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Abstract

We present a computational technique for combatting junk mail, in particular,
and controlling access to a shared resource, in general. The main idea is to require
a user to compute a moderately hard, but not intractable, function in order to gain
access to the resource, thus preventing frivolous use. To this end we suggest several
pricing functions, based on, respectively, extracting square roots modulo a prime,
the Fiat-Shamir signature scheme, and the Ong-Schnorr-Shamir (cracked) signature
scheme.
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1 Introduction

Some time ago one of us returned from a brief vacation, only to find 241 messages in
our reader. While junk mail has long been a nuisance in hard (snail) mail, we believe
that electronic junk mail presents a much greater problem. In particular, the ease
and low cost of sending electronic mail, and in particular the simplicity of sending
the same message to many parties, all but invite abuse. In this paper we suggest a
computational approach to combatting the proliferation of electronic mail. More
generally, we have designed an access control mechanism that can be used whenever
it is desirable to restrain, but not prohibit, access to a resource.

Two general approaches have been used for limiting access to a resource: legisla-
tion and usage fees. For example, it has been suggested that sending an unsolicited
FAX message should be a misdemeanor. This approach encounters obvious defini-
tional problems. Usage fees may be a deterrent; however, we do not want a system
in which to send a letter or note between friends should have a cost similar to that of
a postage stamp; similarly we do not wish to charge a high fee to transmit long files
between professional collaborators. Such an approach could lead to underutilization
of the electronic medium.

Since we believe the real cost of using the medium (plus the profit to the provider)
will not serve as a deterrent to junk mail, we propose a system that imposes another
type of cost on transmissions. These costs will deter junk mail but will not interfere
with other uses of the system. The main idea is for the mail system to require the
sender to compute some moderately expensive, but not intractable, function of the
message and some additional information. Such a function is called a pricing function.

In the more general setting, in which we have an arbitrary resource and a resource
manager, a user desiring access to the resource would compute a moderately hard
function of the request id. (The request id could be composed of the user’s identifier
together with, say the date and time of the request.)

The pricing function may be chosen to have something like a trap door: given some
additional information the computation would be considerably less expensive. We call
this a shortcut. The shortcut may be used by the resource manager to allocate cheap
access to the resource, as the manager sees fit, by bypassing the control mechanism.
For example, in the case of electronic mail the shortcut permits the post office to
grant bulk mailings at a price chosen by the post office, circumventing the cost of
directly evaluating the pricing function for each recipient.

We believe our approach to be of practical interest. It also raises the point that,
unlike the situation with one-way functions (functions that are easy to compute but
hard to invert) and Cryptography, there is virtually no complexity theory of moder-
ately hard functions, and therefore yields excellent motivation for the development of
such a theory.

The rest of this paper is organized as follows. Section 2 contains a description of
the properties we require of pricing functions. Section 3 focusses on combatting junk
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mail. Section 4 describes three possible candidates for pricing functions. We require
a family of hash functions satisfying certain properties. Potentially suitable hash
functions are discussed in more detail in Section 5. Section 6 contains conclusions
and open problems.

2 Definitions and Properties

We must distinguish between several grades of difficulty of computation. Rather than
describe the hardness of computing a function in terms of asymptotic growth, or in
terms of times on a particular machine, we focus on the relative difficulty of certain
computational tasks.

We require three classes of difficulty: easy, moderate, and hard. The term moderate
can be viewed in two different ways. As an upper bound, it means that computa-
tion should be at most moderately hard (as opposed to hard); as a lower bound it
means that computation should be at least moderately easy (as opposed to easy).
The precise definition of easy and moderate and hard will depend on the particular
implementation. However, there must be some significant gap between easy and mod-
erately easy. As usual, hard means intractable in reasonable time, such as factoring
a 1024-bit product of two large primes.

The functions we consider for implementing our scheme have a difference param-
eter that serves a role analogous to that of a security parameter in a cryptosystem.
A larger difference parameter stretches the difference between easy and moderate.
Thus, if it is desired that, on a given machine, checking that a function has been cor-
rectly evaluated should require only, say, 10−2 seconds of CPU time, while evaluating
the function directly, without access to the shortcut information, should require 10
seconds, the difference parameter can be chosen appropriately.

A function f is a pricing function if

1. f is moderately easy to compute;

2. f is not amenable to amortization: given ` values m1, . . . m`, the amortized
cost of computing f(m1), . . . , f(m`) is comparable to computing f(mi) for any
1 ≤ i ≤ `;

3. given x and y it is easy to determine if y = f(x).

We use the term “function” loosely: sometimes f will be a relation. That is, given x
it should be moderately easy to find a y such that the pair (x, y) satisfies the relation,
but given (x, y) it should be easy to determine whether it satisfies the relation.

Let S ⊆ {0, 1}∗ be a set that can be easily sampled (i.e. there is an efficient
algorithm for selecting a random s ∈ S). F = {fs|s ∈ S} is a family of pricing
functions indexed by s ∈ S ⊆ {0, 1}∗ if, given s, fs is a pricing function. We will be
interested in a collection of families of pricing function F = {Fk|k ≥ 1}, indexed by
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a difference parameter k, where the hardness of evaluating fs ∈ Fk should increase
with k.

Remark 2.1 It is important not to choose a function that after some preprocessing
can be computed very efficiently. Consider the following family of pricing functions
F , based on subset sum. The index s is a set of ` numbers a1, a2, . . . a`, 1 ≤ ai ≤ 2`,
such that 2` is moderately large. For a given request x, fs(x) is a subset of a1, a2, . . . a`

that sums to x. Computing fs seems to require time proportional to 2`. As was shown
by Schroepel and Shamir [24], after preprocessing, using only a moderate amount of
storage, such problems can be solved much more efficiently. Thus, there could be large
difference between the time spent evaluating fs on a large number k of different inputs,
such as would be necessary for sending bulk mail, and k individual computations of
fs from scratch. This is clearly undesirable.

We now introduce the notion of a shortcut, similar in spirit to a trapdoor one-
way permutation, introduced by Diffie and Hellman [10]. A pricing function with a
shortcut is easy to evaluate given the shortcut. In particular, the shortcut is used for
bypassing the access control mechanism, at the discretion of the resource manager.

A collection F of families of pricing functions is said to have the shortcut property
if for k ≥ 1 there exists an efficient algorithm that generates a pair (s, c) where

1. s is uniformly distributed in S.

2. given s (but not c) fs is a function in F .

3. c is a shortcut: computing fs is easy given s and c.

Note that since fs is a pricing function, it is not amenable to amortization. Thus,
given s, finding c or an equivalent shortcut, should be hard.

Remark 2.2 The consequences of a “broken” function are not severe. For example,
if a cheating sender actually sends few messages, then little harm is done; if it sends
many messages then the cheating will be suspected, if not actually detected, and the
pricing function or its key can be changed.

In the context of junk mail we use hash functions so that we never apply the
pricing function to a message, which may be long, but only to its hash value. Ideally,
the hash function should be very easy to compute. However, given m, h, and m′, it
should not be easy to find m′′ closely related to m′ such that h(m′′) = h(m). For
example, if Macy’s sends an announcement m of a sale, and later wishes to send an
announcement m′ of another sale, it should not be easy to find a suffix z such that
h(m′ · z) = h(m).

Suitable hash functions could be based on DES, subset sum, MD4, MD5, and
Snefru. We briefly discuss each of these in Section 5.
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3 Junk Mail

The primary motivation for our work is combatting electronic junk mail. We envision
an environment in which people have computers that are connected to a communica-
tion network. The computers may be used for various anticipated activities, such as,
for example, updating one’s personal database (learning that a check has cleared),
subscribing to a news service, and so on. This communication requires no human
participation. This is different from the situation when one receives a personal let-
ter, or an advertisement of a product in which one is likely to be interested, which
clearly require one’s attention. Our interest is in controlling mail of this second kind.

The system requires a single pricing function fs, with shortcut c, and a hash
function h. The selection of the pricing function and the setting of usage fees are
controlled by a pricing authority. All users agree to obey the authority. There
can be any number of trusted agents that receive the shortcut information from the
pricing authority. The functions h and fs are known to all users, but only the pricing
authority and its trusted agents know c.

To send a message m at time t to destination d, the sender computes y =
fs(h(〈m, t, d〉) and sends 〈y,m, t〉 to d. The recipient’s mail program verifies that
y = fs(h(〈m, t, d〉). If the verification fails, or if t is significantly different from the
current time, then the message is discarded and (optionally) the sender is notified
that transmission failed. If the verification succeeds and the message is timely, then
the message is routed to the reader.

Suppose the pricing function f has no short-cut. In this case, if one wants to write
a personal letter, the computation of fs may take time proportional to the time taken
to compose the letter. For typical private use that may be acceptable. In contrast, the
computational cost of a bulk mailing, even a “desirable” (not junk) mailing, would
be prohibitive, defeating the whole point of high bandwidth communication.

In our approach bulk mail, such as a call for papers for a professional conference,
or an announcement of a new product, is sent using the shortcut c, which necessarily
requires the participation of the system manager. The sender pays a fee and prepares
a set of letters, and one of the trusted agents evaluates the pricing function as needed
for all the letters, using the shortcut. Since the fee is levied to deter junk mail,
and not to cover the actual costs of the mailing, it can simply be turned over to the
recipients of the message (and used to pay for the services of the authority) .

Finally, each user can have a frequent correspondent list of senders from whom
messages are accepted without verification. Thus, friends and relatives could circum-
vent the system entirely. Moreover, one could join a mailing list by adding the name
of the distributor to one’s list of frequent correspondents1. The list, which is main-
tained locally by the recipient, can be changed as needed. Thus, when submitting a
paper to a conference, an author can add the name of the conference to the list of
frequent corresponders. In this way the conference is spared the fees of bulk mailing.

1Similarly, one could have a list of senders to whom access is categorically denied.
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4 Pricing Functions

In this section we list three candidate families of pricing functions. All the candidates
use number-theoretic algorithms. For a good introduction to this area see [9, 13].
The first pricing function is the simplest, but has no shortcut. The other two do have
good shortcuts.

4.1 Extracting Square Roots

The simplest implementation of our idea is to base the difficulty of sending on the
difficulty (but not infeasibility) of extracting square roots modulo a prime p. Again,
there is no known shortcut for this function.

• Index: A prime p of length depending on the difference parameter; a reasonable
length would be 1024 bits.

• Definition of fp: The domain of fp is Zp. fp(x) =
√

x mod p.

• Verification: Given x, y, check that y2 ≡ x mod p.

The checking step requires only one multiplication. In contrast, no method of
extracting square roots modp is known that requires fewer than about log p multipli-
cations. Thus, the larger we take the length of p, the larger the difference between
the time needed to evaluate fp and the time needed for verification.

4.2 A Fiat-Shamir Based Scheme

This pricing function described in this section is based on the signature scheme of
Fiat and Shamir [11]. The idea is to reduce the difficulty of forging signatures in that
scheme. The security of the Fiat-Shamir signature Scheme is based on

• The difficulty of factoring large numbers (or equivalently of extracting square-
roots modulo a composite).

• A hash function whose range size is (exponential in) the security parameter.
Ideally, this hash function should behave as a random function and the time it
takes to forge a message should be proportional to the range size.

The proposed pricing function is obtained by taking the Fiat-Shamir signature
scheme with a smaller security parameter for the hash function. Searching a range
of size exponential in the security parameter should be feasible, but time-consuming.
The scheme is as follows:
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• Index: Let N = pq, where p and q are primes of sufficient length to make
factoring N infeasible (currently 512 bits each suffices, but if there is further
progress in factoring algorithms, then 1024 bits should be used). Let y1 =
x2

1, . . . , yk = x2
k be k squares modulo N , where k depends on the difference

parameter. Finally, let h be a hash function whose domain is Z∗
N × Z∗

N , and
whose range is {0, 1}k. h can be obtained from any of the hash functions
described in Section 5 by taking the k least significant bits of the output. The
index s is the (k + 2)-tuple (N, y1, . . . , yk, h).

• Shortcut: The square roots x1, . . . , xk.

• Definition of fs: The domain of fs is Z∗
N . Below, we describe a moderately

easy algorithm for finding z and r2 satisfying the following conditions. Let us
write h(x, r2) = b1 . . . bk, where each bi is a single bit. Then z and r2 must
satisfy

z2 = r2x2
k∏

i=1

yi
bi mod N.

fs(x) = (z, r2) (note that fs is a relation).

• Verification: Given x, z, r2, compute b1 . . . bk = h(x, r2) and check that

z2 = r2x2
k∏

i=1

yi
bi mod N.

• To Evaluate fs with Shortcut Information: Choose an r at random, com-
pute h(x, r2) = b1 . . . bk, and set z = rx

∏k
i=1 xi

bi . fs(x) = (z, r2).

• Evaluating fs without Shortcut Information:

fs(x) = (z, r2) can be computed as follows.

Guess b1 . . . bk ∈ {0, 1}k.
Compute B =

∏k
i=1 yi

bi mod N .
Repeat:

Choose random z ∈ Z∗
N

Define r2 to be r2 = (z2/Bx2) mod N
Until h(x, r2) = b1 . . . bk.

In the evaluation of fs without the shortcut the expected number of iterations is
2k, which, based on the intuition driving the Fiat-Shamir signature scheme, seems
to be the best one can hope for. In particular, if h is random, then one can do no
better. In particular, retrieving the shortcut x1, . . . , xk is as hard as factoring [21]. In
contrast, the verification procedure involves about k multiplications (actually k/2+1
expected multiplications) and one evaluation of the hash function. Similarly, given
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the shortcut the function can be evaluated using about k multiplications and one
evaluation of the hash function. Thus, k is the difference parameter. A reasonable
choice is k = 10.

4.3 An Ong-Schnorr-Shamir Based Scheme, or, Recycling
Broken Signature Schemes

A source of suggestions for pricing functions with short cuts is signature schemes
that have been broken. The “right” type of breaking applicable for our purposes is
one that does not retrieve the private signature key (analogous to factoring N in the
previous subsection), but nevertheless allows forging signatures by some moderately
easy algorithm.

In this section we describe an implementation based on the proposed signature
scheme of Ong, Schnorr and Shamir and the Pollard algorithm for breaking it. In
[18, 19] Ong, Schnorr, and Shamir suggested a very efficient signature scheme based
on quadratic equations modulo a composite: the public key is a modulus N (whose
factorization remains secret) and an element ` ∈ Z∗

N . The private key is u such that
u2 = −`−1 mod N , (i.e a square root of the inverse of −` modulo N). A signature
for a message m (which we assume is in the range 0 . . . N − 1) is a solution (x1, x2) of
the equation x2

1 + ` ·x2
2 = m mod N . There is an efficient signing algorithm, requiring

knowledge of the private key:

• choose random r1, r2 ∈ Z∗
n such that r1 · r2 = m mod N

• set x1 = 1
2
· (r1 + r2) mod N and x2 = 1

2
· u · (r1 − r2) mod N .

Note that verifying a signature is extremely easy, requiring only 3 modular multipli-
cation.

Pollard (reported and extended in [20]) suggested a method of solving the equation
without prior knowledge of the private key (finding the private key itself is hard –
equivalent to factoring [21]). The method requires roughly log N iterations, and thus
can be considered moderately hard, as compared with the verification and signing
algorithms, which require only a constant number of multiplications and inversions.
For excellent descriptions of Pollard’s method and related work see [6, 14].

We now describe how to use the Ong-Schnorr-Shamir signature scheme as a pricing
function.

• Index: Let N = pq where p and q are primes let ` ∈ Z∗
n. Then s = (N, `).

• Shortcut: u such that u2 = `−1 mod N

• Definition of fs: The domain of fs is Z∗
N . Then fs(x) = (x1, x2), where

x2
1 + `x2

2 = x mod N . fs is computed using Pollard’s algorithm, as described
above.
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• Verification: Given x1, x2, x, verify that x = x2
1 + `x2

2.

• To Evaluate fs with Shortcut Information: Use the Ong-Schnorr-Shamir
algorithm for signing.

5 Hash Functions

Recall that we need hash functions for two purposes. First, in the context of junk
mail, we hash messages down to some reasonable length, say 512 bits, and apply the
pricing function to the hashed value of the message. In addition, we need hashing in
the pricing function based on the signature scheme of Fiat-Shamir.

We briefly discuss four candidate hash functions. Each of these can be computed
very quickly.

• DES: Several methods have been suggested for creating a one-way hash function
based on DES (e.g. [16] and the references contained therein). Since DES is
implemented in VLSI, and such a chip might become widely used for other
purposes, this approach would be very efficient. Note that various attacks based
on the “birthday paradox” [8] are not really relevant to our application since
the effort needed to carry out such attacks is moderately hard.

• MD4 & MD5 : MD4 and MD5 are candidate one-way hash functions pro-
posed by Rivest [22, 23]. They were designed explicitly to have a high speed
software implementation and are in wide use. The length of the output is either
128 or 256 bits. Although a simplified version of MD4 has been successfully
attacked [3], we know of no attack on the full MD4. Also, [4] finds “pseudo-
collisions” in MD5, but it is not clear whether this can be converted into a
collision finding algorithm.

• Subset Sum: Impagliazzo and Naor [12] have proposed using “high density”
subset sum problems as one-way hash functions. They showed that finding
colliding pairs is as hard as solving the subset sum problem for this density.
Although this approach is probably less efficient than the others mentioned here,
the function enjoys many useful statistical properties (viz. [12]). Moreover, it is
parameterized and therefore flexible.

• Snefru: Snefru was proposed by Merkle [17] as a one-way hash function suitable
for software, and was broken by Biham and Shamir [2]. However, the Biham
and Shamir attack still requires about 224 operations to find a partner of a given
message. Thus, it may still be viable for our purposes.
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6 Discussion and Further Research

Of the three pricing functions described in Section 4, the Fiat-Shamir is the most
flexible and enjoys the greatest difference function: changing k by 1 doubles the dif-
ference. The disadvantage is that this function, like the Fiat-Shamir scheme, requires
the “extra” hash function.

As mentioned in the Introduction, there is no theory of moderately hard functions.
The most obvious theoretical open question is to develop such a theory, analogous,
perhaps, to the theory of one-way functions. Another area of research is to find
additional candidates for pricing functions. Fortunately, a trial and error approach
here is not so risky as in cryptography, since as discussed earlier, the consequences
of a “broken” pricing function are not severe. If someone tries to make money from
having found cheaper ways of evaluating the pricing function, then he or she under-
prices the pricing authority. Either few people will know about this, in which case
the damage is slight, or it will become public.

A growing area of research is the economics of networks [15, 7, 5] where issues
such as the effect of pricing on the network behavior are investigated. It is interesting
to see whether there are connection between this direction and the ideas suggested in
this paper.

Finally, the evaluation of the pricing function serves no useful purpose, except
serving as a deterrent. It would be exciting to come up with a scheme in which
evaluating the pricing function serves some additional purpose.
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