d  td~ = 0.05. 

Figure 2 shows the cumulative failure ratio versus storage 
utilization for the same experiment.  The cumulative failure 
ratio is defined as the ratio of all failed file insertions over 
all file insertions tha t  occurred up to the point where the 
given storage utilization was reached. This data,  in con- 
junction with Table 3, shows tha t  as tpri is increased, fewer 
files are successfully inserted, but  higher storage utilization 
is achieved. This can be explained by considering that ,  in 
general, the  lower the value of tpri the less likely it is tha t  
a large file can be stored on a part icular  PAST node. Many 
small files can be stored in place of one large file; therefore, 
the number of files stored increases as tpr~ decreases, but  the 
utilization drops because large files are being rejected at  low 
utilization levels. Therefore, when the storage utilization is 
low, a higher rate of insertion failure is observed for smaller 
values of t ~ i .  

Table 4 shows the effect of varying the tdi~ parameter  be- 
tween 0.1 and 0.005, when tpri = 0.1 and storage size dis- 
t r ibution dz is used. Figure 3 shows the cumulative failure 
ratio versus storage utilization for the same experiments. 
As in the experiment varying tp~, as the value of td~ is in- 
creased the storage util ization improves, but  fewer insertions 
complete successfully, for the same reasons. 

We repeated the sensitivity experiments using the filesystem 
trace and, despite the different file size distribution in that 
trace, the results were similar. Based on these experiments, 
we conclude that tp~i = 0.1 and tu~ = 0.05 provide a good 
balance between maximal storage utilization and a low file 
insertion failure rate at low storage utilization. 

0 . 0 8  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

.o 0,06 

~ 0.05 

"~ 0.04 • 

"~ 0.03 
S 
00.02 

0.01 

0 
0 S 10 15 20 25 30 35 40 45 SO 55 60 65 70 75 80 85 90 95 

Utilization (%) 

F i g u r e  2: C u m u l a t i v e  fa i lure  rat io  versus  s torage  
u t i l i z a t i o n  a c h i e v e d  by  v a r y i n g  t h e  tpri p a r a m e t e r  
and tdiv = 0.05. 

tdiv Succeed Fail File Replica Util. 
divers, divers. 

0.1 93.72% 6.28% 5.07% 13.81% 99.8% 
0.05 99.33% 0.66% 3.47% 16.10% 98.2% 
0.01 99.76% 0.24% 0.53% 15.20% 93.1% 
0.005 99.57% 0.43% 0.53% 14.72% 90.5% 

T a b l e  4: I n s e r t i o n  s ta t i s t i c s  an d  u t i l i z a t i o n  o f  P A S T  
as t~ is varied and tp~i ---- 0.I. 

The next set of results explore in more detail  at what  uti- 
lization levels the file diversion and replica diversion begin 
to impact on PAST's  performance. Figure 4 shows the per- 
centage of inserted files tha t  axe diverted once, twice or three 
times, and the cumulative failure rat io versus storage utiliza- 
tion. The results show tha t  file diversions are negligible as 
long as storage utilization is below 83%. A maximum of 
three file diversion a t tempts  are made before an insertion is 
considered failed. 

Figure 5 shows the ratio of replicas tha t  are diverted to the 
total  replicas stored in PAST, versus storage utilization. As 
can be seen, the  number of diverted replicas remains small 
even at high utilization; at  80% util ization less than  10% of 
the replicas stored in PAST are diverted replicas. These last 
two sets of results show tha t  the overhead imposed by replica 
and file diversion is moderate  as long as the utilization is less 
than about  95%. Even at  higher utilization the overhead 
remains acceptable. 

The next result shows the size distr ibution of the files tha t  
could not be inserted into PAST, as a function of utiliza- 
tion. Figure 6 shows a scat ter  plot of insertion failures by 
file size (left vertical axis) versus utilization level at which 
the failure occurred. Also shown is the fraction of failed in- 
sertions versus utilization (right vertical axis). In the graph, 
files larger than  the lower bound of the storage-capacity dis- 
t r ibut ion are not shown; in the  NLANR trace, 6 files are 
larger than  the upper storage capacity bound, 20 are larger 
than the mean storage capacity, and 964 are larger than the 
lower storage capacity bound. The number of files larger 
than the lower storage capacity bound that  were success- 
fully inserted was 9. None of the files larger than the mean 
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Figure  3: Cumula t ive  failure ra t io  versus s torage  
util ization achieved by varying the  tdiv p a r a m e t e r  
and tp~i = 0.I. 
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Figure  4: Rat io  o f  file d ivers ions  and  c u m u l a t i v e  
inser t ion  failures versus  s torage  ut i l i zat ion ,  tpri = 0.1 
and  tdi~ = 0.05. 

storage capacity were successfully inserted. 

Figure 6 shows that as the storage utilization increases, 
smaller files fail to be inserted. However, the utilization 
reaches 90.5% before a file of average size (10,517 bytes) is 
rejected for the first time. Up until just over 80% utilization 
no files smaller than 0.5 MBytes (e.g., 2 5 %  of the minimal 
node storage capacity) is rejected. Moreover, the total rate 
of failed insertions is extremely small at a utilization below 
90%, and even at 95% utilization the total rate of failures is 
below 0.05, reaching 0.25 at 98%. 

Having shown the properties of PAST using the NLANR 
traces, we now consider results using the filesystem work- 
load. The total size of all the files in that workload is sig- 
nificantly larger than in the NLANR web proxy trace. The 
same number of PAST nodes (2250) is used in the exper- 
iments, therefore the storage capacity contributed by each 
node has to be increased. For this experiment, we used dz 
to generate the storage capacities, but increased the stor- 
age capacity of each node by a factor of 10. The resulting 
lower/upper bound on storage capacity is 20 Mbytes and 
510 Mbytes, respectively, whilst the mean is 270 Mbytes. 
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Figure  5: Cumulat ive  rat io of  replica diversions ver- 
sus s torage  utilization, when  tpri = 0.1 and  tdiv ---- 0.05. 
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Figure  6: File insert ion  failures versus  s t o r a g e  uti-  
l i zat ion  for the  N L A N R  trace,  w h e n  t~ri = 0.1, 
t d i v =  0.05. 

The total storage capacity of the 2250 nodes is 596 GBytes. 

Figure 7 shows results of the same experiment as Figure 6, 
but using the filesystem workload. As before, files larger 
than the smallest storage capacity are not shown; in the 
filesystem load, 3 files are larger than the upper storage 
capacity, 11 are larger than the mean storage capacity, and 
679 are larger than the lower storage capacity bound. The 
number of files larger than the smallest storage capacity that 
were successfully inserted was 23, and none of the files larger 
than the mean storage capacity were inserted successfully. 

5.2 Caching 
The results presented in this section demonstrate the impact 
of caching in PAST. Our experiment uses the NLAlkrI~ trace. 
The trace contains 775 unique clients, which are mapped 
onto PAST nodes such that a request from a client in the 
trace is issued from the corresponding PAST node. The 
mapping is achieved as follows. There are eight individual 
web proxy traces which are combined, preserving temporal 
ordering to create the single trace used in the experiment. 
These eight traces come from top-level proxy servers dis- 
tributed geographically across the USA. When a new client 
identifier is found in a trace, a new node is assigned to it in 
such a way to ensure that requests from the same trace are 
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F i g u r e  7: F i l e  i n s e r t i o n  fa i lures  v e r s u s  s torage  uti-  
l i z a t i o n  for t h e  f l l e s y s t e m  w o r k l o a d ,  w h e n  tpri = 0.1, 
tdiv ---- 0.05. 

issued from PAST nodes that  are close to each other in our 
emulated network. 

The first time a URL is seen in the trace, the referenced file 
is inserted into PAST; subsequent occurrences of the URL 
cause a lookup to be performed. Both the insertion and 
lookup are performed from the PAST node that matches 
the client identifier for the operation in the trace. Files 
are cached at PAST nodes during successful insertions and 
during successful lookups, on all the nodes through which 
the request is routed. The c parameter is set to 1. As before, 
the experiment uses 2250 PAST nodes with the dl storage 
capacity distribution, tpri = 0.1 and tdiv= 0.05. 
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F i g u r e  8: Globa l  c a che  hit  ra t io  a n d  average  
n u m b e r  o f  m e s s a g e  h o p s  v e r s u s  u t i l i z a t i o n  u s i n g  
L e a s t - R e c e n t l y - U s e d  ( L R U ) ,  G r e e d y D u a l - S i z e  ( G D -  
S), a n d  no  caching,  w i t h  tpri = 0.1 a n d  tdi~ = 0.05. 
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Figure 8 shows both the number of routing hops required to 
perform a successful lookup and the global cache hit ratio 
versus utilization. The GreedyDual-Size (GD-S) policy de- 
scribed in Section 4 is used. For comparison, we also include 
results with the Least-Recently-Used (LRU) policy. 

When the caching is disabled, the number of routing hops 
on average required is constant to about 70% utilization and 
then begins to rise slightly. This is due to replica diversion 
occurring; therefore, on a small percentage of the lookups a 

diverted replica is retrieved, adding an extra routing hop. It  
should be noted that  [1og182250] = 3. The global cache hit 
rate for both the LRU and the GD-S algorithms decreases as 
storage utilization increases. Because of the Zipf-like distri- 
bution of web requests [10], it is likely that  a small number 
of files are being requested very often. Therefore, when the 
system has low utilization, these files are likely to be widely 
cached. As the storage utilization increases, and the num- 
ber of files increases, the caches begin to replace some files. 
This leads to the global cache hit rate dropping. 

The average number of routing hops for both LRU and GD- 
S indicates the performance benefits of caching, in terms of 
client latency and network traffic. At low storage utiliza- 
tion, clearly the files are being cached in the network close 
to where they are requested. As the global cache hit ratio 
lowers with increasing storage utilization, the average num- 
ber of routing hops increases. However, even at a storage 
utilization of 99%, the average number of hops is below the 
result with no caching. This is likely because the file sizes 
in the proxy trace have a median value of only 1,312 bytes; 
hence, even at high storage utilization there is capacity to 
cache these small files. In terms of global cache hit ratio 
and average number of routing hops, GD-S performs better 
than LRU. 

We have deliberately reported lookup performance in terms 
of the number of Pastry routing hops, because actual lookup 
delays strongly depend on per-hop network delays. To give 
an indication of actual delays cause by PAST itself, retriev- 
ing a 1KB file from a node one Pastry hop away on a LAN 
takes approximately 25ms. This result can likely be im- 
proved substantially with appropriate performance tuning 
in our prototype implementation. 

6. R E L A T E D  W O R K  
There are currently several peer-to-peer systems in use, and 
many more are under development. Among the most promi- 
nent are file sharing facilities, such as Gnutella [2] and Free- 
net [13]. The Napster [1] music exchange service provided 
much of the original motivation for peer-to-peer systems, 
but it is not a pure peer-to-peer system because its database 
is centralized. All three systems are primarily intended for 
the large-scale sharing of data files; persistence and reliable 
content location are not guaranteed or necessary in this en- 
vironment. 

In comparison, PAST aims at combining the scalability and 
self-organization of systems like FreeNet with the strong per- 
sistence and reliability expected of an archival storage sys- 
tem. In this regard, it is more closely related with projects 
like OceanStore [20], FarSite [8], FreeHaven [15], and Eter- 
nity [5]. FreeNet, FreeHaven and Eternity are more focused 
on providing strong anonymity and anti-censorship. 

OceanStore provides a global, transactional, persistent stor- 
age service that  supports serializable updates on widely repli- 
cated and nomadic data. In contrast, PAST provides a sim- 
ple, lean storage abstraction for persistent, immutable files 
with the intention that more sophisticated storage semantics 
(e.g., mutable files) be built on top of PAST if needed. 

Unlike PAST, FarSite has traditional filesystem semantics. 
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A distributed directory service is used in FarSite to locate 
content; this is different from PAST's Pastry scheme, which 
integrates content location and routing. Currently, there 
is no published scalability analysis of FarSite. Every node 
maintains a partial list of the live nodes, from which it 
chooses nodes that  should store replicas. Much of FarSite's 
design is motivated by a feasibility study that  measures a 
corporate LAN [8]; some of its assumptions may not hold in 
a wide-area environment. 

Pastry, along with Tapestry [31], Chord [30] and CAN [25], 
represent a second generation of peer-to-peer routing and lo- 
cation schemes that were inspired by the pioneering work of 
systems like FreeNet and Gnutella. Unlike that  earlier work, 
they guarantee a definite answer to a query in a bounded 
number of network hops, while retaining the scalability of 
FreeNet and the self-organizing properties of both FreeNet 
and Gnutella. 

Pastry and Tapestry bear some similarity to the work by 
Plaxton et al [24]. The approach of routing based on address 
prefixes, which can be viewed as a generalization of hyper- 
cube routing, is common to all three schemes. However, in 
the Plaxton scheme there is a special node associated with 
each file, which forms a single point of failure. Also, Plax- 
ton does not handle automatic node integration and failure 
recovery, i.e., it is not self-organizing. Pastry and Tapestry 
differ in their approach to achieving network locality and to 
replicating objects, and Pastry appears to be less complex. 

The Chord protocol is closely related to both Pastry and 
Tapestry, but instead of routing towards nodes that  share 
successively longer address prefixes with the destination, 
Chord forwards messages based on numerical difference with 
the destination address. Unlike Pastry and Tapestry, Chord 
makes no explicit effort to achieve good network locality. 

CAN routes messages in a d-dimensional space, where each 
node maintains a routing table with O(d) entries and any 
node can be reached in O(dN z/d) routing hops. Unlike Pas- 
try, the routing table does not grow with the network size, 
but  the number of routing hops grows faster than logN. 

CFS [14] is a decentralized, cooperative read-only storage 
system. Like PAST, it is built on top of a peer-to-peer rout- 
ing and lookup substrate, in this case Chord. Unlike PAST, 
it is intended solely as a file sharing medium, and thus pro- 
vides only weak persistence. CFS storage is block-oriented 
and a conventional UNiX-like filesystem is layered on top 
of it. Each block is stored on multiple nodes with adjacent 
Chord node ids and popular blocks can be cached at ad- 
ditional nodes, similar to the way entire files are stored in 
PAST. Compared to PAST, this increases file retrieval over- 
head, as each file data and metadata block must be located 
using a separate Chord lookup. On the other hand, CFS 
permits parallel block retrievals, which benefits large files. 

CFS's design assumes an abundance of free disk space. Com- 
bined with its block orientation and weak persistence, this 
simplifies its storage management, when compared to a sys- 
tem like PAST. To accomodate nodes with more than the 
minimal storage size, CFS relies on hosting multiple logi- 
cal nodes per physical nodes, each with a separate Chord 

id. PAST uses this technique only for nodes whose storage 
size exceeds the minimal size by more than two orders of 
magnitude. For both Chord and Pastry, the overhead of 
maintaining state for multiple logical nodes increases pro- 
portionaily. 

xFS [6] is a serverless filesystem. While it shares its decen- 
tralized architecture with peer-to-peer systems like PAST, 
it is intended as a general-purpose filesystem serving a sin- 
gle organization within a LAN. As such, its design goals 
and assumptions with respect to performance, network char- 
acteristics, security, and administration are very different 
from PAST's. More loosely related is work on overlay net- 
works [17], ad hoc network routing [7, 22], naming [3, 9, 12, 
21, 26, 29] and Web content replication [4, 18, 19]. 

7. CONCLUSION 
We presented the design and evaluation of PAST, an In- 
ternet based global peer-to-peer storage utility, with a focus 
on PAST's storage management and caching. Storage nodes 
and files in PAST are each assigned uniformly distributed 
identifiers, and replicas of a files are stored at the k nodes 
whose nodeIds are numerically closest to the file's fileId. Our 
results show that  the storage load balance provided by this 
statistical assignment is insufficient to achieve high global 
storage utilization, given typical file size distributions and 
non-uniform storage node capacities. 

We present a storage management scheme that  allows the 
PAST system to achieve high utilization while rejecting few 
file insert requests. The scheme relies only on local coordi- 
nation among the nodes in a leaf set, and imposes little over- 
head. Detailed experimental results show that  the scheme 
allow PAST to achieve global storage utilization in excess 
of 98%. Moreover, the rate of failed file insertions remains 
below 5% at 95% storage utilization and failed insertions are 
heavily biased towards large files. Furthermore, we describe 
and evaluate the caching in PAST, which allows any node 
to retain an additional copy of a file. We show that  caching 
is effective in achieving load balancing, and that  it reduces 
fetch distance and network traffic. 
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